CN112258457A - 一种全容积三维超声图像的多维特征提取方法 - Google Patents

一种全容积三维超声图像的多维特征提取方法 Download PDF

Info

Publication number
CN112258457A
CN112258457A CN202011040013.3A CN202011040013A CN112258457A CN 112258457 A CN112258457 A CN 112258457A CN 202011040013 A CN202011040013 A CN 202011040013A CN 112258457 A CN112258457 A CN 112258457A
Authority
CN
China
Prior art keywords
dimensional
domain
full
volume
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011040013.3A
Other languages
English (en)
Other versions
CN112258457B (zh
Inventor
庄树昕
丁万里
庄哲民
袁野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou University
Original Assignee
Shantou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou University filed Critical Shantou University
Priority to CN202011040013.3A priority Critical patent/CN112258457B/zh
Publication of CN112258457A publication Critical patent/CN112258457A/zh
Application granted granted Critical
Publication of CN112258457B publication Critical patent/CN112258457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • G06T2207/101363D ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明公开了一种全容积三维超声图像的多维特征提取方法,cc针对带标签的全容积三维超声图像的数据缺乏,导致的训练过拟合问题,通过无监督的方式训练CT、MR源域数据来得到三维自编码器,并利用其编码器部分获得3D‑CNN预训练模型,并由该模型的输出特征构成CT、MR的特征空间,基于自编码器方式,以无监督的训练方式进行全容积三维超声图像的多维特征提取,消除了带标签的全容积三维超声图像数据缺乏导致的训练过拟合问题,减少了训练3D‑CNN所需要的带标签的三维超声乳腺数据,提高提取到的图像特征信噪比,弱化了背景信息,凸显感兴趣区域及边缘细节。

Description

一种全容积三维超声图像的多维特征提取方法
技术领域
本发明涉及超声成像识别方法领域,具体涉及一种全容积三维超声图像的多维特征提取方法。
背景技术
全自动乳腺容积超声成像系统ABVUS(Automated Breast Volume UltrasoundSystem)作为一种新兴的超声技术,目前国际上只有德国西门子、美国通用和中国汕头市超声仪器研究所有限公司(SIUI)三家公司推出了自己的乳腺容积超声成像产品,相比手持超声而言,ABVUS图像是按固定轨迹扫描整个乳腺,可以获得乳腺的全容积3D图像。因此,三维卷积神经网络可以在三个正交方向上全面提取ABVUS乳腺的三维特征,因而包含更多的立体特征信息;同时,与超声造影(Contrast Enhanced Ultrasound,CEUS)及多普勒血流等相结合,则能够从不同角度更好地获取病灶感兴趣区域的血流灌注情况和血管的血供特征,但是其对带标签的全容积三维超声图像的数据缺乏,导致的训练过拟合。
发明内容
本发明的目的在于提出一种全容积三维超声图像的多维特征提取方法,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
本发明通过无监督的方式训练CT、MR源域数据来得到一个三维自编码器,并利用其中的编码器部分获得3D-CNN预训练模型,并由该模型的输出特征构成CT、MR的特征空间,但因为源域的CT、MR三维图像和目标域的ABVUS三维图像在分布仍然具有较大差异,由于上述用于特征提取的3D-CNN模型包含大量的权重参数,所以需要大量带标签的数据进行训练,而获得足够的、带标签的医学数据需要很高的成本,尤其是三维超声乳腺数据。因此采用开放医学数据库如LIDC-NLST(The Lung Image Database Consortium,肺部CT数据集)、ADNI(Alzheimer's Disease Neuroimaging Initiative,脑部阿尔茨海默病MR三维图像数据集)、BraTS(Brain Tumor Segmentation,大脑MR三维图像数据集)以及汕头大学医学院附属医院提供的海量CT、MR数据,基于自编码器方式,以无监督的训练方式进行全容积三维超声图像的多维特征提取。
为了实现上述目的,本发明提供一种全容积三维超声图像的多维特征提取方法,所述方法包括以下步骤:
获取乳腺的全容积三维超声图像;
由神经网络预训练模型提取全容积三维超声图像的图像特征;
所述图像特征包括三维特征和二维特征,三维特征包括三维纹理特征;三维纹理特征包括血管的血供特征、血流灌注特征;所述二维特征包括斑块面积、斑块负荷、内腔等效直径、血管直径、血管紧密度和内腔紧密度;
构建域适应神经网络;
对域适应神经网络进行训练得到神经网络预训练模型;
进一步地,获取乳腺的全容积三维超声图像的方法为:通过德国西门子、美国通用和中国汕头市超声仪器研究所有限公司(SIUI)的全自动乳腺容积超声成像系统(Automated Breast Volume Ultrasound System,ABVUS)按固定轨迹扫描整个乳腺,可以获得乳腺的全容积三维超声图像;或者从开放医学数据库:LIDC-NLST(The Lung ImageDatabase Consortium,肺部CT数据集)、ADNI(Alzheimer's Disease NeuroimagingInitiative,脑部阿尔茨海默病MR三维图像数据集)、BraTS(Brain Tumor Segmentation,大脑MR三维图像数据集)以及汕头大学医学院附属医院提供的一种CT、MR数据源进行读取。
进一步地,所述域适应神经网络又称为域对抗神经网络,域适应神经网络至少包括生成器和标签预测器,用于实现源域数据和目标域数据之间建立一个特征映射,使源域数据特征能够迁移到目标域数据特征空间;以3D-CNN作为生成器,用来生成源域数据和目标域数据的特征,将目标域数据的特征输出到由CapsGNN构成的标签预测器中分辨出目标域数据的类别;并且通过生成器的梯度反转层和全连接层构成的域判别器,对生成器生成的特征空间进行域判别,区分生成的特征来自源域或者目标域;整个生成对抗迁移过程主要由生成特征路径和域判别路径构成,所述源域数据为CT或MR数据,所述目标域数据为全容积三维超声图像数据,所述3D-CNN为3D卷积神经网络,所述CapsGNN为胶囊神经网络。
进一步地,在生成特征路径中,域适应神经网络是通过优化以下目标函数,来更新3D-CNN(生成器)和胶囊神经网络(CapsGNN)(标签预测器)两部分的权重参数H(W,b,V,c):
Figure BDA0002706361720000021
其中,W和b分别表示神经元的权重参数和偏置参数,V代表标签预测器输出向量参数,c为softmax函数中的类别总数,
Figure BDA0002706361720000022
表示第i个样本的标签预测损失,n为样本数量;R(W,b)是一个可选的正则化器,λ为正则化参数,
Figure BDA0002706361720000031
的含义为取式
Figure BDA0002706361720000032
最小时W、b、V、c的值。
进一步地,在域判别路径中,用ABVUS组成的目标域数据和CT、MR组成的源域数据训练生成器和域判别器,优化如下目标函数以更新3D-CNN和域判别器的权重参数G(W,b,u,z):
Figure BDA0002706361720000033
其中,W,b分别表示神经元的权重参数,u代表域判别器输出向量参数,z为softmax函数中的类别总数,
Figure BDA0002706361720000034
表示第i个样本的域判别损失,n为源域数据样本数量,n′为目标域数据样本数量,一共有N个样本,N为样本的总量,
Figure BDA0002706361720000035
的含义为取式
Figure BDA0002706361720000036
为最大时u、z的值。通过上述生成对抗过程,完成网络的权重参数更新,当域适应神经网络性能达到饱和后,源域数据特征将迁移到目标域特征空间。
此时,完成了特征知识迁移的3D-CNN将可以用于提取ABVUS乳腺的三维特征。
进一步地,所述对域适应神经网络进行训练得到神经网络预训练模型的方法包括以下步骤:采用开放医学数据库:LIDC-NLST(The Lung Image Database Consortium,肺部CT数据集)、ADNI(Alzheimer's Disease Neuroimaging Initiative,脑部阿尔茨海默病MR三维图像数据集)、BraTS(Brain Tumor Segmentation,大脑MR三维图像数据集)以及汕头大学医学院附属医院提供的一种海量CT或MR数据集,通过基于自编码器方式以无监督的训练方式对域适应神经网络进行训练从而获得预训练模型。
进一步地,所述预训练模型的构建由编码器和解码器两部分组成,编码器用于提取三维感兴趣区域图像的特征,而解码器则基于编码器输出的特征,还原三维图像;为了让自编码器学习到ABVUS三维图像的边缘、形状、纹理和上下文特征,对输入的全容积三维超声图像数据依次进行双边滤波、非线性化和模糊增强处理。其目的是提高信噪比,弱化了背景信息,凸显感兴趣区域及边缘细节,编码器与解码器采用对称的形式设计,表征如下:f:Φ→Ψ,g:Ψ→Θ,
Figure BDA0002706361720000041
其中,给定输入空间X∈Φ,特征空间Y∈Ψ,输出空间Z∈Θ,编码器完成求解Φ到Ψ的映射f,→符号意义为映射,解码器完成求解Ψ到Θ的映射g,自编码器需要使输出空间Θ尽可能与输入空间Φ相近。自编码器训练完成后,我们取出其中的编码器部分作为三维卷积神经网络的预训练模型,
Figure BDA0002706361720000042
的含义为式子||X-g[f(X)]||2达到最小值时的f,g的取值。
本发明的有益效果为:本发明提供一种全容积三维超声图像的多维特征提取方法,消除了带标签的ABVUS三维图像(全容积三维超声图像)数据缺乏导致的训练过拟合问题,减少了训练3D-CNN所需要的带标签的三维超声乳腺数据,提高提取到的图像特征信噪比,弱化了背景信息,凸显感兴趣区域及边缘细节。
附图说明
通过对结合附图所示出的实施方式进行详细说明,本发明的上述以及其他特征将更加明显,本发明附图中相同的参考标号表示相同或相似的元素,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,在附图中:
图1为对全容积三维超声图像进行特征提取的流程图;
图2为获取神经网络预训练模型的流程图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明提出一种全容积三维超声图像的多维特征提取方法,利用多个力传感器,在刚体节段模型测力试验中可以准确获得各部分的风荷载,可以保证刚体构件各部分风荷载均在安全范围内,方法具体包括以下步骤:
如图1所示,图1为对全容积三维超声图像进行特征提取的流程图;
获取乳腺的全容积三维超声图像;
由神经网络预训练模型提取全容积三维超声图像的图像特征;
所述图像特征包括三维特征和二维特征,三维特征包括三维纹理特征;三维纹理特征包括血管的血供特征、血流灌注特征;所述二维特征包括斑块面积、斑块负荷、内腔等效直径、血管直径、血管紧密度和内腔紧密度;
如图2所示,图2为获取神经网络预训练模型的流程图;
构建域适应神经网络;
对域适应神经网络进行训练得到神经网络预训练模型;
进一步地,获取乳腺的全容积三维超声图像的方法为:通过德国西门子、美国通用和中国汕头市超声仪器研究所有限公司(SIUI)的全自动乳腺容积超声成像系统(Automated Breast Volume Ultrasound System,ABVUS)按固定轨迹扫描整个乳腺,可以获得乳腺的全容积三维超声图像;或者从开放医学数据库:LIDC-NLST(The Lung ImageDatabase Consortium,肺部CT数据集)、ADNI(Alzheimer's Disease NeuroimagingInitiative,脑部阿尔茨海默病MR三维图像数据集)、BraTS(Brain Tumor Segmentation,大脑MR三维图像数据集)以及汕头大学医学院附属医院提供的一种CT、MR数据源进行读取。
进一步地,所述域适应神经网络又称为域对抗神经网络,域适应神经网络至少包括生成器和标签预测器,用于实现源域数据和目标域数据之间建立一个特征映射,使源域数据特征能够迁移到目标域数据特征空间;以3D-CNN作为生成器,用来生成源域数据和目标域数据的特征,将目标域数据的特征输出到由CapsGNN构成的标签预测器中分辨出目标域数据的类别;并且通过生成器的梯度反转层和全连接层构成的域判别器,对生成器生成的特征空间进行域判别,区分生成的特征来自源域或者目标域;整个生成对抗迁移过程主要由生成特征路径和域判别路径构成,所述源域数据为CT或MR数据,所述目标域数据为全容积三维超声图像数据,所述3D-CNN为3D卷积神经网络,所述CapsGNN为胶囊神经网络。
进一步地,在生成特征路径中,域适应神经网络是通过优化以下目标函数,来更新3D-CNN(生成器)和胶囊神经网络(CapsGNN)(标签预测器)两部分的权重参数H(W,b,V,c):
Figure BDA0002706361720000051
其中,W和b分别表示神经元的权重参数和偏置参数,V代表标签预测器输出向量参数,c为softmax函数中的类别总数,
Figure BDA0002706361720000052
表示第i个样本的标签预测损失,n为样本数量;R(W,b)是一个可选的正则化器,λ为正则化参数,
Figure BDA0002706361720000053
的含义为取式
Figure BDA0002706361720000054
最小时W、b、V、c的值,注:W、b也为变量。
进一步地,在域判别路径中,用ABVUS组成的目标域数据和CT、MR组成的源域数据训练生成器和域判别器,优化如下目标函数以更新3D-CNN和域判别器的权重参数G(W,b,u,z):
Figure BDA0002706361720000061
其中,W,b分别表示神经元的权重参数,u代表域判别器输出向量参数,z为softmax函数中的类别总数,
Figure BDA0002706361720000062
表示第i个样本的域判别损失,n为源域数据样本数量,n′为目标域数据样本数量,一共有N个样本,N为样本的总量,
Figure BDA0002706361720000063
的含义为取式
Figure BDA0002706361720000064
为最大时u、z的值。通过上述生成对抗过程,完成网络的权重参数更新,当域适应神经网络性能达到饱和后,源域数据特征将迁移到目标域特征空间。
此时,完成了特征知识迁移的3D-CNN将可以用于提取ABVUS乳腺的三维特征。
进一步地,在S200中,所述对域适应神经网络进行训练得到神经网络预训练模型的方法包括以下步骤:采用开放医学数据库:LIDC-NLST(The Lung Image DatabaseConsortium,肺部CT数据集)、ADNI(Alzheimer's Disease Neuroimaging Initiative,脑部阿尔茨海默病MR三维图像数据集)、BraTS(Brain Tumor Segmentation,大脑MR三维图像数据集)以及汕头大学医学院附属医院提供的一种海量CT或MR数据集,通过基于自编码器方式以无监督的训练方式对域适应神经网络进行训练从而获得预训练模型。
进一步地,所述预训练模型的构建由编码器和解码器两部分组成,编码器用于提取三维感兴趣区域图像的特征,而解码器则基于编码器输出的特征,还原三维图像;为了让自编码器学习到ABVUS三维图像的边缘、形状、纹理和上下文特征,对输入的全容积三维超声图像数据依次进行双边滤波、非线性化和模糊增强处理。其目的是提高信噪比,弱化了背景信息,凸显感兴趣区域及边缘细节,编码器与解码器采用对称的形式设计,表征如下:f:Φ→Ψ,g:Ψ→Θ,
Figure BDA0002706361720000065
其中,给定输入空间X∈Φ,特征空间Y∈Ψ,输出空间Z∈Θ,编码器完成求解Φ到Ψ的映射f,→符号意义为映射,解码器完成求解Ψ到Θ的映射g,自编码器需要使输出空间Θ尽可能与输入空间Φ相近。自编码器训练完成后,我们取出其中的编码器部分作为三维卷积神经网络的预训练模型,
Figure BDA0002706361720000066
的含义为式子||X-g[f(X)]||2达到最小值时的f,g的取值。
尽管本发明的描述已经相当详尽且特别对几个所述实施例进行了描述,但其并非旨在局限于任何这些细节或实施例或任何特殊实施例,从而有效地涵盖本发明的预定范围。此外,上文以发明人可预见的实施例对本发明进行描述,其目的是为了提供有用的描述,而那些目前尚未预见的对本发明的非实质性改动仍可代表本发明的等效改动。

Claims (10)

1.一种全容积三维超声图像的多维特征提取方法,其特征在于,所述方法包括以下步骤:
获取乳腺的全容积三维超声图像;
由神经网络预训练模型提取全容积三维超声图像的图像特征。
2.根据权利要求1所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,获取乳腺的全容积三维超声图像的方法为:通过全自动乳腺容积超声成像系统按固定轨迹扫描整个乳腺获得乳腺的全容积三维超声图像;或者从开放医学数据库:LIDC-NLST、ADNI或BraTS中的一种CT、MR数据源进行读取。
3.根据权利要求1所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,
所述图像特征包括三维特征和二维特征,三维特征包括三维纹理特征。
4.根据权利要求1所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,所述神经网络预训练模型通过以下方法得到,所述方法包括以下步骤:
构建域适应神经网络;
对域适应神经网络进行训练得到神经网络预训练模型。
5.根据权利要求4所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,所述域适应神经网络又称为域对抗神经网络,域适应神经网络至少包括生成器和标签预测器,用于实现源域数据和目标域数据之间建立一个特征映射,使源域数据特征能够迁移到目标域数据特征空间;以3D-CNN作为生成器,用来生成源域数据和目标域数据的特征,将目标域数据的特征输出到由CapsGNN构成的标签预测器中分辨出目标域数据的类别;并且通过生成器的梯度反转层和全连接层构成的域判别器,对生成器生成的特征空间进行域判别,区分生成的特征来自源域或者目标域;整个生成对抗迁移过程主要由生成特征路径和域判别路径构成,所述源域数据为CT或MR数据,所述目标域数据为全容积三维超声图像数据,所述3D-CNN为3D卷积神经网络,所述CapsGNN为胶囊神经网络。
6.根据权利要求5所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,所述生成特征路径为:域适应神经网络通过优化的目标函数H(W,b,V,c),来更新生成器和标签预测器两部分的权重参数:
Figure FDA0002706361710000011
其中,W和b分别表示神经元的权重参数和偏置参数,V代表标签预测器输出向量参数,c为softmax函数中的类别总数,
Figure FDA0002706361710000021
表示第i个样本的标签预测损失,n为样本数量;R(W,b)是可选的正则化器,λ为正则化参数,
Figure FDA0002706361710000022
的含义为取式
Figure FDA0002706361710000023
为最小时W、b、V、c的值。
7.根据权利要求5所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,所述域判别路径为:用全容积三维超声图像数据组成的目标域数据和CT或MR数据组成的源域数据训练生成器和域判别器,通过优化的目标函数以更新3D-CNN和域判别器的权重参数G(W,b,u,z):
Figure FDA0002706361710000024
其中,W,b分别表示神经元的权重参数,u代表域判别器输出向量参数,z为softmax函数中的类别总数,
Figure FDA0002706361710000025
表示第i个样本的域判别损失,n为源域数据样本数量,n′为目标域数据样本数量,N为样本的总量。
8.根据权利要求5所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,所述对域适应神经网络进行训练得到神经网络预训练模型的方法包括以下步骤:采用开放医学数据库:LIDC-NLST、ADNI、BraTS提供的一种CT或MR数据集,通过基于自编码器方式以无监督的训练方式对域适应神经网络进行训练从而获得预训练模型。
9.根据权利要求4所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,所述预训练模型由编码器和解码器两部分组成,编码器用于提取三维感兴趣区域图像的特征,而解码器则基于编码器输出的特征,还原三维图像;对输入的全容积三维超声图像数据依次进行双边滤波、非线性化和模糊增强处理。
10.根据权利要求9所述的一种全容积三维超声图像的多维特征提取方法,其特征在于,编码器与解码器的表征如下:f:Φ→Ψ,g:Ψ→Θ,
Figure FDA0002706361710000026
其中,给定输入空间X∈Φ,特征空间Y∈Ψ,输出空间Z∈Θ,编码器完成求解Φ到Ψ的映射f,→符号意义为映射,解码器完成求解Ψ到Θ的映射g;自编码器训练完成后,取出其中的编码器部分作为三维卷积神经网络的预训练模型,
Figure FDA0002706361710000027
的含义为式子||X-g[f(X)]||2达到最小值时的f,g的取值。
CN202011040013.3A 2020-09-28 2020-09-28 一种全容积三维超声图像的多维特征提取方法 Active CN112258457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011040013.3A CN112258457B (zh) 2020-09-28 2020-09-28 一种全容积三维超声图像的多维特征提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011040013.3A CN112258457B (zh) 2020-09-28 2020-09-28 一种全容积三维超声图像的多维特征提取方法

Publications (2)

Publication Number Publication Date
CN112258457A true CN112258457A (zh) 2021-01-22
CN112258457B CN112258457B (zh) 2023-09-05

Family

ID=74234196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011040013.3A Active CN112258457B (zh) 2020-09-28 2020-09-28 一种全容积三维超声图像的多维特征提取方法

Country Status (1)

Country Link
CN (1) CN112258457B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403201A (zh) * 2017-08-11 2017-11-28 强深智能医疗科技(昆山)有限公司 肿瘤放射治疗靶区和危及器官智能化、自动化勾画方法
US20190015059A1 (en) * 2017-07-17 2019-01-17 Siemens Healthcare Gmbh Semantic segmentation for cancer detection in digital breast tomosynthesis
CN109410167A (zh) * 2018-08-31 2019-03-01 深圳大学 一种3d乳腺图像的分析方法及相关产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190015059A1 (en) * 2017-07-17 2019-01-17 Siemens Healthcare Gmbh Semantic segmentation for cancer detection in digital breast tomosynthesis
CN107403201A (zh) * 2017-08-11 2017-11-28 强深智能医疗科技(昆山)有限公司 肿瘤放射治疗靶区和危及器官智能化、自动化勾画方法
CN109410167A (zh) * 2018-08-31 2019-03-01 深圳大学 一种3d乳腺图像的分析方法及相关产品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHEMIN ZHUANG等: "Tumor Classification in Automated Breast Ultrasound(ABUS) based on a modified extracting feature network", 《COMPUTERIZED MEDICAL IMAGING AND GRAPHICS:THE OFFICIAL JOURNAL OF THE COMPUTERIZED MEDICAL IMAGING SOCIETY》, pages 1 - 9 *
丁万里: "基于深度学习的ABUS序列图像的肿瘤良恶性判别", 《中国优秀硕士学位论文全文数据库医药卫生科技辑》, pages 060 - 51 *
孔小函等: "基于卷积神经网络和多信息融合的三维乳腺超声分类方法", 《中国生物医学工程学报》, pages 1 *
庄哲民;姚伟克;杨金耀;李芬兰;袁野;: "基于自适应阈值的curvelet医学超声图像去噪算法", 中国医疗器械杂志, no. 06, pages 14 - 17 *

Also Published As

Publication number Publication date
CN112258457B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN112819076B (zh) 基于深度迁移学习的医学图像分类模型的训练方法及装置
CN106056595B (zh) 基于深度卷积神经网络自动识别甲状腺结节良恶性的辅助诊断系统
Biffi et al. Explainable anatomical shape analysis through deep hierarchical generative models
CN107993221B (zh) 心血管光学相干断层oct图像易损斑块自动识别方法
Le Goualher et al. Modeling cortical sulci with active ribbons
Nigri et al. Explainable deep CNNs for MRI-based diagnosis of Alzheimer’s disease
CN112150428A (zh) 一种基于深度学习的医学图像分割方法
CN111047594A (zh) 肿瘤mri弱监督学习分析建模方法及其模型
Hu et al. Brain MRI-based 3D convolutional neural networks for classification of schizophrenia and controls
CN114693933A (zh) 基于生成对抗网络和多尺度特征融合的医学影像分割装置
Wu et al. A supervoxel classification based method for multi-organ segmentation from abdominal ct images
Song et al. Hybrid deep autoencoder with Curvature Gaussian for detection of various types of cells in bone marrow trephine biopsy images
Rachmatullah et al. Convolutional neural network for semantic segmentation of fetal echocardiography based on four-chamber view
CN117218453B (zh) 一种不完备多模态医学影像学习方法
Naval Marimont et al. Implicit field learning for unsupervised anomaly detection in medical images
CN113159223A (zh) 一种基于自监督学习的颈动脉超声图像识别方法
Rela et al. Performance analysis of liver tumor classification using machine learning algorithms
CN116468655A (zh) 基于胎儿磁共振成像的脑发育图谱与影像处理系统
Meng et al. Representation disentanglement for multi-task learning with application to fetal ultrasound
Mohammed et al. Digital medical image segmentation using fuzzy C-means clustering
CN112258457B (zh) 一种全容积三维超声图像的多维特征提取方法
Abid et al. Detection of lungs cancer through computed tomographic images using deep learning
Mortazi et al. Weakly supervised segmentation by a deep geodesic prior
CN113902738A (zh) 一种心脏mri分割方法及系统
Weninger et al. Diffusion MRI specific pretraining by self-supervision on an auxiliary dataset

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant