CN112243466A - 转化硫化合物的方法 - Google Patents

转化硫化合物的方法 Download PDF

Info

Publication number
CN112243466A
CN112243466A CN201980036269.6A CN201980036269A CN112243466A CN 112243466 A CN112243466 A CN 112243466A CN 201980036269 A CN201980036269 A CN 201980036269A CN 112243466 A CN112243466 A CN 112243466A
Authority
CN
China
Prior art keywords
anaerobic
compounds
cathode
compound
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980036269.6A
Other languages
English (en)
Other versions
CN112243466B (zh
Inventor
约翰内斯·伯纳德斯·玛丽亚·科洛科
玛戈·埃尔辛加
安妮米克·特海恩
西斯·扬·尼克·布斯曼
约翰内斯·怀拜尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PARKER Ltd
Original Assignee
PARKER Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PARKER Ltd filed Critical PARKER Ltd
Publication of CN112243466A publication Critical patent/CN112243466A/zh
Application granted granted Critical
Publication of CN112243466B publication Critical patent/CN112243466B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/18Hydrogen polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明涉及在厌氧条件下以及在包括产甲烷菌和适当地还有厌氧或兼性厌氧细菌的混合培养物存在的情况下,通过将电子从生物电化学电池的阴极直接或间接转移到硫化合物,将硫化合物转化为二硫化物的方法。硫化合物可以是如甲硫醇或乙硫醇之类的硫醇,或如二甲基二硫化物之类的多硫化物。

Description

转化硫化合物的方法
技术领域
本发明涉及转化硫化合物、特别是硫醇和二硫化物的方法。
背景技术
硫醇和二硫化物是可能存在于例如天然气、炼厂气体流(如燃料气)和液体流(例如LPG)中的化合物。由于腐蚀风险、气味和/或毒理学原因,需要去除这种有机硫化合物,特别是硫醇。
正如Bloemendaal G.,Kobussen S.,Scheel F.,Capture and Convert(捕获和转化),HydrocarbonEngineering,December 2008中报道的那样,从烃流中去除特别是硫醇是一项重大挑战。在这篇综述文章中,描述了从炼厂流和天然气中分离和转化硫醇的各种方法。在该文章所述的方法之一中,使用苛性碱溶液从气体中吸收硫醇,然后在由UOP开发的所谓的Merox方法中使用Merox催化剂将硫醇氧化为二硫化物油。这种方法的缺点在于它不但涉及许多步骤和化学消耗,而且形成必须进一步处理的二硫化物油。这种进一步的处理通常是加氢处理装置,其中二硫化物油被转化为H2S。这是将硫醇转化为H2S所需的复杂处理的一个例证。
Ellis,Joshua&Tramp,Cody&Sims,Ronald&Miller,Charles.(2012).Characterization of a Methanogenic Community within an Algal Fed AbaerobicDigester(藻类厌氧消化池中产甲烷菌群落的表征).ISRN microbiology.2012.753892描述了在厌氧消化过程中将甲硫醇还原为二硫化物和甲烷的方法。该方法的问题在于仅仅成功地还原了甲硫醇,并且降解速率受到限制,这在实际应用中会导致长的水力停留时间。
因此,需要一种能够以更简单的方式转化多种硫化合物、特别是多种硫醇的方法。
附图说明
图1:在厌氧条件下,通过将电子从生物电化学电池的阴极间接和直接转移到硫化合物,将甲硫醇(M-SH)转化为硫化物和甲烷的示意图。e-表示微生物;Mred/ox是氧化还原介体,可以将电荷从电极转移到反应物。
具体实施方式
本发明涉及在厌氧条件下以及在产甲烷菌存在的情况下,通过将电子从生物电化学电池的阴极直接或间接转移到硫化合物,将硫化合物转化为二硫化物的方法。另外,可能存在厌氧或兼性厌氧细菌。该方法比现有的转化硫化合物的方法简单得多。
在一个实施例中,该方法包括:a)用从厌氧生长的培养物中获得的微生物的混合培养物接种生物电化学电池,该混合培养物包括产甲烷菌;b)使微生物的混合培养物与有机硫化合物接触;c)允许微生物的混合培养物将有机硫化合物转化为二硫化物。
申请人发现,这种方法可以有效地将硫化合物转化为二硫化物,从而将有毒化合物转化为低毒化合物。使用根据本发明的方法,可以将有机硫化合物的含量降低到低于100ppm,优选低于50ppm,更优选低于20ppm或低于10ppm。
技术人员将理解,二硫化物(HS-)将与硫化物(S2-)和硫化氢(H2S)处于化学平衡。在占主导的pH值(介于约pH 8.5和约pH 10之间)下,超过80%的硫化物将以二硫化物(HS-)的形式存在。
二硫化物本身可以通过已知方法很容易地转化为元素硫,或作为富H2S气体排放。
硫化合物适当地是硫醇化合物,进一步被称为硫醇。硫醇化合物可以具有通式R-SH,其中R可以是烷基、芳基、芳基烷基或烷基芳基基团。烷基基团可以是C1至C4烷基基团。在典型的天然气或原油衍生的气体流中,主要的硫醇是甲硫醇、乙硫醇和丙硫醇。申请人发现该方法适合于转化乙硫醇和丙硫醇,已经发现使用现有技术的方法难以转化该化合物。因此,通过该方法转化的硫醇化合物适当地为乙硫醇,乙硫醇单独存在或以包括其他硫化合物的混合物的形式存在。
硫化合物也可以是聚有机多硫化物(POPS)。聚有机多硫化物可以是在较早提及的Merox方法中获得的二硫化物油。该方法为常规加氢处理步骤提供了更简单的替代方法。当通过根据本发明的方法转化硫醇时,聚有机多硫化物化合物也可以形成为中间化合物。然后,这种聚有机多硫化物化合物还将在生物电化学电池中转化为二硫化物。可能的聚有机多硫化物的示例是二甲基二硫化物、二乙基二硫化物、二甲基三硫化物和乙基甲基二硫化物。
该过程在也被称为BES的生物电化学电池中进行,该生物电化学电池包括存在于阳极室中的阳极和存在于阴极室中的阴极。将阳极和阴极浸入各自隔室的水溶液中。取决于阳极的生物电化学电池设计和阳极浸入其中的水溶液的组成,电化学电池可以产生从阴极流向阳极的电流。也可以通过在阳极和阴极之间施加电势差来形成这种电流。
阳极和阴极可以存在于相同的空间中,更具体地,可以存在于相同的容器中。优选地,阳极室通过半透膜与阴极室隔开。这种膜可以是用于将阳离子从阳极传输到阴极的离子选择膜。这种阳离子可以是以更高浓度存在的任何阳离子。阳离子的示例是H+和Na+。该膜也可以是用于将阴离子从阴极传输到阳极的离子选择膜。阴离子的示例是OH-或HCO3 -。该膜也可以是双极膜。
该生物电化学电池可以是单个电池或者是可以相对于彼此平行和/或串联布置的多个电池。
阳极的材料可以是任何导电材料。优选地,阳极设有所谓的混合金属涂层,以避免阳极材料溶解。这种阳极被称为形稳阳极(dimensionally stable anodes,DSA)。用于阳极的适当导电材料的示例是不锈钢、钛和碳基材料,或优选是石墨。在阳极处,电子可以通过以下反应转移到阳极:
2H2O→O2+4H++4e-
阴极的材料可以是石墨基或碳基(未催化的)或金属基的,例如不锈钢。经催化的阴极的示例是在导电载体(如钛)上的包含Pt、Ir或其他贵金属的混合金属氧化物涂层。可能的催化剂是Pt、Ir和Cu。
不希望受理论的束缚,据信在阴极处电子可以从阴极转移到产甲烷菌,产甲烷菌直接或者经由氢或其他氧化还原介体吸收电子,根据以下示例性反应1-4还原硫化合物:
CH3SH+2e-→CH4+S2- (1)
C2H5SH+2H++4e-→2CH4+S2- (2)
C3H7SH+4H++6e-→3CH4+S2- (3)
C2H6S2+2H++4e-→2CH4+2S2- (4)
甲硫醇为(1),乙硫醇为(2),丙硫醇为(3)以及二甲基二硫化物(DMDS)为(4)。硫化物(S2-)与二硫化物(HS-)处于化学平衡。
在从厌氧生长的培养物中获得的微生物的混合培养物存在的情况下进行在阴极处的反应,该混合培养物包括产甲烷菌。因此,在一个实施例中,该方法包括在厌氧条件下以及在产甲烷菌存在的情况下,通过将电子从生物电化学电池的阴极直接或间接转移到硫化合物,将硫化合物转化为二硫化物。
适当的产甲烷菌的示例是:布氏甲烷杆菌(Methanobacterium bryantii)、甲酸甲烷杆菌(Methanobacterium formicum)、嗜树甲烷短杆菌(Methanobrevibacterarboriphilicus)、哥氏甲烷短杆菌(Methanobrevibacter gottschalkii)、反刍甲烷短杆菌(Methanobrevibacter ruminantium)、史氏甲烷短杆菌(Methanobrevibactersmithii)、中华兴甲烷砾菌(Methanocalculus chunghsingensis)、布氏拟甲烷球菌(Methanococcoides burtonii)、杂色甲烷球菌(Methanococcus aeolicus)、德尔塔甲烷球菌(Methanococcus deltae)、詹氏甲烷球菌(Methanococcus jannaschii)、海沼甲烷球菌(Methanococcus maripaludis)、万尼氏甲烷球菌(Methanococcus vannielii)、凝乳酶甲烷粒菌(Methanocorpusculum labreanum)、布雷斯甲烷袋状菌(Methanoculleusbourgensis)、奥兰汤基产甲烷菌(Methanogenium olentangyi)、布尔日产甲烷菌(Methanogenium bourgense)、黑海甲烷袋状菌(Methanoculleus marisnigri)、泥游甲烷泡菌(Methanofollis liminatans)、卡里亚萨产甲烷菌(Methanogenium cariaci)、寒冷产甲烷菌(Methanogenium frigidum)、嗜器官产甲烷菌(Methanogenium organophilum)、沃夫氏产甲烷菌(Methanogenium wolfei)、活动甲烷微菌(Methanomicrobium mobile)、坎德勒氏甲烷嗜热菌(Methanopyrus kandleri)、布尼氏甲烷调控菌(Methanoregula boonei)、联合鬃毛甲烷菌(Methanosaeta concilii)、嗜热鬃毛甲烷菌(Methanosaetathermophila)、噬乙酸甲烷八叠球菌(Methanosarcina acetivorans)、巴氏甲烷八叠球菌(Methanosarcina barkeri)、梅氏甲烷八叠球菌(Methanosarcina mazei)、斯氏甲烷球形菌(Methanosphaera stadtmanae)、亨氏产甲烷螺菌(Methanospirillum hungatei)、德氏甲烷热杆菌(Methanothermobacter defluvii)、热自养甲烷热杆菌(Methanothermobacterthermautotrophicus)、热曲折甲烷热杆菌(Methanothermobacter thermoflexus)、沃夫氏甲烷热杆菌(Methanothermobacter wolfei)、苏根甲烷丝菌(Methanothrix soehngenii)、沼泽甲烷杆菌(Methanobacterium palustre)以及任何这些和/或其他产甲烷菌的组合。如果需要的话,产甲烷菌可以以富含产甲烷菌或甚至富含指定种类的产甲烷菌的纯化培养物来提供。
在一个实施例中,除产甲烷菌之外,还存在其他微生物,包括厌氧或兼性厌氧细菌。因此,在一个实施例中,该方法包括在厌氧条件下以及在50-90%(基于总16S rRNA分析)产甲烷菌和适当地还有厌氧或兼性厌氧细菌存在的情况下,通过将电子从生物电化学电池的阴极直接或间接转移到硫化合物,将硫化合物转化为二硫化物。厌氧微生物不需要氧气即可生长。兼性厌氧微生物能够在有氧和厌氧条件下生长。适当的厌氧或兼性厌氧细菌可以选自盐单胞菌科(Halomonadaceae)、梭菌科2(Clostridiaceae 2)、源洋菌科(Idiomarinaceae)、消化链球菌科(Peptostreptococcaceae)、优杆菌科(Eubacteriaceae)、红杆菌科(Rhodobacteraceae)、互养菌科(Synergistaceae)、ML635J-40水生类群、螺旋体科(Spirochaetaceae)、丹毒丝菌科(Erysipelotrichaceae)、节外硫红螺菌科(Ectothiorhodospiraceae)、热厌氧菌(Thermoanaerobacterales)科XIV中的一个或多个科。
混合培养物优选从厌氧系统(如厌氧生长的培养物)中获得。因此,混合培养物可以从以下生物反应器的污泥中获得:厌氧生物反应器,如厌氧发酵罐,例如用于厌氧链延长的厌氧发酵罐;厌氧消化反应器,例如升流式厌氧污泥床反应器(UASB);厌氧还原反应器,例如用于(硫代)硫酸盐还原的厌氧还原反应器;或厌氧资源回收反应器,例如用于亚硒酸盐还原的厌氧资源回收反应器。用于提供污泥的其他适当的生物反应器是膨胀颗粒污泥床(EGSB)、序批式反应器(SBR)、连续搅拌釜反应器(CSTR)或厌氧膜生物反应器(AnMBR)。在一个实施例中,混合培养物取自用高甲醇(~200mM)流进料的生物反应器,或取自城市废水处理厂的厌氧污泥。在本文中,术语污泥是指含有微生物的混合培养物的半固体絮状物或颗粒。
生物电化学电池的阴极将适当地与水溶液(阴极电解液)接触,该溶液将包括被转化的硫化合物。产甲烷菌以及适当地还有细菌可以作为浮游细胞和/或作为阴极表面上的生物膜存在于阴极电解液中。可以将烷醇(如甲醇)添加到阴极电解液中作为产甲烷菌的活化剂。温度的范围可以从刚好高于阴极电解液的凝固点的较低温度到高温。在环境温度下已经获得了良好的结果,这是本发明的优点之一。压力的范围可以从低于大气压到较高压力。如果上游或下游工艺不需要,则压力优选在环境压力附近,这是本发明的优点之一。在相对Ag/AgCl电极介于0和-2V之间的阴极电势处,生物电化学电池中的电流密度的范围可以从0.1到500A/m2投影电极表面积。
通过在不存在分子氧的情况下,优选地还在不存在其他氧化剂(如例如硝酸盐)的情况下进行该方法,可以适当地实现厌氧条件。“在不存在分子氧的情况下”是指水性反应介质中分子氧的浓度为至多10μM分子氧,优选至多1μM,更优选至多0.1μM分子氧。
适当地,硫化合物存在于水性混合物中,该水性混合物是通过在低硫化合物含量的水溶液与包括硫化合物的起始气态混合物之间的吸收而获得的,从而获得低硫化合物含量的气体。这种吸收可以在单独的吸收步骤中进行。当起始气体的压力大体上高于生物电化学电池中的压力时,这是特别优选的。可替代地,该吸收可以在生物电化学电池本身中发生。在后一种情况下,包括硫化合物的起始气态混合物可以作为分散相通过与生物电化学电池的阴极接触的水性混合物。这种包括硫化合物的气态混合物可以是富含烃的气体,如天然气或炼厂气(例如燃料气或沼气,例如在粪肥的发酵过程中获得的)。这种气体可以进一步包括硫化氢和/或二氧化碳。该气体可以在选择性的硫化氢吸收步骤中获得,其中所获得的低硫化氢含量的气体仍可以包含硫化合物,如硫醇和/或二硫化物化合物。该气体也可以是包括高含量的硫化氢和可选地二氧化碳的酸性气体。
通过在水溶液与较早提及的低硫化合物含量的气体之间的解吸,从水溶液中适当地去除所形成的二硫化物,从而获得贫水溶液。可替代地,通过在水溶液和不同的气流之间的解吸,从水溶液中去除二硫化物。以这种方式,可以获得更富含硫化氢的流,该流可以更容易地用作进一步二硫化物转化过程的进料。
贫水溶液可以随后作为低硫化合物含量的水溶液用于吸收步骤。用于解吸步骤的气体流可以是气体流或在上文提及的吸收步骤中获得的低硫化合物含量的气流的一部分。
包括硫化合物的气态混合物也可以直接进料到阴极。在这种实施例中,优选地,阴极是气体扩散电极(GDE)。气体扩散电极是已知的并且例如在US2016164120中描述。在这种气体扩散电极中,气体中的硫化合物可以转化为二硫化物化合物和硫化氢。硫化氢可以与出口气体一起排出,从而离开气体扩散电极。这种气体扩散电极的应用是有利的,因为这将导致较早提及的吸收可以以较小的规模进行或者甚至根本不需要。
优选地,以上过程作为连续过程进行。可以通过醋酸铅,例如通过醋酸铅纸来确认硫醇转化为二硫化物,或转化为其平衡硫化物形式之一。醋酸铅纸不与硫醇发生反应,但将会与任何形式的游离硫化物(即硫化物、二硫化物或硫化氢)发生反应。
所形成的二硫化物化合物优选在进一步过程中转化为元素硫。产生元素硫的二硫化物转化过程的示例是由Merichem提供的液体氧化还原过程以及二硫化物的生物氧化(例如由Paqell提供的Thiopaq O&G)。适当的生物氧化过程的示例在WO92/10270、WO94/29227、WO2005/092788和WO2015114069中描述。
申请人发现,在上述过程中,还可以通过将电子从生物电化学电池的阴极直接或间接转移至苯、甲苯、乙苯和/或二甲苯来转化苯、甲苯、乙苯和/或二甲苯。这些化合物可以转化为甲烷。因此,当硫化合物转化为二硫化物时,任何这种化合物均可以转化。发现在不存在硫化合物的情况下也可以发生这种转化。因此,本发明还涉及在厌氧条件下和在产甲烷菌存在的情况下,如上所述对于硫化合物的,通过将电子从生物电化学电池的阴极直接或间接转移到苯、甲苯、乙苯和/或二甲苯,将苯、甲苯、乙苯和/或二甲苯转化为甲烷的方法。
用下图1说明本发明。图1是在厌氧条件下以及在产甲烷菌和适当地还有厌氧或兼性厌氧细菌存在的情况下,通过将电子从生物电化学电池的阴极转移到硫化合物,将甲硫醇(M-SH)转化为硫化物和甲烷的示意图,电子的转移用有e-的圆圈表示。在生物阴极处,示出了该转化三种可能的途径,其中Mred/ox是氧化还原介体,可以将电荷从电极转移到反应物。可能的氧化还原介体的示例是H2、甲基紫精和亚甲基蓝。在该图中示出了电子经由微生物从阴极流向甲硫醇。在阳极处,水被氧化为O2,并且电子经由外部电路从阳极流向生物阴极。在阳极处发生的反应也可以是电化学反应或由微生物催化的反应,例如醋酸盐氧化为CO2以及无机组分如硫化物、铁或其他金属的氧化。
利用以下非限制性示例说明本发明。
示例1
用生物电化学反应器来研究乙硫醇的降解。生物电化学反应器具有两个被阳离子交换膜隔开的腔室。石墨毡既用作阳极电极(1cm×2cm×5cm),又用作阴极电极(1cm×2cm×15cm)。铂夹用作阳极和阴极的集电器。参比电极是3M KCl饱和Ag/AgCl电极(相对于SHE为+210mV)。每个生物电化学反应器均由恒电位仪(Ivium,荷兰)恒电流控制在2mA电流。所有反应器的产气均收集在气袋(500mL)中。所有反应器均在30℃的温度控制柜内运行。
用于有机降解有机硫化合物的培养基由以下组分组成(每升):含49g NaHCO3和4.42g Na2CO3的碳酸氢盐缓冲液,0.1mL微量元素溶液。培养基的最终pH为约8.5。除生物电化学反应器的阳极室外,所有反应器均填充有120mL培养基。阳极电解液仅包含相同的碳酸氢盐缓冲液和100mM三水合六氰铁(II)酸钾。在此,三水合六氰铁(II)酸钾用作电子给体。
微生物群系的混合培养物取自用高甲醇(~200mM)流进料的生物反应器以及从城市废水处理厂获得的厌氧污泥。通过5000RPM离心10分钟来浓缩500mL的这些生物反应器的流出物。流出物用新鲜培养基洗涤三遍。最后,除没有微生物用作对照的反应器外,将5mL的浓缩接种物(总计20mL)加入到每个反应器中。除了非生物对照外,向每个反应器添加7mL厌氧污泥。使用16S rRNA分析来分析该混合培养物,并且该混合培养物由产甲烷菌组成。除了产甲烷菌(基于总16S rRNA分析),还存在其他微生物,包括盐单胞菌科(Halomonadaceae)、梭菌科2(Clostridiaceae 2)、源洋菌科(Idiomarinaceae)、消化链球菌科(Peptostreptococcaceae)、优杆菌科(Eubacteriaceae)、红杆菌科(Rhodobacteraceae)、互养菌科(Synergistaceae)、ML635J-40水生类群、螺旋体科(Spirochaetaceae)、丹毒丝菌科(Erysipelotrichaceae)、节外硫红螺菌科(Ectothiorhodospiraceae)和热厌氧菌(Thermoanaerobacterales)科XIV。
接种后一周,在第7天和第13天用0.05mmol乙硫醇(ethanethiol)加标阴极电解液。在实验期间,用气相色谱分析CO2、H2、O2、CH4的顶空组成。定期检查每个反应器的pH。醋酸铅纸用作游离硫化物存在的指示剂,游离硫化物以任何形式作为最终还原产物存在。
在第一次添加乙硫醇后7小时和在第二次添加乙硫醇后18小时发现有硫化物产生,表明乙硫醇还原为硫化物。
比较实验A
重复示例1,只是不添加产甲烷菌。没有观察到乙硫醇的转化。
对比实验B
在没有电极的瓶子中重复示例1。存在微生物。没有观察到乙硫醇的转化。
对比实验C
在氢气和二氧化碳气体混合物存在的情况下用微生物重复示例1。没有观察到乙硫醇的转化。
示例2
示例1重复30天,并从第7天到第20天用0.1mM乙硫醇进行加标,并且从第20天到第30天加标增加到0.2mM。在第33天,部分替换培养基,导致较低的硫醇负载量。每次添加乙硫醇后都发现有硫化物产生,表明乙硫醇在很长一段时间内还原为硫化物。
示例3
重复示例2,只是用甲硫醇代替乙硫醇加标阴极电解液。每次添加甲硫醇后都发现有硫化物产生,表明甲硫醇在很长一段时间内还原为硫化物。
示例4
重复示例2,只是用丙硫醇代替乙硫醇加标阴极电解液。每次添加丙硫醇后都发现有硫化物产生,表明丙硫醇在很长一段时间内还原为硫化物。
示例5
重复示例1,只是用二甲基二硫化物(DMDS)代替乙硫醇加标阴极电解液。每次添加DMDS后都发现有硫化物产生,表明DMDS在很长一段时间内还原为硫化物。

Claims (26)

1.用于将有机硫化合物厌氧生物电化学降解为二硫化物的方法,包括:
a)用从厌氧生长的培养物中获得的微生物的混合培养物接种生物电化学电池,该混合培养物包括产甲烷菌;
b)使微生物与有机硫化合物接触;
c)允许混合培养物中的微生物将有机硫化合物转化为二硫化物。
2.根据权利要求1所述的方法,其中厌氧生长的培养物从厌氧生物反应器的污泥中获得,厌氧生物反应器是如厌氧发酵罐、厌氧消化反应器、厌氧还原反应器或厌氧资源回收反应器。
3.根据权利要求1或2所述的方法,其中厌氧生物反应器是升流式厌氧污泥床反应器(UASB)。
4.根据前述权利要求中任一项所述的方法,其中厌氧生长的培养物从城市废水处理厂获得。
5.根据前述权利要求中任一项所述的方法,其中厌氧生物反应器用高甲醇流进料。
6.根据前述权利要求中任一项所述的方法,其中有机硫化合物是硫醇或聚有机多硫化物化合物。
7.根据前述权利要求中任一项所述的方法,其中硫醇化合物是甲硫醇、乙硫醇或丙硫醇。
8.根据前述权利要求中任一项所述的方法,其中聚有机多硫化物化合物是二甲基二硫化物(DMDS)。
9.根据前述权利要求中任一项所述的方法,其中将有毒化合物转化为低毒化合物。
10.根据前述权利要求中任一项所述的方法,其中通过在生物电化学系统中的转化,将有机硫化合物的含量降低到低于100ppm。
11.根据前述权利要求中任一项所述的方法,其中转化为二硫化物是通过将电子从生物电化学电池的阴极间接转移到硫化合物。
12.根据前述权利要求中任一项所述的方法,其中工艺条件为30℃,0.8M Na+并且pH在8.5至10的范围内。
13.根据前述权利要求中任一项所述的方法,相对于标准Ag/AgCl电极,在0至-2000mV范围内的氧化还原电势下进行该方法。
14.根据前述权利要求中任一项所述的方法,其中,除产甲烷菌之外,混合培养物还包括一种或多种微生物,该微生物选自:产甲烷菌、盐单胞菌科(Halomonadaceae)、梭菌科2(Clostridiaceae 2)、源洋菌科(Idiomarinaceae)、消化链球菌科(Peptostreptococcaceae)、优杆菌科(Eubacteriaceae)、红杆菌科(Rhodobacteraceae)、互养菌科(Synergistaceae)、ML635J-40水生类群、螺旋体科(Spirochaetaceae)、丹毒丝菌科(Erysipelotrichaceae)、节外硫红螺菌科(Ectothiorhodospiraceae)和热厌氧菌(Thermoanaerobacterales)科XIV。
15.根据前述权利要求中任一项所述的方法,其中,混合培养物中的微生物是嗜酸性的。
16.根据前述权利要求中任一项所述的方法,其中微生物在阴极电解液中以浮游形式存在于水溶液中。
17.根据前述权利要求中任一项所述的方法,其中微生物存在于阴极表面上的生物膜中。
18.根据前述权利要求中任一项所述的方法,其中阴极表面的材料包括碳或金属,其中碳可选地为石墨。
19.根据前述权利要求中任一项所述的方法,还包括吸收步骤,其中将有机硫化合物从包括硫化合物的起始气态混合物吸收到低硫化合物含量的水溶液中,从而获得低硫化合物含量的气体和包括有机硫化合物的水性混合物。
20.根据前述权利要求中任一项所述的方法,其中,通过在水溶液与低硫化合物含量的气体之间的解吸,从水性混合物中去除所形成的二硫化物,从而获得贫水溶液。
21.根据前述权利要求中任一项所述的方法,其中阴极是气体扩散电极,向该气体扩散电极进料包括硫化合物的气体。
22.根据前述权利要求中任一项所述的方法,其中还通过将电子从生物电化学电池的阴极直接或间接转移到苯、甲苯、乙苯或二甲苯,将苯、甲苯、乙苯或二甲苯转化为甲烷。
23.根据前述权利要求中任一项所述的方法,其中在吸收步骤中使用贫水溶液作为低硫化合物含量的水溶液。
24.在厌氧条件下以及在产甲烷菌存在的情况下,通过将电子从生物电化学电池的阴极直接或间接转移到硫化合物,将硫化合物转化为二硫化物的方法。
25.根据权利要求24所述的方法,其中还存在厌氧或兼性厌氧细菌。
26.来自厌氧生物反应器的污泥的微生物的混合培养物用于将有机硫化合物厌氧生物电化学降解为二硫化物的用途。
CN201980036269.6A 2018-06-01 2019-05-29 转化硫化合物的方法 Active CN112243466B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18175559 2018-06-01
EP18175559.6 2018-06-01
PCT/EP2019/064053 WO2019229167A1 (en) 2018-06-01 2019-05-29 Process to convert a sulphur compound

Publications (2)

Publication Number Publication Date
CN112243466A true CN112243466A (zh) 2021-01-19
CN112243466B CN112243466B (zh) 2024-04-02

Family

ID=62635995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980036269.6A Active CN112243466B (zh) 2018-06-01 2019-05-29 转化硫化合物的方法

Country Status (6)

Country Link
US (1) US11279619B2 (zh)
EP (1) EP3802916B1 (zh)
CN (1) CN112243466B (zh)
BR (1) BR112020024504A2 (zh)
CA (1) CA3101499A1 (zh)
WO (1) WO2019229167A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752403A (zh) * 2021-10-29 2022-07-15 中国石油大学(华东) 一种轻质石油组分电催化氧化脱硫醇和副产氢气的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563936B (zh) * 2021-08-11 2022-11-04 中国石油大学(北京) 一种电催化脱除硫醇的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010270A1 (en) * 1990-12-04 1992-06-25 Paques B.V. Process for the removal of sulphur compounds from gases
US20090317882A1 (en) * 2008-06-20 2009-12-24 The Penn State Research Foundation Electromethanogenic reactor and processes for methane production
US20100252443A1 (en) * 2009-04-07 2010-10-07 Ut-Battelle, Llc Bioelectrochemical treatment of gaseous byproducts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9301000A (nl) 1993-06-10 1995-01-02 Pacques Bv Werkwijze voor de zuivering van sulfidehoudend afvalwater.
EP1720798A2 (en) 2004-03-03 2006-11-15 Shell Internationale Research Maatschappij B.V. A process for the high recovery efficiency of sulfur from an acid gas stream
AU2010207871B2 (en) * 2009-01-30 2015-01-22 Greenfield Specialty Alcohols Inc. Integrated system for hydrogen and methane production from industrial organic wastes and biomass
CA2919372A1 (en) 2013-07-31 2015-02-05 Aquahydrex Pty Ltd Electro-synthetic or electro-energy cell with gas diffusion electrode(s)
AU2015212801B2 (en) 2014-02-03 2018-12-06 Paqell B.V. A process for the biological conversion of bisulphide into elemental sulphur
KR102126447B1 (ko) * 2018-04-24 2020-07-08 울산과학기술원 황화수소 제어 및 황 회수 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010270A1 (en) * 1990-12-04 1992-06-25 Paques B.V. Process for the removal of sulphur compounds from gases
US20090317882A1 (en) * 2008-06-20 2009-12-24 The Penn State Research Foundation Electromethanogenic reactor and processes for methane production
US20100252443A1 (en) * 2009-04-07 2010-10-07 Ut-Battelle, Llc Bioelectrochemical treatment of gaseous byproducts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENZMANN ET AL.: "Methanogens: biochemical background and biotechnological applications" *
JOSHUA T. ELLIS ET AL.: "Characterization of aMethanogenic Community within an Algal Fed Anaerobic Digester" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752403A (zh) * 2021-10-29 2022-07-15 中国石油大学(华东) 一种轻质石油组分电催化氧化脱硫醇和副产氢气的方法

Also Published As

Publication number Publication date
EP3802916B1 (en) 2023-07-05
US11279619B2 (en) 2022-03-22
EP3802916C0 (en) 2023-07-05
CN112243466B (zh) 2024-04-02
CA3101499A1 (en) 2019-12-05
WO2019229167A1 (en) 2019-12-05
BR112020024504A2 (pt) 2021-05-18
US20210139327A1 (en) 2021-05-13
EP3802916A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
De Vrieze et al. Interfacing anaerobic digestion with (bio) electrochemical systems: potentials and challenges
Visser et al. Anaerobic degradation of volatile fatty acids at different sulphate concentrations
Stams et al. Metabolic interactions in methanogenic and sulfate-reducing bioreactors
US20190112212A1 (en) Bio-electrochemical system for treating wastewater
Vossoughi et al. Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratios
Wang et al. Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition
Yuan et al. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor
CN102745868B (zh) 一种去除废水中碳氮硫的方法
Lin et al. Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion
Lomans et al. Microbial cycling of volatile organic sulfur compounds in anoxic environments
Aryal et al. Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading
CN105176614A (zh) 一种微生物电化学原位沼气脱硫的方法
US20230287462A1 (en) A process to treat a carbon dioxide comprising gas
CN112243466B (zh) 转化硫化合物的方法
Estrada-Arriaga et al. Enhanced methane production and organic matter removal from tequila vinasses by anaerobic digestion assisted via bioelectrochemical power-to-gas
Pokorna et al. Adaptation of anaerobic culture to bioconversion of carbon dioxide with hydrogen to biomethane
Fenske et al. Biological methanation in trickle bed reactors-a critical review
KR20190123513A (ko) 황화수소 제어 및 황 회수 장치
Costa et al. Biological treatment of organic sulfate-rich wastewaters
Kazmi et al. Electron donors and mediators in the thermodynamics and kinetics of CO2 bioreduction
RU2780483C2 (ru) Способ преобразования соединения серы
Sipma et al. Degradation of methanethiol in a continuously operated upflow anaerobic sludge‐blanket reactor
Paulo et al. Cultivation of high-rate sulfate reducing sludge by pH-based electron donor dosage
Derakhshesh et al. Integrating electrocoagulation process with up-flow anaerobic sludge blanket for in-situ biomethanation and performance improvement
NL2029926B1 (en) A process to treat a carbon dioxide comprising gas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant