CN112254808B - 一种利用梯度变化的变压器运行状态振声检测方法和系统 - Google Patents

一种利用梯度变化的变压器运行状态振声检测方法和系统 Download PDF

Info

Publication number
CN112254808B
CN112254808B CN202011206614.7A CN202011206614A CN112254808B CN 112254808 B CN112254808 B CN 112254808B CN 202011206614 A CN202011206614 A CN 202011206614A CN 112254808 B CN112254808 B CN 112254808B
Authority
CN
China
Prior art keywords
matrix
cyclic delay
row
column
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011206614.7A
Other languages
English (en)
Other versions
CN112254808A (zh
Inventor
翟明岳
杨雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202011206614.7A priority Critical patent/CN112254808B/zh
Publication of CN112254808A publication Critical patent/CN112254808A/zh
Application granted granted Critical
Publication of CN112254808B publication Critical patent/CN112254808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques

Abstract

本发明的实施例公开一种利用梯度变化的变压器运行状态振声检测方法和系统,所述方法包括:步骤101获取按时间顺序采集的信号序列S;步骤102生成循环延迟矩阵;步骤103生成N个窗口循环延迟子矩阵;步骤104对N个窗口循环延迟子矩阵进行滤波;步骤105求取N个窗口梯度变化值;步骤106求取状态判断阈值;步骤107判断变压器运行状态。

Description

一种利用梯度变化的变压器运行状态振声检测方法和系统
技术领域
本发明涉及电力领域,特别是涉及一种变压器运行状态振声检测方法及系统。
背景技术
随着智能电网的高速发展,电力设备安全稳定运行显得尤其重要。目前,对超高压及以上电压等级的电力设备开展运行状态检测,尤其是对异常状态的检测显得愈加重要和迫切。电力变压器作为电力系统的重要组成部分,是变电站中最重要的电气设备之一,其可靠运行关系到电网的安全。
变压器运行状态检测的基本原理是提取变压器运行中的各个特征量,分析、辨识并跟踪特征量以此监测变压器的异常运行状态。当前变压器运行状态的常用检测方法中,包括检测局部放电的脉冲电流法和超声波检测法、检测绕组变形的频率响应法以及检测机械及电气故障的振动检测法等。这些检测方法主要检测变压器绝缘状况及机械结构状况,其中以变压器振动信号(振声)的检测最为全面,对于大部分变压器故障及异常状态均能有所反应。
虽然变压器振声检测方法在变压器运行状态监测中有着广泛的应用,且技术相对成熟,但是由于振声检测方法利用了变压器发出的振动信号,很容易受到环境噪声的影响,所以此方法在实际工作环境中应用时常常得不到令人满意的结果。
发明内容
如前所述,变压器振声检测方法在变压器运行状态监测中有着广泛的应用,且技术相对成熟,但是由于振声检测方法利用了变压器发出的振动信号,很容易受到环境噪声的影响,所以此方法在实际工作环境中应用时常常得不到令人满意的结果。
本发明的目的是提供一种利用梯度变化的变压器运行状态振声检测方法和系统,所提出的方法利用了不同运行状态下变压器振声信号差值与背景噪声差值在梯度变化方面的差异,提高了状态监测的性能。所提出的方法具有较好的鲁棒性,计算也较为简单。
为实现上述目的,本发明提供了如下方案:
一种利用梯度变化的变压器运行状态振声检测方法,包括:
步骤101获取按时间顺序采集的信号序列S;
步骤102生成循环延迟矩阵,具体为:循环延迟矩阵记为D,其第i行第j列元素记为dij,所用求取公式为:
Figure BDA0002757280390000011
其中:
Figure BDA0002757280390000012
为信号序列S的第|i+j|N个元素,
|i+j|N表示以N为模对i+j取余数,
N为信号序列S的长度,
i=1,2,···,N为行序号,
j=1,2,···,N为列序号;
步骤103生成N个窗口循环延迟子矩阵,具体为:第K个窗口循环延迟子矩阵记为GK,所用求取公式为:
Figure BDA0002757280390000021
其中:
dK-1,K-1:所述循环延迟矩阵D的第K-1行第K-1列元素
dK,K-1:所述循环延迟矩阵D的第K行第K-1列元素
dK+1,K-1:所述循环延迟矩阵D的第K+1行第K-1列元素
dK-1,K+1:所述循环延迟矩阵D的第K-1行第K+1列元素
dK,K+1:所述循环延迟矩阵D的第K行第K+1列元素
dK+1,K+1:所述循环延迟矩阵D的第K+1行第K+1列元素
dK-1,K:所述循环延迟矩阵D的第K-1行第K列元素
dK+1,K:所述循环延迟矩阵D的第K+1行第K列元素
dK,K:所述循环延迟矩阵D的第K行第K列元素
如果K-1<1,则K-1置为K
如果K+1>N,则K+1置为N;
步骤104对N个窗口循环延迟子矩阵进行滤波,具体为:对第K个窗口循环延迟子矩阵GK进行滤波,所用滤波公式为:
Figure BDA0002757280390000022
其中:
yK为噪声滤除后的第K个数据,
Figure BDA0002757280390000023
为第K个窗口循环延迟子矩阵GK的第i行第j列元素,
hi,j为滤波矩阵H第i行第j列元素,
Figure BDA0002757280390000024
为滤波矩阵,
σ为信号序列S的均方差;
步骤105求取N个窗口梯度变化值,具体为:第K个窗口梯度变化值记为HK,所用求取公式为:
HK=||YG||F
其中:
Figure BDA0002757280390000031
循环矩阵
Figure BDA0002757280390000032
梯度矩阵
||YG||F表示矩阵YG的Frobenus范数;
步骤106求取状态判断阈值,具体为:状态判断阈值记为ε0,所用求取公式为:
Figure BDA0002757280390000033
步骤107判断变压器运行状态,具体为:如果第K个窗口的梯度变化值HK满足判断条件|HK|≥ε0,则在所述信号序列S的第K点处,变压器处于非正常运行状态;否则,变压器处于正常运行状态。
一种利用梯度变化的变压器运行状态振声检测系统,包括:
模块201获取按时间顺序采集的信号序列S;
模块202生成循环延迟矩阵,具体为:循环延迟矩阵记为D,其第i行第j列元素记为dij,所用求取公式为:
Figure BDA0002757280390000034
其中:
Figure BDA0002757280390000035
为信号序列S的第|i+j|N个元素,
|i+j|N表示以N为模对i+j取余数,
N为信号序列S的长度,
i=1,2,···,N为行序号,
j=1,2,···,N为列序号;
模块203生成N个窗口循环延迟子矩阵,具体为:第K个窗口循环延迟子矩阵记为GK,所用求取公式为:
Figure BDA0002757280390000041
其中:
dK-1,K-1:所述循环延迟矩阵D的第K-1行第K-1列元素
dK,K-1:所述循环延迟矩阵D的第K行第K-1列元素
dK+1,K-1:所述循环延迟矩阵D的第K+1行第K-1列元素
dK-1,K+1:所述循环延迟矩阵D的第K-1行第K+1列元素
dK,K+1:所述循环延迟矩阵D的第K行第K+1列元素
dK+1,K+1:所述循环延迟矩阵D的第K+1行第K+1列元素
dK-1,K:所述循环延迟矩阵D的第K-1行第K列元素
dK+1,K:所述循环延迟矩阵D的第K+1行第K列元素
dK,K:所述循环延迟矩阵D的第K行第K列元素
如果K-1<1,则K-1置为K
如果K+1>N,则K+1置为N;
模块204对N个窗口循环延迟子矩阵进行滤波,具体为:对第K个窗口循环延迟子矩阵GK进行滤波,所用滤波公式为:
Figure BDA0002757280390000042
其中:
yK为噪声滤除后的第K个数据,
Figure BDA0002757280390000043
为第K个窗口循环延迟子矩阵GK的第i行第j列元素,
hi,j为滤波矩阵H第i行第j列元素,
Figure BDA0002757280390000044
为滤波矩阵,
σ为信号序列S的均方差;
模块205求取N个窗口梯度变化值,具体为:第K个窗口梯度变化值记为HK,所用求取公式为:
HK=||YG||F
其中:
Figure BDA0002757280390000051
循环矩阵
Figure BDA0002757280390000052
梯度矩阵
||YG||F表示矩阵YG的Frobenus范数;
模块206求取状态判断阈值,具体为:状态判断阈值记为ε0,所用求取公式为:
Figure BDA0002757280390000053
模块207判断变压器运行状态,具体为:如果第K个窗口的梯度变化值HK满足判断条件|HK|≥ε0,则在所述信号序列S的第K点处,变压器处于非正常运行状态;否则,变压器处于正常运行状态。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
如前所述,变压器振声检测方法在变压器运行状态监测中有着广泛的应用,且技术相对成熟,但是由于振声检测方法利用了变压器发出的振动信号,很容易受到环境噪声的影响,所以此方法在实际工作环境中应用时常常得不到令人满意的结果。
本发明的目的是提供一种利用梯度变化的变压器运行状态振声检测方法和系统,所提出的方法利用了不同运行状态下变压器振声信号差值与背景噪声差值在梯度变化方面的差异,提高了状态监测的性能。所提出的方法具有较好的鲁棒性,计算也较为简单。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的方法流程示意图;
图2为本发明的系统流程示意图;
图3为本发明的具体实施案例流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1一种利用梯度变化的变压器运行状态振声检测方法的流程示意图
图1为本发明一种利用梯度变化的变压器运行状态振声检测方法的流程示意图。如图1所示,所述的一种利用梯度变化的变压器运行状态振声检测方法具体包括以下步骤:
步骤101获取按时间顺序采集的信号序列S;
步骤102生成循环延迟矩阵,具体为:循环延迟矩阵记为D,其第i行第j列元素记为dij,所用求取公式为:
Figure BDA0002757280390000061
其中:
Figure BDA0002757280390000062
为信号序列S的第|i+j|N个元素,
|i+j|N表示以N为模对i+j取余数,
N为信号序列S的长度,
i=1,2,···,N为行序号,
j=1,2,···,N为列序号;
步骤103生成N个窗口循环延迟子矩阵,具体为:第K个窗口循环延迟子矩阵记为GK,所用求取公式为:
Figure BDA0002757280390000063
其中:
dK-1,K-1:所述循环延迟矩阵D的第K-1行第K-1列元素
dK,K-1:所述循环延迟矩阵D的第K行第K-1列元素
dK+1,K-1:所述循环延迟矩阵D的第K+1行第K-1列元素
dK-1,K+1:所述循环延迟矩阵D的第K-1行第K+1列元素
dK,K+1:所述循环延迟矩阵D的第K行第K+1列元素
dK+1,K+1:所述循环延迟矩阵D的第K+1行第K+1列元素
dK-1,K:所述循环延迟矩阵D的第K-1行第K列元素
dK+1,K:所述循环延迟矩阵D的第K+1行第K列元素
dK,K:所述循环延迟矩阵D的第K行第K列元素
如果K-1<1,则K-1置为K
如果K+1>N,则K+1置为N;
步骤104对N个窗口循环延迟子矩阵进行滤波,具体为:对第K个窗口循环延迟子矩阵GK进行滤波,所用滤波公式为:
Figure BDA0002757280390000071
其中:
yK为噪声滤除后的第K个数据,
Figure BDA0002757280390000072
为第K个窗口循环延迟子矩阵GK的第i行第j列元素,
hi,j为滤波矩阵H第i行第j列元素,
Figure BDA0002757280390000073
为滤波矩阵,
σ为信号序列S的均方差;
步骤105求取N个窗口梯度变化值,具体为:第K个窗口梯度变化值记为HK,所用求取公式为:
HK=||YG||F
其中:
Figure BDA0002757280390000074
循环矩阵
Figure BDA0002757280390000075
梯度矩阵
||YG||F表示矩阵YG的Frobenus范数;
步骤106求取状态判断阈值,具体为:状态判断阈值记为ε0,所用求取公式为:
Figure BDA0002757280390000076
步骤107判断变压器运行状态,具体为:如果第K个窗口的梯度变化值HK满足判断条件|HK|≥ε0,则在所述信号序列S的第K点处,变压器处于非正常运行状态;否则,变压器处于正常运行状态。
图2一种利用梯度变化的变压器运行状态振声检测系统的结构意图
图2为本发明一种利用梯度变化的变压器运行状态振声检测系统的结构示意图。如图2所示,所述一种利用梯度变化的变压器运行状态振声检测系统包括以下结构:
模块201获取按时间顺序采集的信号序列S;
模块202生成循环延迟矩阵,具体为:循环延迟矩阵记为D,其第i行第j列元素记为dij,所用求取公式为:
Figure BDA0002757280390000081
其中:
Figure BDA0002757280390000082
为信号序列S的第|i+j|N个元素,
|i+j|N表示以N为模对i+j取余数,
N为信号序列S的长度,
i=1,2,···,N为行序号,
j=1,2,···,N为列序号;
模块203生成N个窗口循环延迟子矩阵,具体为:第K个窗口循环延迟子矩阵记为GK,所用求取公式为:
Figure BDA0002757280390000083
其中:
dK-1,K-1:所述循环延迟矩阵D的第K-1行第K-1列元素
dK,K-1:所述循环延迟矩阵D的第K行第K-1列元素
dK+1,K-1:所述循环延迟矩阵D的第K+1行第K-1列元素
dK-1,K+1:所述循环延迟矩阵D的第K-1行第K+1列元素
dK,K+1:所述循环延迟矩阵D的第K行第K+1列元素
dK+1,K+1:所述循环延迟矩阵D的第K+1行第K+1列元素
dK-1,K:所述循环延迟矩阵D的第K-1行第K列元素
dK+1,K:所述循环延迟矩阵D的第K+1行第K列元素
dK,K:所述循环延迟矩阵D的第K行第K列元素
如果K-1<1,则K-1置为K
如果K+1>N,则K+1置为N;
模块204对N个窗口循环延迟子矩阵进行滤波,具体为:对第K个窗口循环延迟子矩阵GK进行滤波,所用滤波公式为:
Figure BDA0002757280390000091
其中:
yK为噪声滤除后的第K个数据,
Figure BDA0002757280390000092
为第K个窗口循环延迟子矩阵GK的第i行第j列元素,
hi,j为滤波矩阵H第i行第j列元素,
Figure BDA0002757280390000093
为滤波矩阵,
σ为信号序列S的均方差;
模块205求取N个窗口梯度变化值,具体为:第K个窗口梯度变化值记为HK,所用求取公式为:
HK=||YG||F
其中:
Figure BDA0002757280390000094
循环矩阵
Figure BDA0002757280390000095
梯度矩阵
||YG||F表示矩阵YG的Frobenus范数;
模块206求取状态判断阈值,具体为:状态判断阈值记为ε0,所用求取公式为:
Figure BDA0002757280390000096
模块207判断变压器运行状态,具体为:如果第K个窗口的梯度变化值HK满足判断条件|HK|≥ε0,则在所述信号序列S的第K点处,变压器处于非正常运行状态;否则,变压器处于正常运行状态。
下面提供一个具体实施案例,进一步说明本发明的方案
图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:
步骤301获取按时间顺序采集的信号序列S;
步骤302生成循环延迟矩阵,具体为:循环延迟矩阵记为D,其第i行第j列元素记为dij,所用求取公式为:
Figure BDA0002757280390000101
其中:
Figure BDA0002757280390000102
为信号序列S的第|i+j|N个元素,
|i+j|N表示以N为模对i+j取余数,
N为信号序列S的长度,
i=1,2,···,N为行序号,
j=1,2,···,N为列序号;
步骤303生成N个窗口循环延迟子矩阵,具体为:第K个窗口循环延迟子矩阵记为GK,所用求取公式为:
Figure BDA0002757280390000103
其中:
dK-1,K-1:所述循环延迟矩阵D的第K-1行第K-1列元素
dK,K-1:所述循环延迟矩阵D的第K行第K-1列元素
dK+1,K-1:所述循环延迟矩阵D的第K+1行第K-1列元素
dK-1,K+1:所述循环延迟矩阵D的第K-1行第K+1列元素
dK,K+1:所述循环延迟矩阵D的第K行第K+1列元素
dK+1,K+1:所述循环延迟矩阵D的第K+1行第K+1列元素
dK-1,K:所述循环延迟矩阵D的第K-1行第K列元素
dK+1,K:所述循环延迟矩阵D的第K+1行第K列元素
dK,K:所述循环延迟矩阵D的第K行第K列元素
如果K-1<1,则K-1置为K
如果K+1>N,则K+1置为N;
步骤304对N个窗口循环延迟子矩阵进行滤波,具体为:对第K个窗口循环延迟子矩阵GK进行滤波,所用滤波公式为:
Figure BDA0002757280390000111
其中:
yK为噪声滤除后的第K个数据,
Figure BDA0002757280390000112
为第K个窗口循环延迟子矩阵GK的第i行第j列元素,
hi,j为滤波矩阵H第i行第j列元素,
Figure BDA0002757280390000113
为滤波矩阵,
σ为信号序列S的均方差;
步骤305求取N个窗口梯度变化值,具体为:第K个窗口梯度变化值记为HK,所用求取公式为:
HK=||YG||F
其中:
Figure BDA0002757280390000114
循环矩阵
Figure BDA0002757280390000115
梯度矩阵
||YG||F表示矩阵YG的Frobenus范数;
步骤306求取状态判断阈值,具体为:状态判断阈值记为ε0,所用求取公式为:
Figure BDA0002757280390000116
步骤307判断变压器运行状态,具体为:如果第K个窗口的梯度变化值HK满足判断条件|HK|≥ε0,则在所述信号序列S的第K点处,变压器处于非正常运行状态;否则,变压器处于正常运行状态。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (2)

1.一种利用梯度变化的变压器运行状态振声检测方法,其特征在于,包括:
步骤101获取按时间顺序采集的信号序列S;
步骤102生成循环延迟矩阵,具体为:循环延迟矩阵记为D,其第i行第j列元素记为dij,所用求取公式为:
Figure FDA0003356341120000013
其中:
Figure FDA0003356341120000014
为信号序列S的第|i+j|N个元素,
|i+j|N表示以N为模对i+j取余数,
N为信号序列S的长度,
i=1,2,···,N为行序号,
j=1,2,···,N为列序号;
步骤103生成N个窗口循环延迟子矩阵,具体为:第K个窗口循环延迟子矩阵记为GK,所用求取公式为:
Figure FDA0003356341120000011
其中:
dK-1,K-1:所述循环延迟矩阵D的第K-1行第K-1列元素
dK,K-1:所述循环延迟矩阵D的第K行第K-1列元素
dK+1,K-1:所述循环延迟矩阵D的第K+1行第K-1列元素
dK-1,K+1:所述循环延迟矩阵D的第K-1行第K+1列元素
dK,K+1:所述循环延迟矩阵D的第K行第K+1列元素
dK+1,K+1:所述循环延迟矩阵D的第K+1行第K+1列元素
dK-1,K:所述循环延迟矩阵D的第K-1行第K列元素
dK+1,K:所述循环延迟矩阵D的第K+1行第K列元素
dK,K:所述循环延迟矩阵D的第K行第K列元素
如果K-1<1,则K-1置为K
如果K+1>N,则K+1置为N;
步骤104对N个窗口循环延迟子矩阵进行滤波,具体为:对第K个窗口循环延迟子矩阵GK进行滤波,所用滤波公式为:
Figure FDA0003356341120000012
其中:
yK为噪声滤除后的第K个数据,
Figure FDA0003356341120000021
为第K个窗口循环延迟子矩阵GK的第i行第j列元素,
hi,j为滤波矩阵H第i行第j列元素,
Figure FDA0003356341120000022
为滤波矩阵,
σ为信号序列S的均方差;
步骤105求取N个窗口梯度变化值,具体为:第K个窗口梯度变化值记为HK,所用求取公式为:
HK=||YG||F
其中:
Figure FDA0003356341120000023
循环矩阵
Figure FDA0003356341120000024
梯度矩阵
||YG||F表示矩阵YG的Frobenius范数;
步骤106求取状态判断阈值,具体为:状态判断阈值记为ε0,所用求取公式为:
Figure FDA0003356341120000025
步骤107判断变压器运行状态,具体为:如果第K个窗口的梯度变化值HK满足判断条件|HK|≥ε0,则在所述信号序列S的第K点处,变压器处于非正常运行状态;否则,变压器处于正常运行状态。
2.一种利用梯度变化的变压器运行状态振声检测系统,其特征在于,包括:
模块201获取按时间顺序采集的信号序列S;
模块202生成循环延迟矩阵,具体为:循环延迟矩阵记为D,其第i行第j列元素记为dij,所用求取公式为:
Figure FDA0003356341120000026
其中:
Figure FDA0003356341120000035
为信号序列S的第|i+j|N个元素,
|i+j|N表示以N为模对i+j取余数,
N为信号序列S的长度,
i=1,2,···,N为行序号,
j=1,2,···,N为列序号;
模块203生成N个窗口循环延迟子矩阵,具体为:第K个窗口循环延迟子矩阵记为GK,所用求取公式为:
Figure FDA0003356341120000031
其中:
dK-1,K-1:所述循环延迟矩阵D的第K-1行第K-1列元素
dK,K-1:所述循环延迟矩阵D的第K行第K-1列元素
dK+1,K-1:所述循环延迟矩阵D的第K+1行第K-1列元素
dK-1,K+1:所述循环延迟矩阵D的第K-1行第K+1列元素
dK,K+1:所述循环延迟矩阵D的第K行第K+1列元素
dK+1,K+1:所述循环延迟矩阵D的第K+1行第K+1列元素
dK-1,K:所述循环延迟矩阵D的第K-1行第K列元素
dK+1,K:所述循环延迟矩阵D的第K+1行第K列元素
dK,K:所述循环延迟矩阵D的第K行第K列元素
如果K-1<1,则K-1置为K
如果K+1>N,则K+1置为N;
模块204对N个窗口循环延迟子矩阵进行滤波,具体为:对第K个窗口循环延迟子矩阵GK进行滤波,所用滤波公式为:
Figure FDA0003356341120000032
其中:
yK为噪声滤除后的第K个数据,
Figure FDA0003356341120000033
为第K个窗口循环延迟子矩阵GK的第i行第j列元素,
hi,j为滤波矩阵H第i行第j列元素,
Figure FDA0003356341120000034
为滤波矩阵,
σ为信号序列S的均方差;
模块205求取N个窗口梯度变化值,具体为:第K个窗口梯度变化值记为HK,所用求取公式为:
HK=||YG||F
其中:
Figure FDA0003356341120000041
循环矩阵
Figure FDA0003356341120000042
梯度矩阵
||YG||F表示矩阵YG的Frobenius范数;
模块206求取状态判断阈值,具体为:状态判断阈值记为ε0,所用求取公式为:
Figure FDA0003356341120000043
模块207判断变压器运行状态,具体为:如果第K个窗口的梯度变化值HK满足判断条件|HK|≥ε0,则在所述信号序列S的第K点处,变压器处于非正常运行状态;否则,变压器处于正常运行状态。
CN202011206614.7A 2020-11-03 2020-11-03 一种利用梯度变化的变压器运行状态振声检测方法和系统 Active CN112254808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011206614.7A CN112254808B (zh) 2020-11-03 2020-11-03 一种利用梯度变化的变压器运行状态振声检测方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011206614.7A CN112254808B (zh) 2020-11-03 2020-11-03 一种利用梯度变化的变压器运行状态振声检测方法和系统

Publications (2)

Publication Number Publication Date
CN112254808A CN112254808A (zh) 2021-01-22
CN112254808B true CN112254808B (zh) 2021-12-31

Family

ID=74269124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011206614.7A Active CN112254808B (zh) 2020-11-03 2020-11-03 一种利用梯度变化的变压器运行状态振声检测方法和系统

Country Status (1)

Country Link
CN (1) CN112254808B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140033944A (ko) * 2012-09-11 2014-03-19 엘에스전선 주식회사 풍력용 변압기 감시 진단 시스템 및 방법
CN108489717A (zh) * 2018-01-25 2018-09-04 国网浙江省电力有限公司电力科学研究院 变压器有载分接开关机械状态监测方法及系统
CN110545086A (zh) * 2019-09-06 2019-12-06 广东石油化工学院 一种利用全局优化的变压器振声信号滤波方法和系统
CN110632477A (zh) * 2019-11-02 2019-12-31 广东石油化工学院 一种利用Hilbert空间因子的变压器运行状态振声检测方法和系统
CN111664934A (zh) * 2020-07-05 2020-09-15 广东石油化工学院 一种利用特征选择的变压器状态振声检测信号滤波方法和系统
CN111780867A (zh) * 2020-07-01 2020-10-16 广东石油化工学院 一种利用Frobenius模优化的变压器运行状态振声检测方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140033944A (ko) * 2012-09-11 2014-03-19 엘에스전선 주식회사 풍력용 변압기 감시 진단 시스템 및 방법
CN108489717A (zh) * 2018-01-25 2018-09-04 国网浙江省电力有限公司电力科学研究院 变压器有载分接开关机械状态监测方法及系统
CN110545086A (zh) * 2019-09-06 2019-12-06 广东石油化工学院 一种利用全局优化的变压器振声信号滤波方法和系统
CN110632477A (zh) * 2019-11-02 2019-12-31 广东石油化工学院 一种利用Hilbert空间因子的变压器运行状态振声检测方法和系统
CN111780867A (zh) * 2020-07-01 2020-10-16 广东石油化工学院 一种利用Frobenius模优化的变压器运行状态振声检测方法和系统
CN111664934A (zh) * 2020-07-05 2020-09-15 广东石油化工学院 一种利用特征选择的变压器状态振声检测信号滤波方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A New First Arrival Pickup Algorithm Based On Information Theory for the Seismic Signals;翟明岳;《Advances in Intelligent Systems Research》;20170930;218-223 *

Also Published As

Publication number Publication date
CN112254808A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
CN110703149B (zh) 一种利用字符间距的变压器运行状态振声检测方法和系统
CN111780867A (zh) 一种利用Frobenius模优化的变压器运行状态振声检测方法和系统
CN111665405A (zh) 一种利用稀疏度最小化的振声检测信号滤波方法和系统
CN111664934A (zh) 一种利用特征选择的变压器状态振声检测信号滤波方法和系统
CN111780868A (zh) 一种利用Jeffery差异量的变压器运行状态振声检测方法和系统
CN111664933A (zh) 一种利用静态矢量优化的振声检测信号滤波方法和系统
CN112254808B (zh) 一种利用梯度变化的变压器运行状态振声检测方法和系统
CN110545086A (zh) 一种利用全局优化的变压器振声信号滤波方法和系统
CN111561992A (zh) 一种利用b抽样的变压器运行状态振声检测方法和系统
CN110646691B (zh) 一种利用拉伸变换的变压器振声信号滤波方法和系统
CN110161363B (zh) 基于主频表征量的变压器运行状态振声检测方法和系统
CN110286289B (zh) 一种变压器振声检测信号滤波方法
CN110286287B (zh) 一种基于小波变换的变压器运行状态振声检测信号滤波方法和系统
CN110286291B (zh) 一种利用主成分的变压器运行状态振声检测方法和系统
CN111649819A (zh) 一种利用迭代软阈值的变压器状态振声检测信号滤波方法和系统
CN110514295B (zh) 一种利用svd分解的变压器运行状态振声检测信号滤波方法和系统
CN112307999B (zh) 一种利用蚁群优化的变压器运行状态振声检测方法和系统
CN112307998B (zh) 一种利用模式判决的变压器运行状态振声检测方法和系统
CN110702215B (zh) 一种利用回归树的变压器运行状态振声检测方法和系统
CN112307993B (zh) 一种利用局部相似性的振声检测信号滤波方法和系统
CN110837013A (zh) 一种利用稀疏字典表示的变压器状态振声检测信号重构方法和系统
CN110632477A (zh) 一种利用Hilbert空间因子的变压器运行状态振声检测方法和系统
CN112327084B (zh) 一种利用等距变换的变压器运行状态振声检测方法和系统
CN112417994B (zh) 一种利用正则化因子的振声检测信号滤波方法和系统
CN112179484A (zh) 一种利用均值漂移的变压器运行状态振声检测方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant