CN112266913B - Method for simultaneously knocking out 1-SST and 1-FFT genes of hevea brasiliensis by using CRISPR/Cas9 system - Google Patents

Method for simultaneously knocking out 1-SST and 1-FFT genes of hevea brasiliensis by using CRISPR/Cas9 system Download PDF

Info

Publication number
CN112266913B
CN112266913B CN202011140720.XA CN202011140720A CN112266913B CN 112266913 B CN112266913 B CN 112266913B CN 202011140720 A CN202011140720 A CN 202011140720A CN 112266913 B CN112266913 B CN 112266913B
Authority
CN
China
Prior art keywords
sgrna
sst
fft
vector
artificial sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011140720.XA
Other languages
Chinese (zh)
Other versions
CN112266913A (en
Inventor
覃碧
刘实忠
王�锋
张立群
杨玉双
聂秋海
张继川
王肖肖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Linglong Dandelion Technology Development Co ltd
Beijing University of Chemical Technology
Rubber Research Institute Chinese Academy Tropical Agricultural Sciences
Original Assignee
Beijing Linglong Dandelion Technology Development Co ltd
Beijing University of Chemical Technology
Rubber Research Institute Chinese Academy Tropical Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Linglong Dandelion Technology Development Co ltd, Beijing University of Chemical Technology, Rubber Research Institute Chinese Academy Tropical Agricultural Sciences filed Critical Beijing Linglong Dandelion Technology Development Co ltd
Priority to CN202011140720.XA priority Critical patent/CN112266913B/en
Publication of CN112266913A publication Critical patent/CN112266913A/en
Application granted granted Critical
Publication of CN112266913B publication Critical patent/CN112266913B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • C12N15/8246Non-starch polysaccharides, e.g. cellulose, fructans, levans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01099Sucrose:sucrose fructosyltransferase (2.4.1.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/0112,1-Fructan:2,1-fructan 1-fructosyltransferase (2.4.1.100)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to the technical field of rubber grass gene editing, in particular to a method for simultaneously knocking out rubber grass 1-SST and 1-FFT genes by using a CRISPR/Cas9 system. The sgRNA of the specific targeting inulin synthase gene 1-SST and 1-FFT provided by the invention can efficiently guide the incision enzyme protein Cas9 to cut at a target position and generate double-stranded DNA break, and combines resistance screening and DNA sequencing to realize accurate and efficient simultaneous knockout of the inulin synthase gene 1-SST and 1-FFT. The invention provides a convenient and efficient method for creating the rubberberis inulin synthase gene mutant, effectively solves the problems of long period, uncertain mutation, high screening difficulty, high cost and the like in conventional mutation breeding, and provides a new method for breeding the excellent germplasm of the rubberberis.

Description

Method for simultaneously knocking out 1-SST and 1-FFT genes of kochia scoparia by using CRISPR/Cas9 system
Technical Field
The invention relates to the technical field of rubus koenigii gene editing, in particular to sgRNA, an expression cassette, a vector and a host cell for simultaneously targeted knockout of rubus koenigii inulin synthase genes 1-SST and 1-FFT by using a CRISPR/Cas9 system and a method for simultaneously targeted knockout of rubus koenigii inulin synthase genes 1-SST and 1-FFT by using a CRISPR/Cas9 system.
Background
Natural rubber is an important strategic material and industrial raw material, mainly produced from hevea brasiliensis. The Taraxacum kok-saghyz Rodin is perennial herb of Taraxacum of Compositae, the root of the Taraxacum can synthesize high-quality natural rubber, the structure and the performance of the Taraxacum kok-saghyz Rodin are similar to those of the natural rubber produced by Brazilian rubber tree, and the Taraxacum kok-saghyz Rodin is a gum-producing crop with great development prospect. In recent years, the rubber grass germplasm obtained through germplasm resource investigation and collection provides abundant materials for variety improvement of rubber grass, but the highest rubber content is only about 9 percent at present, and the cost for extracting natural rubber through rubber grass is still high. Therefore, the creation of new germplasm with high rubber content is the key of the industrialization of the rubber grass.
Inulin and natural rubber are two important metabolites of hevea brasiliensis, the synthetic common substrate of which is sucrose, but the content of inulin at the roots of hevea brasiliensis is much higher than that of natural rubber. The existing research shows that the accumulation of the inulin and the natural rubber at the root of the Hevea brasiliensis has competitiveness, and the inhibition of the synthesis of the inulin is probably an effective way for improving the content of the natural rubber at the root of the Hevea brasiliensis. Sucrose is synthesized into natural rubber (cis-1, 4-polyisoprene) in milk duct cells through a mevalonate pathway (MVA), inulin is specifically accumulated at the roots of the hevea brasiliensis, and the synthesis is completed by taking sucrose as a substrate and catalyzing by sucrose-1-fructosyltransferase (1-SST, EC2.4.1.99) and fructan, namely fructan 1-fructosyltransferase (1-FFT, EC 2.4.1.100). Therefore, the 1-SST and 1-FFT gene of the rubberberis inulin synthase are knocked out, a new germplasm deficient in the synthesis of the rubberberis inulin can be obtained, the supply of sucrose can be improved, and the synthesis of natural rubber is promoted.
The CRISPR/Cas9 system is a high-efficiency genome DNA editing technology, the principle of realizing gene editing is to use a target gene sequence-specific sgRNA to guide Cas9 endonuclease to cut and edit the DNA of a target gene, and the mutation can be stably inherited. Compared with mutagenesis technologies such as chemical mutagenesis, physical mutagenesis, DNA insertion mutation and the like, the CRISPR/Cas9 technology has the advantages of clear target, high mutation efficiency, simultaneous mutation of multiple target points and the like, and is a powerful tool for germplasm innovation. The specificity of CRISPR/Cas9 editing is determined by artificially designed sgrnas, and precisely targeted sgrnas are key to achieving site-directed mutations. However, the simultaneous mutation of multiple target sites by using CRISPR/Cas9 technology has not been reported in the prior art.
Disclosure of Invention
The invention aims to provide sgRNA, an expression cassette, a vector and a host cell for simultaneously targeted knockout of 1-SST and 1-FFT of a rubberberis inulin synthase gene by using a CRISPR/Cas9 system. Another purpose of the invention is to provide a method for simultaneously knocking out 1-SST and 1-FFT genes of the kochia scoparia by using a CRISPR/Cas9 system.
The invention discloses a method for simultaneously knocking out 1-SST and 1-FFT in a targeted manner by using a CRISPR/Cas9 system by taking the 1-SST and 1-FFT genes of the synanthrin synthase as target genes. In the research and development process, multiple groups of targeting sgRNAs are designed aiming at 1-SST and 1-FFT, and the effect of different sgRNA sequences on the efficiency of simultaneous targeted knockout of the 1-SST and the 1-FFT is found to be large. In addition to reducing the off-target effect and improving the targeting efficiency as much as possible, the targeting efficiency of sgrnas targeting 1-SST and 1-FFT genes needs to be coordinated with each other to achieve efficient targeted knockout of both genes.
Specifically, the invention provides the following technical scheme:
in a first aspect, the invention provides sgrnas for simultaneously targeted knockout of rubberberised inulin synthase genes 1-SST and 1-FFT using a CRISPR/Cas9 system, the sgrnas including sgRNA-SST1 and sgRNA-SST2 targeting 1-SST genes and sgRNA-FFT1 and sgRNA-FFT2 targeting 1-FFT genes; the sgRNA-SST1, the sgRNA-SST2, the sgRNA-FFT1 and the sgRNA-FFT2 respectively comprise sequences shown as SEQ ID NO.1-4 in sequence.
The 4 targeted sgRNAs can be used for remarkably improving the efficiency of simultaneous targeted knockout of the 1-SST and 1-FFT genes.
In a second aspect, the invention provides an expression cassette comprising the sgRNA.
The expression cassette described above further comprises a promoter for driving transcription of the sgRNA, the promoter being any one or more selected from the group consisting of promoters AtU6-1, AtU6-29, AtU3b, and AtU3 d.
Preferably, the sgRNA-SST1 transcription is driven by the AtU6-1 promoter, the sgRNA-SST2 transcription is driven by the AtU6-29 promoter, the sgRNA-FFT1 transcription is driven by the AtU3b promoter, and the sgRNA-FFT2 transcription is driven by the AtU3d promoter.
The sequence of the AtU6-1 promoter is 7926-8248 bits of the sequence shown in SEQ ID NO.6, the sequence of the AtU6-29 promoter is 8382-8719 bits of the sequence shown in SEQ ID NO.6, the sequence of the AtU3b promoter is 8854-9197 bits of the sequence shown in SEQ ID NO.6, and the sequence of the AtU3d promoter is 9332-9452 bits of the sequence shown in SEQ ID NO. 6.
The strength of the promoter influences the transcription level of the sgRNAs, and the invention discovers that the combination mode of the promoter and the sgRNAs can enable the sgRNAs to have better coordination effect, and further improves the efficiency of simultaneous targeted knockout of the 1-SST and 1-FFT genes.
Specifically, the structure of the expression cassette is as follows: AtU6-1-sgRNA-SST1-AtU6-29-sgRNA-SST2-AtU3b-sgRNA-FFT1-AtU3d-sgRNA-FFT 2.
As a preferred embodiment of the invention, the sequence of the expression cassette is shown as SEQ ID NO. 5.
In a second aspect, the invention provides a vector for simultaneously targeted knockout of the indexate synzyme genes 1-SST and 1-FFT using the CRISPR/Cas9 system, the vector comprising the sgRNA or comprising the expression cassette.
The vector described above further comprises a Cas9 gene and a selection marker gene. Wherein the Cas9 gene encodes a Cas9 protein. The screening marker gene can be a screening marker gene commonly used in plant transgenic processes, and includes but is not limited to a bar gene and the like.
The vector can be obtained by connecting the expression cassette containing the sgRNA to a common CRISPR/Cas9 gene editing vector framework.
Preferably, the sequence of the vector is shown as SEQ ID NO. 6. The vector can realize efficient 1-SST and 1-FFT gene simultaneous targeted knockout in the kochia scoparia.
In a third aspect, the invention provides a host cell comprising the sgRNA or the expression cassette or the vector.
Preferably, the host cell is a microbial cell or a non-reproductive plant cell.
In a fourth aspect, the invention provides the use of the sgRNA or the expression cassette or the vector or the host cell for increasing the sucrose, fructose or natural rubber content of the roots of hevea brasiliensis, or for reducing the inulin content of the roots of hevea brasiliensis.
The invention also provides application of the sgRNA or the expression cassette or the vector or the host cell in rubber grass genetic breeding or germplasm resource improvement.
Preferably, the application is breeding of a rubberberis inulin synthesis defective germplasm or a high-yield natural rubber germplasm.
In a fifth aspect, the invention provides a method for simultaneously targeted knockout of 1-SST and 1-FFT of a rubberberis inulin synthase gene by using a CRISPR/Cas9 system, which comprises the following steps: and transferring the sgRNA or the expression cassette or the vector into a kok rubber plant, and screening to obtain a kok rubber plant with the inulin synthase gene 1-SST and the inulin synthase gene 1-FFT which are simultaneously knocked out.
Specifically, the method comprises the following steps:
(1) screening specific targeting sgRNAs in coding regions of inulin synthetase genes 1-SST and 1-FFT respectively, wherein the sgRNAs-SST 1(SEQ ID NO.1) and sgRNA-SST2(SEQ ID NO.2) target the 1-SST genes simultaneously, and the sgRNAs-FFT 1(SEQ ID NO.3) and the sgRNAs-FFT 2(SEQ ID NO.4) target the 1-FFT genes simultaneously;
(2) designing and synthesizing a primer for amplifying an expression cassette according to a targeted sgRNA by using an intermediate vector YLgRNA-AtU6/AtU3 as a template, and constructing a promoter, a target and the gRNA into a complete expression cassette through Overlapping PCR amplification;
(3) taking a CRISPR/Cas9 gene editing vector pYLCRISPR/Cas9 binary expression vector as a framework, connecting an expression cassette containing different target sgRNAs with the pYLCRISPR/Cas9 vector to obtain a recombinant expression vector SST-FFT-Cas9, and transferring the recombinant expression vector SST-FFT-Cas9 into an agrobacterium strain;
(4) infecting agrobacterium containing the recombinant expression vector with transformed hevea brasiliensis in agrobacterium-mediated mode, inducing differentiation and resistance screening to obtain regenerated plant;
(5) extracting positive plant DNA, respectively designing specific amplification primers of 1-SST (SEQ ID NO.7 and SEQ ID NO.8) and 1-FFT (SEQ ID NO.9 and SEQ ID NO.10) genes, amplifying a segment spanning a sgRNA site through PCR (polymerase chain reaction) and carrying out sequencing verification to identify a plant mutation site, and screening to obtain the hevea brasiliensis in which the 1-SST and 1-FFT genes are mutated simultaneously.
In the step (2), the intermediate vector YLgRNA-AtU6/AtU3 is used as a template, and primers SST1-gRT1(SEQ ID NO.11), SST1-AtU6-1T1(SEQ ID NO.12), SST2-gRT2(SEQ ID NO.13), SST 2-2-29T 2(SEQ ID NO.14), FFT 2-2 (SEQ ID NO.15), FFT 2-2 bT 2(SEQ ID NO.16), FFT 2-2 (SEQ ID NO.17), FFT 2-2 dT 2(SEQ ID NO.18) are used for amplification by using the primers SST 685 1-gRT1, SST 2-2 sgRNA, AtU 2-29-SST 685 4-sgRNA, AtU 3-2 sgRNA and AtU 2-2 sgRNA.
In the step (3), in the recombinant expression vector SST-FFT-Cas9, the AtU6-1 promoter is used for driving the sgRNA-SST1(SEQ ID NO.1), the AtU6-29 promoter is used for driving the sgRNA-SST2(SEQ ID NO.2), the AtU3b promoter is used for driving the sgRNA-FFT1(SEQ ID NO.3), the AtU3d promoter is used for driving the sgRNA-FFT2(SEQ ID NO.4), and the sequence of the recombinant expression vector SST-FFT-Cas9 is shown in SEQ ID NO. 6.
In the step (4), the root section of the tissue culture seedling of the kochia scoparia is adopted for infection transformation.
The invention has the beneficial effects that: the sgRNA of the specific targeting inulin synthase gene 1-SST and 1-FFT provided by the invention can efficiently guide the incision enzyme protein Cas9 to cut at a target position and generate double-stranded DNA break, and realizes the accurate and efficient simultaneous knockout of the inulin synthase gene 1-SST and 1-FFT by combining resistance screening and DNA sequencing. The invention provides a convenient and efficient method for creating the rubberberis inulin synthase gene mutant, effectively solves the problems of long period, uncertain mutation, high screening difficulty, high cost and the like in conventional mutation breeding, and provides a new method for breeding the excellent germplasm of the rubberberis.
Drawings
FIG. 1 is a structural diagram of CRISPR/Cas9 recombinant expression vector SST-FFT-Cas9 targeting inulin synthase gene 1-SST and 1-FFT simultaneously in example 1 of the invention.
FIG. 2 shows the DNA sequencing results of T0 generation plants in the target region of 1-SST and 1-FFT genes in example 3 of the invention, wherein 1-SST/WT and 1-FFT/WT are the partial sequences of 1-SST and 1-FFT genes of wild type control WT, respectively, mutant M2-2 is the partial sequence of the transformed plant gene, and mutant M2-2 has 2 base deletions in the 2 nd target (sgRNA-SST2) of the 1-SST gene, thereby leading to the change of the gene reading frame and the gene inactivation; meanwhile, compared with the wild control WT, the 1-FFT gene sequence has a large fragment deletion between a target 1(sgRNA-FFT1) and a target 2(sgRNA-FFT2), which deletes 504bp, thereby causing gene inactivation.
FIG. 3 shows the phenotype of T0 generation mutant plant and wild type plant in example 3 of the present invention, and the mutant M2-2 in T0 generation has obviously wider leaves and shorter leaf length compared with wild type control WT.
Detailed Description
The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention. The primer information of each example of the present invention is shown in table 1.
TABLE 1 primer information
Figure BDA0002738149000000061
Figure BDA0002738149000000071
Example 1 sgRNA design of Merrea rubber inulin synthase genes 1-SST and 1-FFT and construction of CRISPR/Cas9 recombinant expression vector SST-FFT-Cas9 thereof
1. sgRNA targeting site screening
Because the hevea brasiliensis is a self-incompatible plant, gene sequences of different strains have differences, PAM sequences (NGG) are respectively searched in conserved regions of two genes by comparing 1-SST and 1-FFT gene sequences in different germplasm, a sequence of 20bp at the 5' end of the PAM position is a sgRNA sequence, and the specificity of a target is searched and analyzed in a published hevea brasiliensis genome sequence.
The invention determines 2 sgRNAs (sgRNA-SST1 and sgRNA-SST2) targeting 1-SST genes through a large amount of screening, wherein the sequences of the 2 sgRNAs are shown as SEQ ID NO.1 and SEQ ID NO.2 (both are positioned in a 4 th exon), and 2 sgRNAs (sgRNA-FFT1 and sgRNA-FFT2) targeting 1-FFT genes are shown as SEQ ID NO.3 and SEQ ID NO.4 (both are positioned in a 2 nd exon).
2. Construction of CRISPR/Cas9 recombinant expression vector SST-FFT-Cas9
The reference reports methods (Liu flare light topic group, Ma X, Zhang Q, Zhu Q, et al.. A robust CRISPR/Cas9 system for meeting, High-Efficiency multiplex gene editing in monocot and binary plants [ J]Molecular Plant,2015,8(8): 1274. su 1284.), expression vectors for AtU6-1 driving sgRNA-SST1, AtU6-29 driving sgRNA-SST2, AtU3b driving sgRNA-FFT1, AtU3d driving sgRNA-FFT2 and Cas9 proteins are constructed by using an overlappinging PCR and enzyme digestion connection method, and finally the 4 fragments are simultaneously connected into Bsa I digested pYLCRISPR/Cas9P ubi -B vector. The specific process is as follows:
(1) construction of sgRNA expression cassette
Overlaying PCR first round PCR amplification: an intermediate vector YLgRNA-AtU6/AtU3 is used as a template, and an amplification primer pair of AtU6-1-SST1-sgRNA expression cassettes: U-F/SST1-AtU6-1T1 (reaction 1), gR-T/SST1-gRT1 (reaction 2); AtU6-29-SST2-sgRNA expression cassette amplification primer pair: U-F/SST2-AtU6-29T2 (reaction 1), gR-T/SST2-gRT2 (reaction 2); AtU3b-FFT1-sgRNA expression cassette amplification primer pair: U-F/FFT1-AtU3bT3 (reaction 1), gR-T/FFT1-gRT3 (reaction 2); AtU3d-FFT2-sgRNA expression cassette amplification primer pair: U-F/FFT2-AtU3dT4 (reaction 1), gR-T/FFT2-gRT4 (reaction 2). PCR amplification System: 2X Phanta Max Buffer 7.5. mu.L; 0.25 mu L of 10mmol/L dNTPs Mix; phanta Max Polymerase 0.2U; YLgRNA-AtU6/AtU 32-5 ng; 10. mu. mol/L U-F and U # -T # each 0.3. mu.L (reaction 1); 10. mu. mol/L gR-T # and gR-R each 0.3. mu.L (reaction 2); ddH 2 O make up to 15. mu.L. The PCR amplification procedure was: amplification is carried out for 25-26 cycles at 95 ℃ for 10s,58 ℃ for 15s and 72 ℃ for 15 s.
Second round PCR: the products of the expression reactions 1 and 2 were diluted 10 times and mixed to serve as templates, and the primer pairs Pps-R/Pgs-2 (for AtU6-1-SST1-sgRNA expression cassettes), Pps-2/Pgs-3 (for AtU6-29-SST2-sgRNA expression cassettes), Pps-3/Pgs-4 (for AtU3b-FFT1-sgRNA expression cassettes), and Pps-4/Pgs-L (for AtU3d-FFT2-sgRNA expression cassettes) were used to perform the second round of PCR reaction. PCR amplification System: 2 × Phanta Max Buffer 15 μ L; 0.5 mu L of 10mmol/L dNTP Mix; phanta Max 0.4U; 0.5 mu L of 10 mu mol/L mixed universal primer; reaction 1+ reaction 2 diluent 1 μ L; ddH 2 O to 30 μ L; the PCR amplification procedure was: amplifying at 95 ℃ for 10s,58 ℃ for 15s and 72 ℃ for 20s for 25-28 PCR cycles.
(2) Cloning of sgRNA expression cassette into pYLCRISPR/Cas9P ubi -on a B support: assembling the sgRNA expression cassette to pYLCRISPR/Cas9P in the "side-by-side" method using the Bsa I-based enzymatic cleavage and ligation-based "gold gate" cloning method ubi -B on a carrier. Reaction system: 10 × CutSmart Buffer 1.5 μ L; 1.5 μ L of 10mmol/L ATP; pYLCRISPR/Cas9P ubi -60-80 ng of plasmid B; 10-15 ng of each expression cassette of the purified mixed sgRNA expression cassettes, and about 60-70 ng of 4 expression cassettes; bsa I-HF 10U; t4 DNA ligase 35U; ddH 2 O make up to 15. mu.L. Carrying out edge cutting continuous reaction for 10-15 cycles (5 min at 37 ℃, 5min at 10 ℃ and 5min at 20 ℃) by using variable temperature circulation (a PCR instrument can be used); finally 5min at 37 ℃.
(3) And (3) conversion of a connecting product: the ligation product was dropped on Millipore VSWP04700 suspended on a 0.2 XTE dialysis membrane and dialyzed at 4 ℃ for 15-20 min. E.coli DH10B competent cells were transformed by electric stimulation with 1-1.5. mu.L of the dialyzed ligation product. After electric stimulation, 1mL of SOC medium was added and the culture was resumed at 37 ℃ for 1h, and the transformed cells were plated on LB plates containing kanamycin (25. mu.g/mL) overnight.
(4) Screening positive clones: a plurality of colonies are picked for culture and plasmid extraction, AscI enzyme digestion and electrophoresis confirmation are carried out, then sequencing verification is carried out, the success of construction is confirmed, and the structure of the recombinant vector SST-FFT-Cas9 is shown in figure 1.
3. The recombinant vector SST-FFT-Cas9 is introduced into agrobacterium: plasmids were extracted from the positive clones obtained in 2 above, and Agrobacterium (e.g., AGL1) was electrically transformed. Positive clones were verified by PCR amplification using all target adaptor forward and reverse primer pairs.
Example 2 transformation of Geranium strictipes with recombinant expression vector SST-FFT-Cas9 to obtain regenerated plants
1. Obtaining the sterile seedling of the Hemsleya amabilis: seeds of the hevea brasiliensis strain 20112 are taken as materials, sodium hypochlorite solution with the concentration of 10-15% (v/v) (the stock solution is used according to 100%), 1 drop (20 mu L)/200mL of the sodium hypochlorite solution is added with TritonX-100 and mixed uniformly to prepare disinfectant, the seeds are disinfected by the disinfectant for 10-15 minutes, the disinfectant is washed by the disinfectant for 3-5 times and then sowed in 1/2MS culture medium for accelerating germination, and after 5 days, the seeds are transferred to 1/2MS culture medium once for about 20 days to obtain aseptic seedlings with good root growth conditions.
2. The roots of aseptic seedlings in good growth state are taken, washed with aseptic water for 2-3 times, and then sucked dry by filter paper for infection transformation.
3. And (3) agrobacterium infection transformation: agrobacterium AGL1 containing recombinant plasmid SST-FFT-Cas9 was suspended with an infection solution (MS +:20g/L sucrose +1.5 mg/L6-BA +0.05mg/L NAA + 200. mu.M acetosyringone) to adjust OD 600 The value is 0.5-0.8, the roots are cut into root segments of 0.5-1.0cm and are infected for 20-30 minutes.
4. The infected root segments are transferred to filter paper to be cultured for 1 to 3 days in the dark at the temperature of between 21 and 25 ℃, and then transferred to a differentiation medium (MS +20g/L of sucrose +1.5mg/L of 6-BA +0.05mg/L of NAA +500mg/L of timentin +3.95g/L of plant gel +5mg/L of Basta) to induce and differentiate adventitious buds, wherein the differentiation culture conditions are 21 to 25 ℃, the light cycle is 16 to 18 hours in the light, and the dark is 6 to 8 hours.
5. Rooting and resistance screening of the regenerated plants: transferring the differentiated adventitious bud to a rooting culture medium (1/2MS +10g/L sucrose +300mg/L timentin +4.0g/L plant gel +10mg/L Basta), transferring the same culture medium every 2-3 times, and co-transferring for 2-3 times for resistance screening to finally obtain a resistant regeneration plant.
6. Hardening and transplanting seedlings: and opening a seal of the regenerated plant with good rooting for 3-4 days, then transplanting the regenerated plant into a matrix, and covering a clean plastic film to keep humidity. And after 3 days, the opening of the holes is gradually opened to prevent the wind, so that the plants adapt to the external environment.
EXAMPLE 3 detection of mutations in transgenic plants and their phenotypes
1. Screening and detecting of transformed plants
DNA extraction: genomic DNA of T0-generation plants obtained in example 2 was extracted using a DNA extraction kit from Tiangen Biochemical technology (Beijing) Ltd.
2. PCR amplification of 1-SST and 1-FFT genes
The T0 generation plants were PCR amplified using KOD-FX (TOYOBO, cat. No. KFX-101, Shanghai) in the reaction scheme: 80-100ng of genomic DNA, 1.5 mu L of each of upstream and downstream primers (SST-390F/SST-1355R primer pair for amplifying 1-SST gene target site; and 10 mu mol/L of each of FFT-338F/FFT-1322R primer pair for amplifying 1-FFT gene target site), 2 XPCR Buffer 25 mu L, dNTP Mix 10 mu L, KOD polymerase1.0 mu L, and ddH 2 O to 50. mu.L. The PCR amplification procedure was: denaturation at 98 deg.C for 2 min; denaturation at 98 ℃ for 10s, annealing at 55 ℃ for 30s, and extension at 68 ℃ for 30s for 32 cycles; finally, extending for 2min at 72 ℃; storing at 4 ℃.
3. Sample sequencing and sequence analysis thereof
PCR products of the above 1-SST and 1-FFT genes were recovered and purified, respectively, and then ligated to T-vector, and sent to Guangzhou Egyptian Biotechnology Ltd for sequencing verification. The sequencing result is shown in figure 2, 1-SST/WT and 1-FFT/WT are respectively the 1-SST and 1-FFT gene partial sequences of wild type control WT, mutant M2-2 is the transformed plant gene partial sequence, and it can be seen from the figure that mutant M2-2 has 2 base deletions in the 2 nd target (sgRNA-SST2) of 1-SST gene, thereby leading to gene reading frame change and gene inactivation; meanwhile, compared with a wild control WT, the 1-FFT gene sequence has large fragment deletion between a target 1(sgRNA-FFT1) and a target 2(sgRNA-FFT2), and 504bp is deleted, so that the gene is inactivated; the method provided by the invention is used for successfully realizing the simultaneous editing of the inulin synthase genes 1-SST and 1-FFT. 1 strain with simultaneous mutation of 1-SST and 1-FFT was detected in 17 resistant plants, and the mutation frequency of the double genes was 5.88%.
4. Phenotypic observation of mutants
As shown in fig. 3 and table 2, the mutant M2-2 of T0 generation has significantly wider leaves, shorter leaf length, significantly higher sucrose and fructose contents in roots, and significantly lower inulin content, compared with the wild type control WT. The result shows that the inulin content of the plant is reduced after the inulin synthetase genes 1-SST and 1-FFT are knocked out in the mutant, the homozygous inulin synthesis defective mutant is hopeful to be obtained through multi-generation purification, and an excellent material is provided for the later-stage breeding of the gum-producing type hevea brasiliensis strain.
TABLE 2 phenotypic statistics of mutant M2-2 and wild-type control WT
Name of plant Ye Kuan Leaf length Sucrose content Fructose content Inulin content
WT
20112 0.57 6.21 2.35% 1.64% 21.22%
M2-2 1.48 4.15 8.83% 6.81% 6.77%
Although the invention has been described in detail hereinabove with respect to a general description and specific embodiments thereof, it will be apparent to those skilled in the art that modifications or improvements may be made thereto based on the invention. Accordingly, such modifications and improvements are intended to be within the scope of the invention as claimed.
Sequence listing
<110> rubber research institute of Chinese tropical academy of agricultural sciences Beijing chemical university of Taraxacum mongolicum technology development Limited company
<120> method for simultaneously knocking out 1-SST and 1-FFT genes of kochia scoparia by using CRISPR/Cas9 system
<130> KHP201116607.4
<160> 32
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
attgttccct ccacctggag 20
<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gtttctacca cgcacacgaa 20
<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
ctgtacattc caccagggat 20
<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
taagtggacc ccggataacc 20
<210> 5
<211> 1671
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
actagtcacg cgtatggaat cggcagcaaa ggagaaatct caaaattccg gcagaacaat 60
tttgaatctc gatccgtaga aacgagacgg tcattgtttt agttccacca cgattatatt 120
tgaaatttac gtgagtgtga gtgagacttg cataagaaaa taaaatcttt agttgggaaa 180
aaattcaata atataaatgg gcttgagaag gaagcgaggg ataggccttt ttctaaaata 240
ggcccattta agctattaac aatcttcaaa agtaccacag cgcttaggta aagaaagcag 300
ctgagtttat atatggttag agacgaagta gtgattgatt gttccctcca cctggaggtt 360
ttagagctag aaatagcaag ttaaaataag gctagtccgt tatcaacttg aaaaagtggc 420
accgagtcgg tgcttttttt caagagcttg gagtggatgg accctgacac tggaatcggc 480
agcaaaggaa aatatcagag atctcttaca gttagtttcg ttcttaatcc aaactactgc 540
agcctgacag acaaatgagg atgcaaacaa ttttaaagtt tatctaacgc tagctgtttt 600
gtttcttctc tctggtgcac caacgacggc gttttctcaa tcataaagag gcttgtttta 660
cttaaggcca ataatgttga tggatcgaaa gaagagggct tttaataaac gagcccgttt 720
aagctgtaaa cgatgtcaaa aacatcccac atcgttcagt tgaaaatagt agctctgttt 780
atatattggt agagtcgact aagagattgt ttctaccacg cacacgaagt tttagagcta 840
gaaatagcaa gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg 900
gtgctttttt tcaagagctt ggagtggatg gagtgaagac tttggaatcg gcagcaaagg 960
atttacttta aattttttct tatgcagcct gtgatggata actgaatcaa acaaatggcg 1020
tctgggttta agaagatctg ttttggctat gttggacgaa acaagtgaac ttttaggatc 1080
aacttcagtt tatatatgga gcttatatcg agcaataaga taagtgggct ttttatgtaa 1140
tttaatgggc tatcgtccat agattcacta atacccatgc ccagtaccca tgtatgcgtt 1200
tcatataagc tcctaatttc tcccacatcg ctcaaatcta aacaaatctt gttgtatata 1260
taacactgag ggagcaacat tggtcactgt acattccacc agggatgttt tagagctaga 1320
aatagcaagt taaaataagg ctagtccgtt atcaacttga aaaagtggca ccgagtcggt 1380
gctttttttc aagagcttgg agtggatgga aaggactaca tggaatcggc agcaaaggaa 1440
taagcttatg atttcttttt tcttacgaat tttgcgtccc acatcggtaa gcgagtgaag 1500
aaataactgc tttatatatg gctacaaagc accattggtc ataagtggac cccggataac 1560
cgttttagag ctagaaatag caagttaaaa taaggctagt ccgttatcaa cttgaaaaag 1620
tggcaccgag tcggtgcttt ttttcaagag cttggagtgg atggatacgc g 1671
<210> 6
<211> 18075
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ccagccagcc aacagctccc cgaccggcag ctcggcacaa aatcaccact cgatacaggc 60
agcccatcag tccgggacgg cgtcagcggg agagccgttg taaggcggca gactttgctc 120
atgttaccga tgctattcgg aagaacggca actaagctgc cgggtttgaa acacggatga 180
tctcgcggag ggtagcatgt tgattgtaac gatgacagag cgttgctgcc tgtgatcacc 240
gcggtttcaa aatcggctcc gtcgatacta tgttatacgc caactttgaa aacaactttg 300
aaaaagctgt tttctggtat ttaaggtttt agaatgcaag gaacagtgaa ttggagttcg 360
tcttgttata attagggaag gtgcgaataa gcggggaaat tcttctcggc tgactcagtc 420
atttcatttc ttcatgtttg agccgatttt ttctcccgta aatgccttga atcagcctat 480
ttagaccgtt tcttcgccat ttaaggcgtt atccccagtt tttagtgaga tctctcccac 540
tgacgtatca tttggtccgc ccgaaacagg ttggccagcg tgaataacat cgccagttgg 600
ttatcgtttt tcagcaaccc cttgtatctg gctttcacga agccgaactg tcgcttgatg 660
atgcgaaatg ggtgctccac cctggcccgg atgctggctt tcatgtattc gatgttgatg 720
gccgttttgt tcttgcgtgg atgctgtttc aaggttctta ccttgccggg gcgctcggcg 780
atcagccagt ccacatccac ctcggccagc tcctcgcgct gtggcgcccc ttggtagccg 840
gcatcggctg agacaaattg ctcctctcca tgcagcagat tacccagctg attgaggtca 900
tgctcgttgg ccgcggtggt gaccaggctg tgggtcaggc cactcttggc atcgacacca 960
atgtgggcct tcatgccaaa gtgccactga ttgcctttct tggtctgatg catctccgga 1020
tcgcgttgct gctctttgtt cttggtcgag ctgggtgcct caatgatggt ggcatcgacc 1080
aaggtgcctt gagtcatcat gacgcctgct tcggccagcc agcgattgat ggtcttgaac 1140
aattggcggg ccagttgatg ctgctccagc aggtggcgga aattcatgat ggtggtgcgg 1200
tccggcaagg cgctatccag ggataaccgg gcaaacagac gcatggaggc gatttcgtac 1260
agagcatctt ccatcgcgcc atcgctcagg ttgtaccaat gctgcatgca gtgaatgcgt 1320
agcatggttt ccagcggata aggtcgccgg ccattaccag ccttggggta aaacggctcg 1380
atgacttcca ccatgttttg ccatggcaga atctgctcca tgcgggacaa gaaaatctct 1440
tttctggtct gacggcgctt actgctgaat tcactgtcgg cgaaggtaag ttgatgactc 1500
atgatgaacc ctgttctatg gctccagatg acaaacatga tctcatatca gggacttgtt 1560
cgcaccttcc ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 1620
taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 1680
gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 1740
aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 1800
gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 1860
gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 1920
gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 1980
aggctctttc actccatcga catatcggat tgtccctata cgaatagctt agacagccgc 2040
ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 2100
gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 2160
cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 2220
gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 2280
gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 2340
ctattttttg acttactggg gatcaagcct gattgggaga aaataaaata ttatatttta 2400
ctggatgaat tgttttagta cctagaatgc atgaccaaaa tcccttaacg tgagttttcg 2460
ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt 2520
ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg 2580
ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata 2640
ccaaatactg tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca 2700
ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag 2760
tcgtgtctta ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc 2820
tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga 2880
tacctacagc gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg 2940
tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac 3000
gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg 3060
tgatgctcgt caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg 3120
ttcctggcct tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct 3180
gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgccgcag ccgaacgacc 3240
gagcgcagcg agtcagtgag cgaggaagcg gaagagcgcc tgatgcggta ttttctcctt 3300
acgcatctgt gcggtatttc acaccgcata tggtgcactc tcagtacaat ctgctctgat 3360
gccgcatagt taagccagta tacactccgc tatcgctacg tgactgggtc atggctgcgc 3420
cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg 3480
cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat 3540
caccgaaacg cgcgaggcag ggtgccttga tgtgggcgcc ggcggtcgag tggcgacggc 3600
gcggcttgtc cgcgccctgg tagattgcct ggccgtaggc cagccatttt tgagcggcca 3660
gcggccgcga taggccgacg cgaagcggcg gggcgtaggg agcgcagcga ccgaagggta 3720
ggcgcttttt gcagctcttc ggctgtgcgc tggccagaca gttatgcaca ggccaggcgg 3780
gttttaagag ttttaataag ttttaaagag ttttaggcgg aaaaatcgcc ttttttctct 3840
tttatatcag tcacttacat gtgtgaccgg ttcccaatgt acggctttgg gttcccaatg 3900
tacgggttcc ggttcccaat gtacggcttt gggttcccaa tgtacgtgct atccacagga 3960
aagagaactt ttcgaccttt ttcccctgct agggcaattt gccctagcat ctgctccgta 4020
cattaggaac cggcggatgc ttcgccctcg atcaggttgc ggtagcgcat gactaggatc 4080
gggccagcct gccccgcctc ctccttcaaa tcgtactccg gcaggtcatt tgacccgatc 4140
agcttgcgca cggtgaaaca gaacttcttg aactctccgg cgctgccact gcgttcgtag 4200
atcgtcttga acaaccatct ggcttctgcc ttgcctgcgg cgcggcgtgc caggcggtag 4260
agaaaacggc cgatgccggg atcgatcaaa aagtaatcgg ggtgaaccgt cagcacgtcc 4320
gggttcttgc cttctgtgat ctcgcggtac atccaatcag ctagctcgat ctcgatgtac 4380
tccggccgcc cggtttcgct ctttacgatc ttgtagcggc taatcaaggc ttcaccctcg 4440
gataccgtca ccaggcggcc gttcttggcc ttcttcgtac gctgcatggc aacgtgcgtg 4500
gtgtttaacc gaatgcaggt ttctaccagg tcgtctttct gctttccgcc atcggctcgc 4560
cggcagaact tgagtacgtc cgcaacgtgt ggacggaaca cgcggccggg cttgtctccc 4620
ttcccttccc ggtatcggtt catggattcg gttagatggg aaaccgccat cagtaccagg 4680
tcgtaatccc acacactggc catgccggcc ggccctgcgg aaacctctac gtgcccgtct 4740
ggaagctcgt agcggatcac ctcgccagct cgtcggtcac gcttcgacag acggaaaacg 4800
gccacgtcca tgatgctgcg actatcgcgg gtgcccacgt catagagcat cggaacgaaa 4860
aaatctggtt gctcgtcgcc cttgggcggc ttcctaatcg acggcgcacc ggctgccggc 4920
ggttgccggg attctttgcg gattcgatca gcggccgctt gccacgattc accggggcgt 4980
gcttctgcct cgatgcgttg ccgctgggcg gcctgcgcgg ccttcaactt ctccaccagg 5040
tcatcaccca gcgccgcgcc gatttgtacc gggccggatg gtttgcgacc gctcacgccg 5100
attcctcggg cttgggggtt ccagtgccat tgcagggccg gcaggcaacc cagccgctta 5160
cgcctggcca accgcccgtt cctccacaca tggggcattc cacggcgtcg gtgcctggtt 5220
gttcttgatt ttccatgccg cctcctttag ccgctaaaat tcatctactc atttattcat 5280
ttgctcattt actctggtag ctgcgcgatg tattcagata gcagctcggt aatggtcttg 5340
ccttggcgta ccgcgtacat cttcagcttg gtgtgatcct ccgccggcaa ctgaaagttg 5400
acccgcttca tggctggcgt gtctgccagg ctggccaacg ttgcagcctt gctgctgcgt 5460
gcgctcggac ggccggcact tagcgtgttt gtgcttttgc tcattttctc tttacctcat 5520
taactcaaat gagttttgat ttaatttcag cggccagcgc ctggacctcg cgggcagcgt 5580
cgccctcggg ttctgattca agaacggttg tgccggcggc ggcagtgcct gggtagctca 5640
cgcgctgcgt gatacgggac tcaagaatgg gcagctcgta cccggccagc gcctcggcaa 5700
cctcaccgcc gatgcgcgtg cctttgatcg cccgcgacac gacaaaggcc gcttgtagcc 5760
ttccatccgt gacctcaatg cgctgcttaa ccagctccac caggtcggcg gtggcccata 5820
tgtcgtaagg gcttggctgc accggaatca gcacgaagtc ggctgccttg atcgcggaca 5880
cagccaagtc cgccgcctgg ggcgctccgt cgatcactac gaagtcgcgc cggccgatgg 5940
ccttcacgtc gcggtcaatc gtcgggcggt cgatgccgac aacggttagc ggttgatctt 6000
cccgcacggc cgcccaatcg cgggcactgc cctggggatc ggaatcgact aacagaacat 6060
cggccccggc gagttgcagg gcgcgggcta gatgggttgc gatggtcgtc ttgcctgacc 6120
cgcctttctg gttaagtaca gcgataacct tcatgcgttc cccttgcgta tttgtttatt 6180
tactcatcgc atcatatacg cagcgaccgc atgacgcaag ctgttttact caaatacaca 6240
tcaccttttt agacggcggc gctcggtttc ttcagcggcc aagctggccg gccaggccgc 6300
cagcttggca tcagacaaac cggccaggat ttcatgcagc cgcacggttg agacgtgcgc 6360
gggcggctcg aacacgtacc cggccgcgat catctccgcc tcgatctctt cggtaatgaa 6420
aaacggttcg tcctggccgt cctggtgcgg tttcatgctt gttcctcttg gcgttcattc 6480
tcggcggccg ccagggcgtc ggcctcggtc aatgcgtcct cacggaaggc accgcgccgc 6540
ctggcctcgg tgggcgtcac ttcctcgctg cgctcaagtg cgcggtacag ggtcgagcga 6600
tgcacgccaa gcagtgcagc cgcctctttc acggtgcggc cttcctggtc gatcagctcg 6660
cgggcgtgcg cgatctgtgc cggggtgagg gtagggcggg ggccaaactt cacgcctcgg 6720
gccttggcgg cctcgcgccc gctccgggtg cggtcgatga ttagggaacg ctcgaactcg 6780
gcaatgccgg cgaacacggt caacaccatg cggccggccg gcgtggtggt gtcggcccac 6840
ggctctgcca ggctacgcag gcccgcgccg gcctcctgga tgcgctcggc aatgtccagt 6900
aggtcgcggg tgctgcgggc caggcggtct agcctggtca ctgtcacaac gtcgccaggg 6960
cgtaggtggt caagcatcct ggccagctcc gggcggtcgc gcctggtgcc ggtgatcttc 7020
tcggaaaaca gcttggtgca gccggccgcg tgcagttcgg cccgttggtt ggtcaagtcc 7080
tggtcgtcgg tgctgacgcg ggcatagccc agcaggccag cggcggcgct cttgttcatg 7140
gcgtaatgtc tccggttcta gtcgcaagta ttctacttta tgcgactaaa acacgcgaca 7200
agaaaacgcc aggaaaaggg cagggcggca gcctgtcgcg taacttagga cttgtgcgac 7260
atgtcgtttt cagaagacgg ctgcactgaa cgtcagaagc cgactgcact atagcagcgg 7320
aggggttgga tcaaagtact ttgatcccga ggggaaccct gtggttggca tgcacataca 7380
aatggacgaa cggataaacc ttttcacgcc cttttaaata tccgattatt ctaataaacg 7440
ctcttttctc ttaggtttac ccgccaatat atcctgtcaa acactgatag tttaaactga 7500
aggcgggaaa cgacaatctg atccaagctc aagctgctct agcattcgcc attcaggctg 7560
cgcaactgtt gggaagggcg atcggtgcgg gcctcttcgc tattacgcca gctggcgaaa 7620
gggggatgtg ctgcaaggcg attaagttgg gtaacgccag ggttttccca gtcacgacgt 7680
tgtaaaacga cggccagtgc caagcttggc aaacagctat tatgggtgtc gacctgcagt 7740
cataacttcg tatagcatac attatacgaa gttatcagat ctaatactgc catttcatta 7800
cctctttctc cgcacccgac atagatgcaa taacttcgta taggctaatt tatacgatgt 7860
aggagatcga tgcatgcggc cgctagctcg agaggcgcgc caatgatacc gactagtcac 7920
gcgtatggaa tcggcagcaa aggagaaatc tcaaaattcc ggcagaacaa ttttgaatct 7980
cgatccgtag aaacgagacg gtcattgttt tagttccacc acgattatat ttgaaattta 8040
cgtgagtgtg agtgagactt gcataagaaa ataaaatctt tagttgggaa aaaattcaat 8100
aatataaatg ggcttgagaa ggaagcgagg gataggcctt tttctaaaat aggcccattt 8160
aagctattaa caatcttcaa aagtaccaca gcgcttaggt aaagaaagca gctgagttta 8220
tatatggtta gagacgaagt agtgattgat tgttccctcc acctggaggt tttagagcta 8280
gaaatagcaa gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg 8340
gtgctttttt tcaagagctt ggagtggatg gaccctgaca ctggaatcgg cagcaaagga 8400
aaatatcaga gatctcttac agttagtttc gttcttaatc caaactactg cagcctgaca 8460
gacaaatgag gatgcaaaca attttaaagt ttatctaacg ctagctgttt tgtttcttct 8520
ctctggtgca ccaacgacgg cgttttctca atcataaaga ggcttgtttt acttaaggcc 8580
aataatgttg atggatcgaa agaagagggc ttttaataaa cgagcccgtt taagctgtaa 8640
acgatgtcaa aaacatccca catcgttcag ttgaaaatag tagctctgtt tatatattgg 8700
tagagtcgac taagagattg tttctaccac gcacacgaag ttttagagct agaaatagca 8760
agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 8820
ttcaagagct tggagtggat ggagtgaaga ctttggaatc ggcagcaaag gatttacttt 8880
aaattttttc ttatgcagcc tgtgatggat aactgaatca aacaaatggc gtctgggttt 8940
aagaagatct gttttggcta tgttggacga aacaagtgaa cttttaggat caacttcagt 9000
ttatatatgg agcttatatc gagcaataag ataagtgggc tttttatgta atttaatggg 9060
ctatcgtcca tagattcact aatacccatg cccagtaccc atgtatgcgt ttcatataag 9120
ctcctaattt ctcccacatc gctcaaatct aaacaaatct tgttgtatat ataacactga 9180
gggagcaaca ttggtcactg tacattccac cagggatgtt ttagagctag aaatagcaag 9240
ttaaaataag gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttt 9300
caagagcttg gagtggatgg aaaggactac atggaatcgg cagcaaagga ataagcttat 9360
gatttctttt ttcttacgaa ttttgcgtcc cacatcggta agcgagtgaa gaaataactg 9420
ctttatatat ggctacaaag caccattggt cataagtgga ccccggataa ccgttttaga 9480
gctagaaata gcaagttaaa ataaggctag tccgttatca acttgaaaaa gtggcaccga 9540
gtcggtgctt tttttcaaga gcttggagtg gatggatacg cgtcgagcac tacggcgcgc 9600
cttaccggtg ctcccgatct agtaacatag atgacaccgc gcgcgataat ttatcctagt 9660
ttgcgcgcta tattttgttt tctatcgcgt attaaatgta taattgcggg actctaatca 9720
taaaaaccca cctcataaat aacgtcatgc attacatgtt aattattaca tgcttaacgt 9780
aattcaacag aaattatatg ataatcatcg caagaccggc aacaggattc aatcttaaga 9840
aactttattg ccaaatgttt gaacgatcgg gaggatccta cttctttttc ttagcctgtc 9900
cggccttttt ggtggcagca ggacgcttat caccaccaag ctgggaaagg tcgatacgag 9960
tctcgtaaag accggtgatg gactggtgga tgagagtagc gtcgagaacc tccttggtgg 10020
acgtgtaacg cttcctgtcg atggtggtgt cgaagtactt gaaagcagca ggggcgccga 10080
ggttcgtgag cgtgaagagg tggatgatgt tctcggcctg ctcgcggatg ggcttgtcgc 10140
ggtgcttgtt gtaggcggag aggaccttgt cgaggttagc gtcagcgagg atgacgcgct 10200
tggagaactc ggagatctgc tcgatgatct cgtcgaggta gtgcttgtgc tgctccacga 10260
agagctgctt ctgctcgtta tcctcagggg aacccttgag cttctcgtag tgggaggcga 10320
ggtagaggaa gttcacgtac ttggaaggaa gagcaagctc gttacccttc tggagctcac 10380
cagcggaagc cagcatcctc ttacgaccgt tctcgagctc gaaaagagag tacttgggga 10440
gcttgatgat gaggtccttc ttgacctcct tgtagccctt ggcctcgagg aagtcgatcg 10500
ggttcttctc gaaggaggag cgctccatga tggtgatgcc gaggagctcc ttgacggact 10560
tgagcttctt cgacttaccc ttctccacct tggcgaccac gaggacggag taggcgacag 10620
taggggagtc gaaaccaccg tacttcttag ggtcccaatc cttcttccta gcgatgagct 10680
tgtccgagtt tctctttgga aggatagact ccttggagaa gccaccggtc tggacctcgg 10740
tcttcttgac gatgttaacc tgaggcatag aaaggacctt gcgaacagta gcgaagtcgc 10800
gacccttgtc ccaaacgatc tcaccagtct caccgttcgt ctcgataaga gggcgcttgc 10860
ggatctcgcc gttggcgagg gtgatctcgg tcttgaagaa gttcatgatg ttggagtaga 10920
agaagtactt ggcggtggcc ttgccgatct cctgctcgga cttggcgatc atcttacgaa 10980
cgtcgtagac cttgtagtca ccgtagacga actcggactc aagcttaggg tacttcttga 11040
taagagcggt accaacgaca gcgttaaggt aagcatcgtg agcgtggtgg tagttgttga 11100
tctcgcggac cttgtagaac tggaagtcct tgcggaagtc ggagacgagc ttggacttga 11160
gggtgatcac cttgacctcg cggatgagct tgtcgttctc gtcgtacttg gtgttcatcc 11220
tagaatcgag gatctgagca acgtgcttgg taatctgcct cgtctcaaca agctgcctct 11280
tgatgaaacc agccttgtca agctcggaaa ggccacccct ctcagccttc gtgaggttgt 11340
cgaacttcct ctgggtaatg agcttagcgt tgagaagctg cctccagtag ttcttcatct 11400
tcttgacaac ctcctcggaa gggacgttgt ccgacttacc cctgttcttg tcggacctcg 11460
tgaggacctt gttgtcgatg gagtcatcct taaggaaaga ctgaggaaca atgtggtcga 11520
cgtcgtagtc agaaagcctg ttgatgtcga gctcctggtc aacgtacata tccctaccgt 11580
tctggaggta gtagaggtag agcttctcgt tctggagctg ggtgttctcg acagggtgct 11640
ccttaaggat ctgagaacca agctccttga taccctcctc aatcctcttc atgcgctccc 11700
tcgagttctt ctgacccttc tgggtagtct ggttctcacg agccatctcg atgacgatgt 11760
tctcaggctt gtgacgaccc ataaccttga caagctcatc gacaacctta acagtctgaa 11820
ggatgccctt cttgatagca ggggaaccag caaggttagc aatgtgctcg tggagagagt 11880
cgccctgacc ggacacctga gccttctgaa tatcctcctt gaaggtaaga gagtcatcgt 11940
ggatgagctg catgaagttc ctgttagcga aaccatcaga cttgaggaag tcgaggatag 12000
tcttgccgct ctgcttatcc ctgataccgt tgatgagctt gcgggagagc ctaccccaac 12060
cggtgtaacg gcgacgcttg agctgcttca taaccttgtc atcgaagaga tgagcgtaag 12120
tcttgagcct ctcctcgatc atctccctat cctcgaagag agtaagagtg aggacgatgt 12180
cctcgaggat gtcctcgttc tcctcgttgt cgaggaagtc cttgtccttg atgatcttga 12240
ggagatcgtg gtaggtaccg agagaagcgt tgaaacggtc ctcaacgccg ctgatctcga 12300
cggagtcgaa gcactcgatc ttcttgaagt agtcctcctt gagctgcttg acggtgacct 12360
tgcggttggt cttgaagagg aggtcaacga tagccttctt ctgctcgccg gagaggaagg 12420
caggcttgcg cataccctcg gtgacgtact tgaccttggt gagctcgttg tagaccgtga 12480
agtactcgta gaggagggag tgcttgggga ggaccttctc gttggggagg ttcttgtcga 12540
agttggtcat gcgctcgatg aaggactggg cggaagcacc cttgtcaaca acctcctcga 12600
agttccaagg ggtgatagtc tcctcggact tcctagtcat ccaagcgaaa cgggagttac 12660
cacgagcaag aggaccaacg tagtaaggaa tacggaaagt aaggatcttc tcgatcttct 12720
cacggttgtc cttgaggaaa gggtagaagt cctcctgcct acgaaggatg gcgtgaagct 12780
caccaaggtg gatctggtga gggatagagc cgttatcgaa agtcctctgc ttcctaagga 12840
ggtcctcacg gttaagctta acgagaagct cctcagtacc atccatcttc tcaaggattg 12900
gcttgatgaa cttgtagaac tcctcctggc tagctccacc gtcaatgtaa ccggcgtagc 12960
cgttcttgga ctggtcgaag aagatctcct tgtacttctc ggggagctgc tgacgaacaa 13020
gagccttgag gagggtgagg tcctggtggt gctcgtcgta gcgcttgatc atggaagcag 13080
aaagaggagc cttagtgatc tcagtgttaa ccctaaggat atccgaaagg aggatagcat 13140
cggagaggtt cttagcagca aggaagagat cagcgtactg atctccaatc tgagcgagga 13200
ggttgtcgag atcatcgtcg taggtatcct tggagagctg aagcttagcg tcctcagcga 13260
ggtcgaagtt ggacttgaag ttaggggtca gaccgaggga gagagcgatg aggttaccga 13320
aaagaccgtt cttcttctca ccagggagct gggcgatgag gttctcgaga cgcctggact 13380
tggagagcct agcggaaagg atcgccttag cgtcgacacc ggaagcgttg atagggttct 13440
cctcgaagag ctggttgtag gtctggacga gctggatgaa gagcttgtcc acgtcggagt 13500
tatcagggtt aaggtcaccc tcgataagga agtgaccacg gaacttgatc atgtgagcga 13560
gagcaaggta gatgagacga agatcagcct tatcagtaga gtcaacaagc ttcttacgaa 13620
ggtggtagat agtggggtac ttctcgtggt aggcgacctc gtcgacgatg ttgccgaaga 13680
tggggtggcg ctcgtgcttc ttgtcctcct ccacgaggaa ggactcctcg aggcggtgga 13740
agaaggagtc gtcgaccttc gccatctcgt tggagaagat ctcctggagg tagcagatgc 13800
ggttcttgcg gcgggtgtag cggcggcggg cggtgcgctt gaggcgggtc gcctccgccg 13860
tctcgccgga gtcgaagagg agggcgccga tgaggttctt cttgatggag tggcggtcgg 13920
tgttgcccag gaccttgaac ttcttggacg ggaccttgta ctcgtcggtg atcaccgccc 13980
agccgacgct gttggtgccg atgtcgaggc cgatggagta cttcttgtca gccgcaggca 14040
ccccgtgaat accaaccttc cgcttcttct taggagccat ctgcagaagt aacaccaaac 14100
aacagggtga gcatcgacaa aagaaacagt accaagcaaa taaatagcgt atgaaggcag 14160
ggctaaaaaa atccacatat agctgctgca tatgccatca tccaagtata tcaagatcaa 14220
aataattata aaacatactt gtttattata atagataggt actcaaggtt agagcatatg 14280
aatagatgct gcatatgcca tcatgtatat gcatcagtaa aacccacatc aacatgtata 14340
cctatcctag atcgatattt ccatccatct taaactcgta actatgaaga tgtatgacac 14400
acacatacag ttccaaaatt aataaataca ccaggtagtt tgaaacagta ttctactccg 14460
atctagaacg aatgaacgac cgcccaacca caccacatca tcacaaccaa gcgaacaaaa 14520
agcatctctg tatatgcatc agtaaaaccc gcatcaacat gtatacctat cctagatcga 14580
tatttccatc catcatcttc aattcgtaac tatgaatatg tatggcacac acatacagat 14640
ccaaaattaa taaatccacc aggtagtttg aaacagaatt ctactccgat ctagaacgac 14700
cgcccaacca gaccacatca tcacaaccaa gacaaaaaaa agcatgaaaa gatgacccga 14760
caaacaagtg cacggcatat attgaaataa aggaaaaggg caaaccaaac cctatgcaac 14820
gaaacaaaaa aaatcatgaa atcgatcccg tctgcggaac ggctagagcc atcccaggat 14880
tccccaaaga gaaacactgg caagttagca atcagaacgt gtctgacgta caggtcgcat 14940
ccgtgtacga acgctagcag cacggatcta acacaaacac ggatctaaca caaacatgaa 15000
cagaagtaga actaccgggc cctaaccatg gaccggaacg ccgatctaga gaaggtagag 15060
aggggggggg ggaggacgag cggcgtacct tgaagcggag gtgccgacgg gtggatttgg 15120
gggagatctg gttgtgtgtg tgtgcgctcc gaacaacacg aggttgggga aagagggtgt 15180
ggagggggtg tctatttatt acggcgggcg aggaagggaa agcgaaggag cggtgggaaa 15240
ggaatccccc gtagctgccg gtgccgtgag aggaggagga ggccgcctgc cgtgccggct 15300
cacgtctgcc gctccgccac gcaatttctg gatgccgaca gcggagcaag tccaacggtg 15360
gagcggaact ctcgagaggg gtccagaggc agcgacagag atgccgtgcc gtctgcttcg 15420
cttggcccga cgcgacgctg ctggttcgct ggttggtgtc cgttagactc gtcgacggcg 15480
tttaacaggc tggcattatc tactcgaaac aagaaaaatg tttccttagt ttttttaatt 15540
tcttaaaggg tatttgttta atttttagtc actttatttt attctatttt atatctaaat 15600
tattaaataa aaaaactaaa atagagtttt agttttctta atttagaggc taaaatagaa 15660
taaaatagat gtactaaaaa aattagtcta taaaaaccat taaccctaaa ccctaaatgg 15720
atgtactaat aaaatggatg aagtattata taggtgaagc tatttgcaaa aaaaaaggag 15780
aacacatgca cactaaaaag ataaaactgt agagtcctgt tgtcaaaata ctcaattgtc 15840
ctttagacca tgtctaactg ttcatttata tgattctcta aaacactgat attattgtag 15900
tactatagat tatattattc gtagagtaaa gtttaaatat atgtataaag atagataaac 15960
tgcacttcaa acaagtgtga caaaaaaaat atgtggtaat tttttataac ttagacatgc 16020
aatgctcatt atctctagag aggggcacga ccgggtcacg ctgcacccag cttgcggccg 16080
catggccggc cttgccctag ttcctatagc ctacattata ggatggaggg atatcctctc 16140
ttaaggtagc gagcggatcc ttcgctacct taggaccgtt atagttacgg taccgagctc 16200
gaattcgtaa tcatgtcata gctgtttcct gtgtgaaatt gttatccgct cacaattcca 16260
cacaacatac gagccggaag cataaagtgt aaagcctggg gtgcctaatg agtgagctaa 16320
ctcacattaa ttgcgttgcg ctcactgccc gctttccagt cgggaaacct gtcgtgccag 16380
ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg ctagagcagc 16440
ttgccaacat ggtggagcac gacactctcg tctactccaa gaatatcaaa gatacagtct 16500
cagaagacca aagggctatt gagacttttc aacaaagggt aatatcggga aacctcctcg 16560
gattccattg cccagctatc tgtcacttca tcaaaaggac agtagaaaag gaaggtggca 16620
cctacaaatg ccatcattgc gataaaggaa aggctatcgt tcaagatgcc tctgccgaca 16680
gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa gacgttccaa 16740
ccacgtcttc aaagcaagtg gattgatgtg aacatggtgg agcacgacac tctcgtctac 16800
tccaagaata tcaaagatac agtctcagaa gaccaaaggg ctattgagac ttttcaacaa 16860
agggtaatat cgggaaacct cctcggattc cattgcccag ctatctgtca cttcatcaaa 16920
aggacagtag aaaaggaagg tggcacctac aaatgccatc attgcgataa aggaaaggct 16980
atcgttcaag atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaagagc 17040
atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc 17100
tccactgacg taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata 17160
taaggaagtt catttcattt ggagaggaca cgctgaaatc accagtctct ctctacaaat 17220
ctatctctct cgagtctacc atgagcccag aacgacgccc ggccgacatc cgccgtgcca 17280
ccgaggcgga catgccggcg gtctgcacca tcgtcaacca ctacatcgag acaagcacgg 17340
tcaacttccg taccgagccg caggaaccgc aggagtggac ggacgacctc gtccgtctgc 17400
gggagcgcta tccctggctc gtcgccgagg tggacggcga ggtcgccggc atcgcctacg 17460
cgggcccctg gaaggcacgc aacgcctacg actggacggc cgagtcgacc gtgtacgtct 17520
ccccccgcca ccagcggacg ggactgggct ccacgctcta cacccacctg ctgaagtccc 17580
tggaggcaca gggcttcaag agcgtggtcg ctgtcatcgg gctgcccaac gacccgagcg 17640
tgcgcatgca cgaggcgctc ggatatgccc cccgcggcat gctgcgggcg gccggcttca 17700
agcacgggaa ctggcatgac gtgggtttct ggcagctgga cttcagcctg ccggtaccgc 17760
cccgtccggt cctgcccgtc accgagattt gactcgagtt tctccataat aatgtgtgag 17820
tagttcccag ataagggaat tagggttcct atagggtttc gctcatgtgt tgagcatata 17880
agaaaccctt agtatgtatt tgtatttgta aaatacttct atcaataaaa tttctaattc 17940
ctaaaaccaa aatccagtac taaaatccag atcccccgaa ttaattcggc gttaattcag 18000
tacattaaaa acgtccgcaa tgtgttatta agttgtctaa gcgtcaattt gtttacacca 18060
caatatatcc tgcca 18075
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
caatacaacc cggaatctgc 20
<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
gtgtagctga gccaatctcg 20
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
attgttccac atgggttggt 20
<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
tgcctatgtc gagtggaatg 20
<210> 11
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
attgttccct ccacctggag gttttagagc tagaaat 37
<210> 12
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
ctccaggtgg agggaacaat caatcactac ttcgtct 37
<210> 13
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
tttctaccac gcacacgaag ttttagagct agaaat 36
<210> 14
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
ttcgtgtgcg tggtagaaac aatctcttag tcgact 36
<210> 15
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
ctgtacattc caccagggat gttttagagc tagaaat 37
<210> 16
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
atccctggtg gaatgtacag tgaccaatgt tgctcc 36
<210> 17
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
taagtggacc ccggataacc gttttagagc tagaaat 37
<210> 18
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
ggttatccgg ggtccactta tgaccaatgg tgctttg 37
<210> 19
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
ctccgtttta cctgtggaat cg 22
<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
cggaggaaaa ttccatccac 20
<210> 21
<211> 47
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
ttcagaggtc tctaccgact agtcacgcgt atggaatcgg cagcaaa 47
<210> 22
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
agcgtgggtc tcgtcagggt ccatccactc caagctc 37
<210> 23
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
ttcagaggtc tctctgacac tggaatcggc agcaaagg 38
<210> 24
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
agcgtgggtc tcgtcttcac tccatccact ccaagctc 38
<210> 25
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
ttcagaggtc tctaagactt tggaatcggc agcaaagg 38
<210> 26
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
agcgtgggtc tcgagtcctt tccatccact ccaagctc 38
<210> 27
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
ttcagaggtc tctgactaca tggaatcggc agcaaagg 38
<210> 28
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
agcgtgggtc tcgctcgacg cgtatccatc cactccaagc 40
<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
atatcgaagg tgtcatgac 19
<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
ctttaggagg gtcggtttca 20
<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
ccaaccgaat ggtacgacat 20
<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
taccacagtt cttccaacat 20

Claims (5)

1. A vector for simultaneously targeting and knocking out 1-SST and 1-FFT of a caerulein synthase gene by using a CRISPR/Cas9 system, which is characterized in that the vector comprises an expression cassette of sgRNA, the expression cassette comprises a promoter for driving the sgRNA to transcribe and the sgRNA,
the sgRNA comprises sgRNA-SST1 and sgRNA-SST2 which target 1-SST genes and sgRNA-FFT1 and sgRNA-FFT2 which target 1-FFT genes; the sequences of the sgRNA-SST1, the sgRNA-SST2, the sgRNA-FFT1 and the sgRNA-FFT2 are sequentially shown as SEQ ID No. 1-4;
the sequence of the vector is shown as SEQ ID NO. 6.
2. A host cell comprising the vector of claim 1.
3. Use of the vector of claim 1 or the host cell of claim 2 for increasing the sucrose, fructose or natural rubber content of the roots of hevea brasiliensis, or for reducing the inulin content of the roots of hevea brasiliensis.
4. Use of the vector of claim 1 or the host cell of claim 2 in the genetic breeding of kochia or in the improvement of germplasm resources;
the application is breeding of the synanthrin synthesis defective germplasm or the high-yield natural rubber germplasm.
5. A method for simultaneously knocking out 1-SST and 1-FFT of an inula kochiana synzyme gene in a targeted manner by using a CRISPR/Cas9 system is characterized in that the vector of claim 1 is transferred into the inula kochiana, and a hevea kochiana plant with the inula synzyme gene 1-SST and 1-FFT knocked out simultaneously is obtained through screening.
CN202011140720.XA 2020-10-22 2020-10-22 Method for simultaneously knocking out 1-SST and 1-FFT genes of hevea brasiliensis by using CRISPR/Cas9 system Active CN112266913B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011140720.XA CN112266913B (en) 2020-10-22 2020-10-22 Method for simultaneously knocking out 1-SST and 1-FFT genes of hevea brasiliensis by using CRISPR/Cas9 system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011140720.XA CN112266913B (en) 2020-10-22 2020-10-22 Method for simultaneously knocking out 1-SST and 1-FFT genes of hevea brasiliensis by using CRISPR/Cas9 system

Publications (2)

Publication Number Publication Date
CN112266913A CN112266913A (en) 2021-01-26
CN112266913B true CN112266913B (en) 2022-08-02

Family

ID=74341622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011140720.XA Active CN112266913B (en) 2020-10-22 2020-10-22 Method for simultaneously knocking out 1-SST and 1-FFT genes of hevea brasiliensis by using CRISPR/Cas9 system

Country Status (1)

Country Link
CN (1) CN112266913B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656118A (en) * 2019-10-18 2020-01-07 中国热带农业科学院橡胶研究所 Geranium strictipes inulin degrading enzyme gene Tk1-FEH and application thereof
CN110669783B (en) * 2019-10-30 2021-07-02 中国热带农业科学院热带生物技术研究所 Genetic transformation method for kokstroemia indica

Also Published As

Publication number Publication date
CN112266913A (en) 2021-01-26

Similar Documents

Publication Publication Date Title
CN109055434B (en) Method for correcting pig KIT gene structure mutation by CRISPRCs 9 technology
CN108467868B (en) Application of soybean sucrose transporter important gene GmSWEET6
CN116042698A (en) Method for establishing rapid and efficient alfalfa hairy root transformation system
Wen et al. Comparison of efficiency and time to regeneration of Agrobacterium-mediated transformation methods in Medicago truncatula
CN114672447B (en) Bacterial strain with self-flocculation capability and preparation method and application thereof
CN113151346B (en) CRISPR/Cas9 system-mediated wheat polygene knockout editing system
CN112626082B (en) Maize geneZmSCL14Application in regulating and controlling plant root development
CN112266913B (en) Method for simultaneously knocking out 1-SST and 1-FFT genes of hevea brasiliensis by using CRISPR/Cas9 system
CN112852867A (en) Expression vector of glyphosate resistance genes GR79 and GAT and application thereof
CN112566492A (en) Artificial marker alleles
CN113930433B (en) Plant coding sequence, amplification primer and application of amplification primer in optimizing plant height
CN110106171A (en) Long-chain non-coding RNA and its application in regulation plant frigostabile
CN109486851B (en) Method for improving expression level of recombinant protein in endosperm bioreactor
CN114672495B (en) Gene for controlling birch leaf splitting character and application thereof
CN117126879B (en) Application of tomato SlSUVH1 gene in regulation and control of plant virus resistance and transgenic plant cultivation method
CN114854788A (en) Plant expression vector and application thereof in degradation of rice lignin
CN116064538B (en) Plant root-promoting gene LTP2, promoter, expression product, expression vector and application thereof
CN115820691B (en) LbCPf1 variant-based rice base editing system and application
KR101925466B1 (en) Infectious clone of Tomato leaf curl Bangladesh beta-satellite DNA and uses thereof
CN115820715A (en) Virus-induced non-transgenic gene editing method
CN118086367A (en) Application of OsLPR gene and/or coded protein thereof in regulation and control of rice tillering angle
CN114717233A (en) Method for knocking out halomonas DNA large fragment by combining double sgRNA and RecET system
CN117736288A (en) Application of GmRGA in regulating soybean aging
CN116445506A (en) Switch grass tillering number and biomass regulation gene ENT, encoding protein, expression vector and application thereof
CN116676319A (en) Application of NBG3BP1 gene in regulation and control of plant anti-geminivirus and transgenic plant cultivation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant