CN112261862A - Shielding device for electromagnetic environment monitoring system - Google Patents

Shielding device for electromagnetic environment monitoring system Download PDF

Info

Publication number
CN112261862A
CN112261862A CN202011254761.1A CN202011254761A CN112261862A CN 112261862 A CN112261862 A CN 112261862A CN 202011254761 A CN202011254761 A CN 202011254761A CN 112261862 A CN112261862 A CN 112261862A
Authority
CN
China
Prior art keywords
shielding
monitoring system
environment monitoring
electromagnetic environment
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011254761.1A
Other languages
Chinese (zh)
Inventor
刘奇
苏晓明
刘晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Astronomical Observatory of CAS
Original Assignee
Xinjiang Astronomical Observatory of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Astronomical Observatory of CAS filed Critical Xinjiang Astronomical Observatory of CAS
Priority to CN202011254761.1A priority Critical patent/CN112261862A/en
Publication of CN112261862A publication Critical patent/CN112261862A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The invention relates to a shielding device for an electromagnetic environment monitoring system, which comprises an outdoor shielding and filtering component, an indoor shielding and filtering component and a connecting component, wherein the connecting component is respectively in conductive and sealing connection with the outdoor shielding and filtering component and the indoor shielding and filtering component and is formed by connecting a plurality of flange type stainless steel hoses end to end. The invention can realize high-performance electromagnetic shielding, and meanwhile, the flange type stainless steel hose assembly is adopted to realize communication interconnection among electronic equipment, thereby greatly reducing the usage amount of the filter connector and improving the reliability of the system. In addition, the shielding device has the advantages of good universality, easy realization, low cost and stronger engineering application value.

Description

Shielding device for electromagnetic environment monitoring system
Technical Field
The invention relates to the technical field of radio astronomy electromagnetic environment measurement and electromagnetic protection, in particular to a shielding device for an electromagnetic environment monitoring system.
Background
The large-aperture radio telescope has extremely high system sensitivity and continuous observation frequency coverage, such as 100MHz-6 GHz. However, electromagnetic interference generated by various electronic devices inside and outside a site can affect radio astronomical observation, for example, a radio frequency antenna, an antenna rotation controller, a temperature and humidity sensor module, a microwave link control module, a signal acquisition and processing terminal, a control computer, a motor controller, a network switch and the like are involved in an electromagnetic environment monitoring system, communication interconnection among the devices involves a network cable, an RS485/232 signal control line, a direct current/alternating current power line, a radio frequency cable, a motor control signal line and the like, and electromagnetic interference generated by related electronic devices is transmitted through space radiation and cable conduction, so that radio astronomical observation service is affected. Therefore, in order to alleviate the influence of electromagnetic interference of the electromagnetic environment monitoring system of the radio astronomical site on radio astronomical observation and improve the reliability of the system, the electromagnetic protection of the electromagnetic environment monitoring system is very important.
However, the existing electromagnetic environment monitoring system usually ignores its electromagnetic compatibility design and electromagnetic protection, for example, the electromagnetic environment monitoring system adopted by radio monitoring centers in various provinces, and the electromagnetic environment measurement standards for civil and military use do not require the electromagnetic compatibility design and electromagnetic protection of the measurement system itself, because such electromagnetic environment measurement systems mostly perform short-time measurement (completed within 1 week), the system composition is relatively simple, and therefore the electromagnetic protection design of the system is not considered. The electromagnetic environment requirement of the radio astronomical site is extremely high, the electromagnetic environment monitoring system relates to electronic equipment and numerous interconnected cables, most of the existing monitoring systems only perform local electromagnetic protection, and the shielding efficiency is low (lower than 30dB), for example, a magnetic ring is used on a communication cable, the cable is directly inserted into a shielding cabinet and the like, the system does not consider the shielding and filtering of each link, or various cables of indoor and outdoor electronic equipment are exposed and leaked outside and are connected through a filtering connector, so that the use amount of various signal filters and power filters is increased, and the overall cost is increased. High-performance electromagnetic protection (greater than 60dB) has great challenges, and a systematic electromagnetic compatibility design needs to be developed by combining system communication interconnection characteristics so as to greatly relieve radiation emission and conducted emission and further effectively inhibit the influence of self electromagnetic interference on radio astronomical observation. Therefore, the electromagnetic shielding device with high universality, high reliability and high performance is developed aiming at the electromagnetic environment monitoring system of the radio astronomical site, and has extremely high engineering application value.
Disclosure of Invention
In order to solve the problems in the prior art, the invention provides a shielding device for an electromagnetic environment monitoring system, which can reduce the influence of electromagnetic interference of the electromagnetic environment monitoring system on radio astronomical observation and reduce cost.
The invention provides a shielding device for an electromagnetic environment monitoring system, which comprises an outdoor shielding and filtering component, an indoor shielding and filtering component and a connecting component, wherein the connecting component is respectively in conductive and sealing connection with the outdoor shielding and filtering component and the indoor shielding and filtering component, and the connecting component is formed by connecting a plurality of flange type stainless steel hoses end to end.
Further, the outdoor shielding and filtering assembly comprises a shielding box, and a radio frequency connector, a signal filter and a first optical fiber waveguide which are arranged on the outer surface of the shielding box.
Further, the surfaces of the radio frequency connector, the signal filter and the first optical fiber waveguide tube are provided with a first conductive sealing gasket, and the surface of the first conductive sealing gasket, which is in contact with the outer surface of the shielding box, is conductive.
Further, the flange type stainless steel hose of the connecting assembly is in conductive sealing connection with the shielding box.
Furthermore, the flange type stainless steel hose comprises a first flange, a stainless steel hose fixedly connected with the first flange and a second flange fixedly connected with the stainless steel hose.
Preferably, a sealing groove is formed in the first flange, and a second conductive sealing gasket is installed in the sealing groove.
Preferably, the first flange and the second flange are both provided with a sealing groove, and a second conductive sealing gasket is installed in the sealing groove.
Further, the indoor shielding filter assembly comprises a shielding cabinet, and a power filter and a second optical fiber waveguide which are installed on the outer surface of the shielding cabinet.
Further, the surfaces of the power filter and the second fiber waveguide are provided with a third conductive sealing gasket, and the side of the third conductive sealing gasket, which is in contact with the shielding cabinet, is conductive.
Further, the flange type stainless steel hose is connected with the shielding cabinet in a conductive and sealing mode.
The shielding device for the electromagnetic environment monitoring system can realize high-performance electromagnetic shielding, and meanwhile, the flange type stainless steel hose assembly is adopted to realize communication interconnection among electronic equipment, so that the use amount of the filtering connector is greatly reduced, and the reliability of the system is improved. In addition, the shielding device has the advantages of good universality, easy realization, low cost and stronger engineering application value.
Drawings
Fig. 1 is a schematic structural diagram of a shielding device for an electromagnetic environment monitoring system according to the present invention.
Fig. 2 is a schematic structural view of the first flange of fig. 1.
Fig. 3 is a schematic structural view of the second flange of fig. 1.
FIG. 4 is a schematic layout of the components and cables within a shielding device for an electromagnetic environment monitoring system according to the present invention.
Detailed Description
The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
As shown in fig. 1, the shielding apparatus for an electromagnetic environment monitoring system according to a preferred embodiment of the present invention includes an outdoor shielding filter assembly 10, a connecting assembly 20 connected to the outdoor shielding filter assembly 10, and an indoor shielding filter assembly 30 connected to the connecting assembly 20, i.e., the connecting assembly 20 is used for connecting the outdoor shielding filter assembly 10 and the indoor shielding filter assembly 30 together.
The outdoor shielding filter assembly 10 includes a shielding box 11, a radio frequency connector 12, a signal filter 13, and a first fiber waveguide 14. The surfaces of the radio frequency connector 12, the signal filter 13 and the optical fiber waveguide tube 14 are all provided with first conductive sealing gaskets 15, and the radio frequency connector 12, the signal filter 13 and the optical fiber waveguide tube 14 are installed on the outer surface of the shielding box 11 through the first conductive sealing gaskets 15, so that the radio frequency connector 12, the signal filter 13 and the optical fiber waveguide tube 14 can be electrically connected with electronic equipment arranged inside the outdoor shielding and filtering component 10, and electromagnetic leakage at an installation interface is inhibited. The first conductive gasket 15 is attached to the outer surface of the shield case 11, and the surface thereof in contact with the outer surface of the shield case 11 is conductive. The shielding box 11 is made of metal, and the material thereof can adopt common and easily available stainless steel, aluminum, copper and common steel plates. Considering factors such as outdoor environment, the preparation degree of difficulty, cost, in this embodiment, selecting stainless steel and aluminium for use is more suitable, this is because aluminium and ordinary steel sheet rust easily, and the easy rust of other device connection contact surface, and the performance will descend after rustting.
The outdoor shielding filter assembly 10 inhibits the radiation emission of internal electromagnetic interference through the shielding box 11, and inhibits the transmission of electromagnetic waves to the outside through the cable conduction through the radio frequency connector 12, the signal filter 13 and the optical fiber waveguide 14, thereby effectively inhibiting the electromagnetic interference source inside.
The connecting assembly 20 is composed of a plurality of flange-type stainless steel hoses 21, each flange-type stainless steel hose 21 comprises a first flange 22, a stainless steel hose 23, a second flange 24 and a second conductive sealing gasket 25, and the stainless steel hoses 23 are fixedly connected with the first flange 22 and the second flange 24. As shown in fig. 2, the first flange 22 is provided with a sealing groove 26 and a plurality of mounting holes 27, and the second conductive sealing gasket 25 is mounted in the sealing groove 26 to achieve sealing and shielding functions. As shown in fig. 3, the second flange 24 has no sealing groove, and can be in conductive sealing lap joint with the first flange 22 of another flange type stainless steel hose. It should be noted that in other embodiments, the second flange 24 may be provided with a sealing groove and a conductive sealing gasket mounted therein.
The flange type stainless steel hose is convenient to install, has high shielding performance, can penetrate various cables, does not need to consider the filtering suppression of electronic equipment inside an outdoor shielding filtering assembly and electronic equipment communication cables inside an indoor shielding filtering assembly, reduces the using amount of a filtering connector, can improve the reliability of a system, and reduces the cost of the system. The stainless steel hose with the proper length and diameter can be selected according to the type and the number of cables and the convenience of wiring, and the stainless steel hose is low in price and good in universality.
The indoor shielding and filtering assembly 30 includes a shielding cabinet 31, a power filter 32 and a second fiber waveguide 33, wherein the shielding cabinet 31 is made of metal, and the material of the shielding cabinet 31 may be common and readily available stainless steel, aluminum, copper, common steel plate, and the like. The surfaces of the power filter 32 and the second optical fiber waveguide tube 33 are provided with third conductive sealing gaskets 34, the power filter 32 and the second optical fiber waveguide tube 33 are installed on the outer surface of the shielding cabinet 31 through the third conductive sealing gaskets 34, conductive sealing connection among the power filter 32, the optical fiber waveguide tube 33 and the shielding cabinet 31 is achieved, electromagnetic leakage at an installation interface is restrained, and high-performance electromagnetic shielding is achieved. It should be noted that the third conductive sealing gasket 34 is mounted on the outer surface of the shielding cabinet 31, the surface of the shielding cabinet 31 in contact with the third conductive sealing gasket is conductive, and the shielding cabinet 31 has a ground terminal.
The indoor shielding filter assembly 30 suppresses radiation emission of internal electronic equipment through the shielding cabinet 31, and can largely suppress electromagnetic interference from being radiated to the outside through cable conduction after the power filter 32 and the second optical fiber waveguide 33 are installed, thereby realizing high-performance electromagnetic shielding.
The following will further describe the arrangement of the devices and cables inside the shielding device of the present invention when the shielding device is applied to an electromagnetic environment monitoring system with reference to fig. 4.
The electronic device disposed inside the shielding box 11 includes an amplifier 41, a microwave switch 42 and a data acquisition and circuit control module 43, wherein the amplifier 41 is electrically connected to the microwave switch 42, and the microwave switch 42 is electrically connected to the data acquisition and circuit control module 43.
When the electromagnetic environment monitoring system works, the multi-channel radio frequency antenna 51 with different frequency bands is selected according to the requirement of measuring frequency, and the radio frequency antenna 51 is connected with the radio frequency connector 12 through the radio frequency cable 52 to transmit radio frequency signals. After entering the interior of the shielding box 11 through the rf connector 12, the rf cable 52 is connected to the amplifier 41 and the microwave switch 42 in sequence, so that the signal in the rf cable 52 is amplified, and multiple paths of rf cables enter the microwave switch 42. An external sensor 53 (for example, a temperature sensor, a humidity sensor, a wind speed sensor, a stress deformation sensor, etc.) is connected to the signal filter 13 through a signal line 54, and the signal line 54 enters the interior of the shielding box 11 through the signal filter 13 and is connected to the data acquisition and circuit control module 43, so as to realize data acquisition. The optical fiber sensor 55 is connected with the optical fiber waveguide 14 through an optical fiber 56, and the optical fiber 56 enters the interior of the shielding box 11 through the optical fiber waveguide 14 and is connected to the data acquisition and circuit control module 43. The data acquisition and circuit control module 43 controls the microwave switch 42 to select different microwave links, so as to select different rf antenna signal links, and transmit the selected rf antenna signal links to the data processing terminal 61 inside the indoor shielding and filtering component 300.
The cables of the microwave switch 42 and the data acquisition and circuit control module 43 pass through the flanged stainless steel hose 21 and are connected to the corresponding electronic equipment inside the shielded cabinet 31. Note that, the flange-type stainless steel hose 21, the shield case 11, and the shield cabinet 31 are fixedly connected by screws through conductive seal gaskets.
The electronic device disposed inside the shielded enclosure 31 includes a data processing terminal 61, a circuit control module 62, a computer 63, an Uninterruptible Power Supply (UPS) system 64, a voltage stabilizing module 65, and a network switch 66, wherein the data processing terminal 61, the circuit control module 62, and the computer 63 are connected to the UPS system 64 and to the network switch 66, and the UPS system 64 is connected to the voltage stabilizing module 65. The cable from the microwave switch 42 is connected with the data processing terminal 61, and the cable from the data acquisition and circuit control module 43 is connected with the data processing terminal 61, the circuit control module 62 and the computer 63.
When the electromagnetic environment monitoring system works, an external power line 71 enters the interior of the shielding cabinet 31 through the power filter 32, is connected to the voltage stabilizing module 65, and supplies power to all electronic equipment in the interior of the shielding cabinet 31. External network fibers 72 enter the interior of the shielded enclosure 31 through fiber optic waveguide 33 and connect to network switch 66 to provide a network for the various electronic devices inside the shielded enclosure 31.
The shielding device for the electromagnetic environment monitoring system can realize high-performance electromagnetic shielding, adopts the flange type stainless steel hose assembly to realize communication interconnection among electronic equipment, greatly reduces the usage amount of the filter connector, and improves the reliability of the system (the fewer devices among the electronic equipment, the higher the reliability of the system). In addition, the electromagnetic shielding device has good universality, easy realization, low cost and stronger engineering application value.
The above embodiments are merely preferred embodiments of the present invention, which are not intended to limit the scope of the present invention, and various changes may be made in the above embodiments of the present invention. All simple and equivalent changes and modifications made according to the claims and the content of the specification of the present application fall within the scope of the claims of the present patent application. The invention has not been described in detail in order to avoid obscuring the invention.

Claims (10)

1. The utility model provides a shield assembly for electromagnetic environment monitoring system, its characterized in that, including outdoor shielding filter subassembly, indoor shielding filter subassembly and respectively with outdoor shielding filter subassembly and the electrically conductive sealing connection's of indoor shielding filter subassembly coupling assembling, coupling assembling comprises a plurality of flange formula stainless steel hose end to end.
2. The shielding apparatus for an electromagnetic environment monitoring system of claim 1, wherein said outdoor shield filter assembly includes a shield box and a radio frequency connector, a signal filter and a first fiber optic waveguide mounted to an outer surface of said shield box.
3. A shielding device for an electromagnetic environment monitoring system as set forth in claim 2, wherein surfaces of said radio frequency connector, said signal filter and said first fiber optic waveguide are provided with a first electrically conductive sealing gasket, and a side of said first electrically conductive sealing gasket in contact with an outer surface of said shielding box is electrically conductive.
4. The shielding device for an electromagnetic environment monitoring system of claim 3, wherein the flanged stainless steel hose of the connecting assembly is conductively sealed to the shielding cage.
5. The shielding apparatus for an electromagnetic environment monitoring system of claim 1 or 4, wherein said flanged stainless steel hose comprises a first flange, a stainless steel hose secured to said first flange, and a second flange secured to said stainless steel hose.
6. The shielding apparatus for an electromagnetic environment monitoring system of claim 5, wherein said first flange has a sealing groove therein, and a second conductive sealing gasket is mounted in said sealing groove.
7. The shielding apparatus for the electromagnetic environment monitoring system of claim 5, wherein the first flange and the second flange are each provided with a sealing groove, and a second conductive sealing gasket is installed in the sealing groove.
8. The shielding device for the electromagnetic environment monitoring system of claim 1, wherein the indoor shielding and filtering assembly comprises a shielding cabinet, and a power filter and a second fiber waveguide which are installed on the outer surface of the shielding cabinet.
9. A shielding device for an electromagnetic environment monitoring system as set forth in claim 8, wherein surfaces of said power filter and said second fiber optic waveguide are provided with a third electrically conductive sealing gasket, and a side of said third electrically conductive sealing gasket in contact with said shielding cabinet is electrically conductive.
10. The shielding device for the electromagnetic environment monitoring system of claim 8, wherein said flanged stainless steel hose is conductively sealed to said shielded enclosure.
CN202011254761.1A 2020-11-11 2020-11-11 Shielding device for electromagnetic environment monitoring system Pending CN112261862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011254761.1A CN112261862A (en) 2020-11-11 2020-11-11 Shielding device for electromagnetic environment monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011254761.1A CN112261862A (en) 2020-11-11 2020-11-11 Shielding device for electromagnetic environment monitoring system

Publications (1)

Publication Number Publication Date
CN112261862A true CN112261862A (en) 2021-01-22

Family

ID=74265249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011254761.1A Pending CN112261862A (en) 2020-11-11 2020-11-11 Shielding device for electromagnetic environment monitoring system

Country Status (1)

Country Link
CN (1) CN112261862A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608401A (en) * 2012-03-06 2012-07-25 华北电力大学 Measurement system and measurement method for disturbance voltage and disturbance current of GIS (gas insulated switchgear) secondary system
KR101470399B1 (en) * 2013-12-30 2014-12-09 주식회사 이레테크 Electromagnetic measurement system
CN105407694A (en) * 2015-12-21 2016-03-16 河北汉光重工有限责任公司 Electromagnetic shielding low-torque rotary airtight sealing device
CN106872735A (en) * 2017-03-10 2017-06-20 广州供电局有限公司 Partial discharge system electromagnetic screen
CN108289403A (en) * 2018-01-15 2018-07-17 中国科学院国家天文台 A kind of high-precision laser range-finding equipment electromagnetic shielding cabin
CN211344332U (en) * 2019-09-17 2020-08-25 弗迈斯柔性技术(江苏)有限公司 Improved stainless steel pipe
CN213847454U (en) * 2020-11-11 2021-07-30 中国科学院新疆天文台 Shielding device for electromagnetic environment monitoring system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608401A (en) * 2012-03-06 2012-07-25 华北电力大学 Measurement system and measurement method for disturbance voltage and disturbance current of GIS (gas insulated switchgear) secondary system
KR101470399B1 (en) * 2013-12-30 2014-12-09 주식회사 이레테크 Electromagnetic measurement system
CN105407694A (en) * 2015-12-21 2016-03-16 河北汉光重工有限责任公司 Electromagnetic shielding low-torque rotary airtight sealing device
CN106872735A (en) * 2017-03-10 2017-06-20 广州供电局有限公司 Partial discharge system electromagnetic screen
CN108289403A (en) * 2018-01-15 2018-07-17 中国科学院国家天文台 A kind of high-precision laser range-finding equipment electromagnetic shielding cabin
CN211344332U (en) * 2019-09-17 2020-08-25 弗迈斯柔性技术(江苏)有限公司 Improved stainless steel pipe
CN213847454U (en) * 2020-11-11 2021-07-30 中国科学院新疆天文台 Shielding device for electromagnetic environment monitoring system

Similar Documents

Publication Publication Date Title
US6957047B1 (en) Bi-directional switched RF amplifier, waterproof housing, electrostatic overvoltage protection device, and mounting bracket therefor
CN101533049B (en) Current radiation transmitting device for measuring cable
CN213847454U (en) Shielding device for electromagnetic environment monitoring system
CN105140571A (en) Lithium-ion battery pack system with high electromagnetic compatibility
CN211481845U (en) Electromagnetic shielding device of laser tracking measuring equipment
CN112261862A (en) Shielding device for electromagnetic environment monitoring system
CN101286591A (en) Broadband antenna
CN102944779A (en) Shielding effectiveness test method of filtering and shielding integrated assembly
KR101054733B1 (en) Antenna hat device for radio communication test of projectile
CN105652165A (en) Signal collecting device
CN206224024U (en) A kind of optical module
CN111064001B (en) Electric tuning device and antenna system
CN212646906U (en) Ultrahigh frequency partial discharge sensor with dual-port signal output
CN214591348U (en) Shelter filtering assembly
CN112332073A (en) High-protection choke coil antenna for outdoor optical instrument
CN213305622U (en) Optical fiber ring network stabilizing device in high-voltage level environment
CN216209584U (en) Electromagnetic compatibility open field test system
JP2008034761A (en) Electromagnetic shield room system using electromagnetic shield material of double structure
CN219718988U (en) Roof shielding adapter box
Yang et al. Design of a Shielding Box for Interference of Switching Power Supply at L-Band
CN219627077U (en) Anti-interference isolated conductive slip ring
JP3226105U (en) Cable adapter
CN219329804U (en) Network port protection circuit and device of intelligent measurement and control equipment
CN111422149B (en) Electromagnetic shielding bulkhead orifice adapter box
CN221176741U (en) Lightning interface filter connector based on type-c connector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination