CN112259616A - 一种太阳能吸收器 - Google Patents
一种太阳能吸收器 Download PDFInfo
- Publication number
- CN112259616A CN112259616A CN202011214580.6A CN202011214580A CN112259616A CN 112259616 A CN112259616 A CN 112259616A CN 202011214580 A CN202011214580 A CN 202011214580A CN 112259616 A CN112259616 A CN 112259616A
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- dimensional photonic
- absorption
- absorber
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 50
- 239000004038 photonic crystal Substances 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 22
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 21
- 239000010937 tungsten Substances 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 20
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 12
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010521 absorption reaction Methods 0.000 abstract description 60
- 238000001228 spectrum Methods 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 18
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 11
- 238000000862 absorption spectrum Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
- H01L31/02366—Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/10—Details of absorbing elements characterised by the absorbing material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/30—Auxiliary coatings, e.g. anti-reflective coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
- H01L31/035281—Shape of the body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种太阳能吸收器。该太阳能吸收器包括:金属钨基底、二维光子晶体单元和抗反射层,所述二维光子晶体单元设置在所述金属钨基底之中和所述抗反射层之下,所述二维光子晶体单元的数量为多个,各所述二维光子晶体单元均以相同尺寸按四方晶格结构排列,并置于金属钨基底内部,各所述二维光子晶体单元均为半径为R的圆形空腔结构,各所述圆形空腔结构内部填充GaAs。本发明的太阳能吸收器具有全太阳光谱广角高吸收的能力。
Description
技术领域
本发明涉及太阳能领域,特别是涉及一种太阳能吸收器。
背景技术
太阳能吸收器是太阳能利用中的关键结构,它通过吸收有效工作波长的光照,将其转化为热能、电能或者其他形式的能量。提高吸收器的吸收能力是促进太阳能利用发展进步的有效方式。提高太阳能吸收器的吸收能力主要有两个解决途径:增大吸收带宽和提高太阳辐射能力强的波长区域内的吸收率。那么,理想的吸收器应具备全太阳光谱高吸收能力。最近,多个研究组采用多层材料薄膜构成一维光子晶体结构的太阳能吸收器,有效提高了吸收率。Jie Luo和Yun Lai通过堆叠多层二氧化钛和硅组成的光子晶体,可以实现全向吸收,吸收率接近100%,但是高吸收带宽不够大,只在波长440nm到640nm的波长范围内有较高的吸收率;NargesAnsari和Ensiyeh Mohebbi设计了基于硅,二氧化硅和二硫化钼单层膜的光子晶体,在入射角0-60°内均能达到90%的吸收率,但需要较多层薄膜堆叠,器件过厚,制备比较困难,并且吸收带宽不够大,高吸收波长范围仅有100nm左右。与一维光子晶体结构的吸收器相比,二维光子晶体结构吸收器有明显的优势,吸收带宽更宽、吸收率高,且能够广角吸收。ChenglongWan等人设计了金属-介质-金属超表面吸收器,上层薄膜使用二维周期结构,在400-1200nm波长范围有接近90%高吸收率,在该波长范围以上吸收率较低,有较好的光谱选择性。刘开贤,蔺吉虹等人设计并计算了基于GaAs纳米阵列的二维光子晶体结构的太阳能电池,在200-900nm波长范围内,吸收率可达87.4%,最终优化后的功率转换效率为17.6%。然而这些结构都无法达成全太阳光谱高吸收的要求。
发明内容
本发明的目的是提供一种具有全太阳光谱广角高吸收能力的太阳能吸收器。
为实现上述目的,本发明提供了如下方案:
一种太阳能吸收器,包括:金属钨基底、二维光子晶体单元和抗反射层,所述二维光子晶体单元设置在所述金属钨基底之中和所述抗反射层之下,所述二维光子晶体单元的数量为多个,各所述二维光子晶体单元以相同尺寸按四方晶格结构排列,置于所述金属钨基底内部,各所述二维光子晶体单元均为半径为R的圆形空腔结构,各所述圆形空腔结构内部填充GaAs。
可选地,所述二维光子晶体单元的晶格常数为480nm。
可选地,所述二维光子晶体单元的空腔高度为2200nm
可选地,所述二维光子晶体单元的空腔半径为190nm。
可选地,所述抗反射层厚度为165nm。
可选地,所述金属钨基底的高度为2250nm。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供一种太阳能吸收器,该太阳能吸收器包括:金属钨基底、二维光子晶体单元和抗反射层,所述二维光子晶体单元设置在所述金属钨基底之中和所述抗反射层之下,所述二维光子晶体单元的数量为多个,各所述二维光子晶体单元以相同尺寸按四方晶格结构排列,置于所述金属钨基底内部,各所述二维光子晶体单元均为半径为R的圆形空腔结构,各所述圆形空腔结构内部填充GaAs。采用上述太阳能吸收器能够提高全太阳光谱广角吸收能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明太阳能吸收器组成结构侧视图;
图2为本发明太阳能吸收器组成结构横截面图;
图3为本发明太阳能吸收器组成结构俯视图;
图4为本发明GaAs折射率n及吸收系数k随波长的变化示意图;
图5为吸收光谱随空腔半径R的变化示意图;
图6为吸收光谱随抗反射层厚p的变化示意图;
图7为吸收器平均吸收率最大时的吸收光谱实意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种具有全太阳光谱广角高吸收能力的太阳能吸收器。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
在金属钨(W)的圆形空腔中填充砷化镓(GaAs)的二维光子晶体结构吸收器,采用有限元法对吸收器进行研究,探索吸收谱变化规律,确定最优的结构几何参数,吸收器在300-2500nm的波长范围内有效吸收高达94.9%,最终得出具有全太阳光谱广角高吸收能力的太阳能吸收器。如图1所示,一种太阳能吸收器包括:金属钨基底1、二维光子晶体单元2和抗反射层3,所述二维光子晶体单元2设置在所述金属钨基底1之中和所述抗反射层3之下,所述二维光子晶体单元2的数量为多个,各所述二维光子晶体单元2均以相同尺寸按四方晶格结构在金属钨基底内部排列,各所述二维光子晶体单元2均为半径为R的圆形空腔结构,各所述圆形空腔结构内部填充GaAs。抗反射层3为GaAs抗反射层。
选择金属钨基底1作为结构的基底,其硬度高,熔点高,具有良好的高温稳定性,常温下不受空气侵蚀,它在远红外区具有高反射率,在长波长下具有低发射率,可作为结构的背反射器。
所述四方晶格结构二维光子晶体单元2的晶格常数为480nm。所述二维光子晶体单元2的空腔高度d为2200nm。所述二维光子晶体单元2的空腔半径为190nm。所述抗反射层3厚度为165nm。所述金属钨基底1的高度为2250nm,所述金属钨基底从空腔底部至基底底部的高度为50nm。设二维光子晶体单元2的晶格常数为A,抗反射层3厚度为p,圆形空腔的高度为d,半径为R,入射仰角为θ,入射方位角为
下面对二维光子晶体单元2的参数进行讨论:
对于吸收材料GaAs,其电子带隙为1.4eV,从图4中的GaAs折射率与吸收系数可知,在350-500nm波长范围内折射率和吸收系数变化较大,对太阳能的吸收效率较高。从图5中可以看出,GaAs的吸收波峰位于550nm附近,与太阳辐射光谱相比,该频段也是太阳光辐射能量最强的区域。
圆柱腔的吸收质量因子(Qabs)和辐射率(Qrad)相等时,可以得到吸收峰,此时圆柱腔与外辐射是临界耦合的,达到了Q匹配。空腔的半径R与高度d直接影响Qrad,且空腔的体积πR2d与Qabs密切相关,这意味着可以通过调整R,d来预测吸收谱。在计算过程中,发现空腔的高度d取较小值时,吸收谱的波动较大,吸收曲线不平滑,且在长波长处(1.8-2.5um)吸收率有所下降,出现多个吸收峰。但较小的d/A比值对应的制造难度小,且材料消耗少,考虑到制造难度与吸收器性能,最终选定d=2.2um。
为使吸收器具备全太阳光谱高吸收的能力,同时满足吸收器高性能与实际器件制造低难度的需要,应确定空腔半径R的最优值。为研究空腔半径R对吸收器吸收率的影响,取半径R为150nm,170nm,190nm,210nm。结果如图5所示,随着空腔半径R逐渐变大,吸收器在高吸收带宽内的吸收率持续增加,且高吸收带宽也有一定增加。吸收谱出现两个吸收峰,分别在700nm和1400nm波长处,且在波长700nm处与各吸收谱的截止波长处出现了100%的完美吸收率。虽然空腔半径R越大该结构对入射光的吸收能力越强,但是过大的R会导致空腔壁过薄。当R取210nm时,A-2R过小,会导致制备困难、结构不稳定,考虑到吸收器性能、制造工艺和实际结构,确定R=190nm。
为了兼顾不同波长处的抗反射层3的性能,需要确定抗反射层3的厚度p,研究了抗反射层厚度p对吸收器吸收率的影响,选取p=111nm,158nm,165nm,172nm。从图6可以看出,在高吸收波长范围内出现多个吸收峰,在吸收峰处抗反射层显示高透射性。在500-700nm波长范围内,厚度p取值为111nm和172nm时,吸收器的吸收率低于p取值为158nm和165nm时吸收器的吸收率。在1400-2000nm波长范围内四个不同厚度的结构对应的吸收谱相似,且高吸收带宽范围没有发生变化。由于p的变化会影响到整个高吸收带宽范围,仅通过吸收谱无法确定最佳值。定义有效吸收为:
式中,a(λ)为吸收率关于波长的函数,S(λ)为太阳辐射光谱(AM1.5标准).
表1不同的抗反射层3厚度p下的有效吸收
综上所述,出于对吸收器性能、实际器件与制作工艺的综合考虑,确定该二维光子晶体结构吸收器的晶格常数A=480nm,空腔高度d=2200nm,空腔半径R=190nm,抗反射层3高度p=165nm。
本发明设计了以金属钨为基底材料,以四方晶格结构排列的圆形空腔构成二维光子结晶体结构,并且在圆形空腔中填充GaAs,具有抗反射层3的太阳能吸收器。在300-2500nm波长范围内有高达94.9%的有效吸收,高吸收带内吸收率最小值为82.9%,在700nm和2500nm波长处有接近100%的完美吸收率,吸收器具有全太阳光谱高吸收的能力。在入射仰角为50°的情况下,入射光为TE模时,入射光为TM模时仍有较高的吸收率,吸收器具有良好的偏振无关性和广角吸收能力。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的装置及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
Claims (6)
1.一种太阳能吸收器,其特征在于,包括:金属钨基底、二维光子晶体单元和抗反射层,所述二维光子晶体单元设置在所述金属钨基底之中和所述抗反射层之下,所述二维光子晶体单元的数量为多个,各所述二维光子晶体单元以相同尺寸按四方晶格结构排列,置于所述金属钨基底内部,各所述二维光子晶体单元均为半径为R的圆形空腔结构,各所述圆形空腔结构内部填充GaAs。
2.根据权利要求1所述的太阳能吸收器,其特征在于,所述二维光子晶体单元的晶格常数为480nm。
3.根据权利要求1所述的太阳能吸收器,其特征在于,所述二维光子晶体单元的空腔高度为2200nm。
4.根据权利要求1所述的太阳能吸收器,其特征在于,所述二维光子晶体单元的空腔半径为190nm。
5.根据权利要求1所述的太阳能吸收器,其特征在于,所述抗反射层厚度为165nm。
6.根据权利要求1所述的太阳能吸收器,其特征在于,所述金属钨基底的高度为2250nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011214580.6A CN112259616A (zh) | 2020-11-04 | 2020-11-04 | 一种太阳能吸收器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011214580.6A CN112259616A (zh) | 2020-11-04 | 2020-11-04 | 一种太阳能吸收器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112259616A true CN112259616A (zh) | 2021-01-22 |
Family
ID=74268047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011214580.6A Pending CN112259616A (zh) | 2020-11-04 | 2020-11-04 | 一种太阳能吸收器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112259616A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113009606A (zh) * | 2021-02-04 | 2021-06-22 | 江西师范大学 | 一种五层纳米材料超宽带完美吸收器及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040184129A1 (en) * | 2003-01-29 | 2004-09-23 | Solli Daniel Roy | Method and apparatus for polarization control with photonic crystals |
US20100091225A1 (en) * | 2008-10-10 | 2010-04-15 | Samsung Electronics Co., Ltd. | Photonic crystal optical filter, transmissive color filter, transflective color filter, and display apparatus using the color filters |
US20130199600A1 (en) * | 2011-11-23 | 2013-08-08 | Massachusetts Institute Of Technology | Articles, systems, and methods relating to thermal stability of nanostructured and/or microstructured materials |
CN103811590A (zh) * | 2014-02-17 | 2014-05-21 | 中国科学院半导体研究所 | 半导体薄膜太阳能电池前后表面的混合陷光结构制备方法 |
WO2018098459A1 (en) * | 2016-11-28 | 2018-05-31 | Massachusetts Institute Of Technology | Optical devices for efficient emission and/or absorption of electromagnetic radiation, and associated systems and methods |
CN108365029A (zh) * | 2018-04-19 | 2018-08-03 | 青岛大学 | 一种含有六边柱GaAs光子晶体吸收层的多层太阳能电池 |
CN110010709A (zh) * | 2019-04-16 | 2019-07-12 | 华侨大学 | 基于微纳米复合结构的薄膜太阳能电池 |
-
2020
- 2020-11-04 CN CN202011214580.6A patent/CN112259616A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040184129A1 (en) * | 2003-01-29 | 2004-09-23 | Solli Daniel Roy | Method and apparatus for polarization control with photonic crystals |
US20100091225A1 (en) * | 2008-10-10 | 2010-04-15 | Samsung Electronics Co., Ltd. | Photonic crystal optical filter, transmissive color filter, transflective color filter, and display apparatus using the color filters |
US20130199600A1 (en) * | 2011-11-23 | 2013-08-08 | Massachusetts Institute Of Technology | Articles, systems, and methods relating to thermal stability of nanostructured and/or microstructured materials |
CN103811590A (zh) * | 2014-02-17 | 2014-05-21 | 中国科学院半导体研究所 | 半导体薄膜太阳能电池前后表面的混合陷光结构制备方法 |
WO2018098459A1 (en) * | 2016-11-28 | 2018-05-31 | Massachusetts Institute Of Technology | Optical devices for efficient emission and/or absorption of electromagnetic radiation, and associated systems and methods |
CN108365029A (zh) * | 2018-04-19 | 2018-08-03 | 青岛大学 | 一种含有六边柱GaAs光子晶体吸收层的多层太阳能电池 |
CN110010709A (zh) * | 2019-04-16 | 2019-07-12 | 华侨大学 | 基于微纳米复合结构的薄膜太阳能电池 |
Non-Patent Citations (2)
Title |
---|
于洋: "基于有限元方法的二维光子带隙几何形状和参数优化", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 * |
黄爱琴等: "大带隙二维三角格子光子晶体结构参数的优化设计", 《光学技术》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113009606A (zh) * | 2021-02-04 | 2021-06-22 | 江西师范大学 | 一种五层纳米材料超宽带完美吸收器及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Optimized antireflection coatings for high-efficiency silicon solar cells | |
US9837953B2 (en) | Metallic dielectric photonic crystals and methods of fabrication | |
JP5089605B2 (ja) | 三重接合太陽電池のためのノッチフィルタ | |
Wu et al. | Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion | |
WO2011102956A2 (en) | Photonic crystal enhanced light trapping solar cell | |
Sprafke et al. | Light trapping concepts for photon management in solar cells | |
CN104553221B (zh) | 高性能光谱选择性吸波元件及太阳能热光伏系统 | |
CN112259616A (zh) | 一种太阳能吸收器 | |
JP5290597B2 (ja) | 集光型太陽電池モジュールに用いる反射鏡 | |
Wu et al. | Transparent spacecraft smart thermal control device based on VO 2 and hyperbolic metamaterials | |
CN111566817A (zh) | 针对光伏利用和热利用的多层光谱分离滤波器配置方法以及与所述方法相关联的滤波器和发电设备 | |
CN104022172A (zh) | 一种共振背反射肩并肩薄膜光伏电池结构 | |
CN109521505B (zh) | 一种光学吸收多层膜 | |
US20140060642A1 (en) | Light-reflecting grating structure for photovoltaic devices | |
Wang et al. | Design of broadband and wide-angle antireflection for solar cells | |
Zhan et al. | The reflectivity of 1D+ 2D PC back reflector in thin-film solar cell | |
CN103595344B (zh) | 一种共振背反射薄膜太阳能电池结构 | |
Zou et al. | Solar energy utilization with double-layer cascaded grating metamaterial | |
DIENG et al. | Optimization of silicon nitride antireflective nanostructures for silicon solar cells | |
Sahouane et al. | Influence Of SINx: H And SIOx Films On Optical And Electrical Properties Of Antireflective Coatings For Silicon Solar Cells | |
Liu et al. | Designing planar, ultra-thin, broad-band and material-versatile solar absorbers via bound-electron and exciton absorption | |
Rahman et al. | Performance enhancement of thin-film c-Si solar cell with group III-V material grating structures | |
Zeng et al. | New light trapping in thin film solar cells using textured photonic crystals | |
CN112904545A (zh) | 基于一维光子晶体全向反射镜的二次聚光器 | |
Ma et al. | Ultra-broadband metamaterial absorber from visible to long-wave infrared |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210122 |