CN112236997B - 对视频序列进行解码、编码的方法、装置及存储介质 - Google Patents

对视频序列进行解码、编码的方法、装置及存储介质 Download PDF

Info

Publication number
CN112236997B
CN112236997B CN201980021903.9A CN201980021903A CN112236997B CN 112236997 B CN112236997 B CN 112236997B CN 201980021903 A CN201980021903 A CN 201980021903A CN 112236997 B CN112236997 B CN 112236997B
Authority
CN
China
Prior art keywords
intra prediction
intra
modes
prediction modes
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980021903.9A
Other languages
English (en)
Other versions
CN112236997A (zh
Inventor
赵亮
赵欣
李翔
刘杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tencent America LLC
Original Assignee
Tencent America LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tencent America LLC filed Critical Tencent America LLC
Priority to CN202311187543.4A priority Critical patent/CN117156140A/zh
Publication of CN112236997A publication Critical patent/CN112236997A/zh
Application granted granted Critical
Publication of CN112236997B publication Critical patent/CN112236997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

提供了一种用于控制帧内预测以对视频序列进行解码的方法和装置。该方法包括设置包括与多个帧内预测角分别对应的多个帧内预测模式的表,该多个帧内预测角包括与所有形状的编码单元的对角线方向分别对应的对角线帧内预测角;以及从所设置的表中选择该多个帧内预测模式中的一个,以对视频序列进行解码。

Description

对视频序列进行解码、编码的方法、装置及存储介质
交叉引用
本申请要求于2018年7月16日在美国专利商标局提交的美国临时专利申请No.62/698,526的优先权,其全部内容通过引用并入本文中。
技术领域
与实施例一致的方法和装置涉及视频处理,更具体地,涉及用于视频压缩中的帧内预测的参考样本填充和过滤。
背景技术
高效视频编码(High Efficiency Video Coding,HEVC)中使用的帧内预测模式如图1所示。在HEVC中,模式10(101)是水平模式,模式26(102)是垂直模式,模式2(103)、模式18(104)和模式34(105)是对角线模式。模式2(103)和34(105)指示同一预测方向。
此外,在HEVC中,超出常规帧内预测模式所覆盖的预测方向范围的广角(wideangle)称为广角帧内预测模式。这些广角仅适用于以下非正方形块:
如果块宽度大于块高度,则在右上方向(HEVC中的帧内预测模式34)上角度超过45度;以及
如果块高度大于块宽度,则在左下方向(HEVC中的帧内预测模式2)上角度超过45度。
此外,在HEVC中,在转载如下的第8.4.4.2节中描述了帧内模式的帧内样本替换过程,该第8.4.4.2节包括参考样本替换过程、相邻过程的过滤过程以及帧内预测过程。
8.4.4.2.2用于帧内样本预测的参考样本替换过程
该过程的输入是:
–用于帧内样本预测的具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的参考样本p[x][y],
–转换块大小nTbS,
–表明当前块颜色分量的变量cIdx。
该过程的输出是用于帧内样本预测的修改后的具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的参考样本p[x][y]。
变量bitDepth的推导如下:
–如果cIdx等于0,则将bitDepth设置为等于BitDepthY
–否则,将bitDepth设置为等于BitDepthC
具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的样本p[x][y]的值的修改如下:
–如果具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的所有样本标记为“不可用于帧内预测”,则将值1<<(bitDepth-1)替换为所有样本p[x][y]的值。
–否则(将至少一个样本但并非全部样本p[x][y]标记为“不可用于帧内预测”),执行以下有序步骤:
1、当p[-1][nTbS*2-1]标记为“不可用于帧内预测”时,从x=-1,y=nTbS*2 -1开始到x=-1,y=-1顺序搜索,然后从x=0,y=-1到x=nTbS*2-1,y=-1顺序搜索。一旦找到标记为“可用于帧内预测”的样本p[x][y],搜索终止,并将p[x][y]的值分配给p[-1][nTbS*2-1]。
2、当p[x][y]标记为“不可用于帧内预测”时,从x=-1,y=nTbS*2-2开始到x=-1,y=-1顺序搜索,将p[x][y+1]的值替换p[x][y]的值。
3、对于x=0..nTbS*2-1,y=-1,当p[x][y]标记为“不可用于帧内预测”时,将p[x-1][y]的值替换p[x][y]的值。
具有x=-1,y=-1..nTbS*2-1和x=0..nTbS*2 -1,y=-1的所有样本p[x][y]标记为“可用于帧内预测”。
8.4.4.2.3相邻样本的过滤过程
该过程的输入是:
–具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的相邻样本p[x][y],
–指定变换块大小的变量nTbS。
该过程的输出是经过滤的具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的样本pF[x][y]。
变量filterFlag的推导如下:
–如果以下条件中的一个或多个条件为真,则将filterFlag设置为等于0:
–predModeIntra等于INTRA_DC。
–nTbS等于4。
–否则,适用以下处理:
–将变量minDistVerHor设置为等于Min(Abs(predModeIntra-26),Abs(predModeIntra-10))。
–在表8-3中指定变量intraHorVerDistThres[nTbS]。
–变量filterFlag的推导如下:
–如果minDistVerHor大于intraHorVerDistThres[nTbS],则将filterFlag设置为等于1。
–否则,将filterFlag设置为等于0。
表8-3–针对不同变换块大小的intraHorVerDistThres[nTbS]规范
nTbS=8 nTbS=16 nTbS=32
intraHorVerDistThres[nTbS] 7 1 0
当filterFlag等于1时,适用以下处理:
–变量biIntFlag的推导如下:
–如果以下条件中的所有条件为真,则将biIntFlag设置为等于1:
–strong_intra_smoothing_enabled_flag等于1
–nTbS等于32
–Abs(p[-1][-1]+p[nTbS*2-1][-1]–2*p[nTbS-1][-1])<(1<<(BitDepthY-5))
–Abs(p[-1][-1]+p[-1][nTbS*2-1]–2*p[-1][nTbS-1])<(1<<(BitDepthY-5))
–否则,将biIntFlag设置为等于0。
–该过滤执行如下:
–如果biIntFlag等于1,则如下得出经过滤的具有x=-1,y=-1..63以及x=0..63,y=-1的样本值pF[x][y]的推导如下:
pF[-1][-1]=p[-1][-1] (8-30)
pF[-1][y]=((63-y)*p[-1][-1]+(y+1)*p[-1][63]+32)>>6对于y=0..62 (8-31)
pF[-1][63]=p[-1][63] (8-32)
pF[x][-1]=((63-x)*p[-1][-1]+(x+1)*p[63][-1]+32)>>6对于x=0..62 (8-33)
pF[63][-1]=p[63][-1] (8-34)
–否则(biIntFlag等于0),则经过滤的具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的样本值pF[x][y]的推导如下:
pF[-1][-1]=(p[-1][0]+2*p[-1][-1]+p[0][-1]+2)>>2 (8-35)
pF[-1][y]=(p[-1][y+1]+2*p[-1][y]+p[-1][y-1]+2)>>2对于y=0..nTbS*2–2(8-36)
pF[-1][nTbS*2-1]=p[-1][nTbS*2-1] (8-37)
pF[x][-1]=(p[x-1][-1]+2*p[x][-1]+p[x+1][-1]+2)>>2对于x=0..nTbS*2–2(8-38)
pF[nTbS*2-1][-1]=p[nTbS*2-1][-1] (8-39)
8.4.4.2.6在INTRA_ANGULAR2至INTRA_ANGULAR34范围内的帧内预测模式的规范
该过程的输入是:
–帧内预测模式predModeIntra,
–具有x=-1,y=-1..nTbS*2-1以及x=0..nTbS*2-1,y=-1的相邻样本p[x][y],
–指定变换块大小的变量nTbS,
–指定当前块的颜色分量的变量cIdx。
该过程的输出是具有x,y=0..nTbS–1的预测样本predSamples[x][y]。
图8-2示出了总共33个帧内角,以及表8-4指定了predModeIntra和角参数intraPredAngle之间的映射表。
表8-4–intraPredAngle的规范
表8-5还指定了predModeIntra和反角参数invAngle之间的映射表。
表8-5–invAngle的规范
predModeIntra 11 12 13 14 15 16 17 18
invAngle -4096 -1638 -910 -630 -482 -390 -315 -256
predModeIntra 19 20 21 22 23 24 25 26
invAngle -315 -390 -482 -630 -910 -1638 -4096 -
具有x,y=0..nTbS-1的预测样本predSamples[x][y]的值的推导如下:
–如果predModeIntra等于或大于18,则应用以下有序步骤:
1、将参考样本阵列ref[x]指定如下:
–适用以下处理:
ref[x]=p[-1+x][-1],其中x=0..nTbS (8-47)
–如果intraPredAngle小于0,则将主参考样本阵列扩展如下:
–当(nTbS*intraPredAngle)>>5小于-1时,
ref[x]=p[-1][-1+((x*invAngle+128)>>8)],
其中x=-1..(nTbS*intraPredAngle)>>5 (8-48)
-否则,
ref[x]=p[-1+x][-1],其中x=nTbS+1..2*nTbS (8-49)
2、具有x,y=0..nTbS-1的预测样本predSamples[x][y]的值的推导如下:
a、索引变量iIdx和乘法因子iFact的推导如下:
iIdx=((y+1)*intraPredAngle)>>5 (8-50)
iFact=((y+1)*intraPredAngle)&31 (8-51)
b、根据iFact的值,适用以下处理:
–如果iFact不等于0,则预测样本predSamples[x][y]的值的推导如下:
predSamples[x][y]=((32-iFact)*ref[x+iIdx+1]+iFact*ref[x+iIdx+2]+16)>>5 (8-52)
–否则,预测样本predSamples[x][y]的值的推导如下:
predSamples[x][y]=ref[x+iIdx+1] (8-53)
c、当predModeIntra等于26(垂直的),cIdx等于0且nTbS小于32时,以下过滤适用于x=0,y=0..nTbS-1:
predSamples[x][y]=Clip1Y(p[x][-1]+((p[-1][y]-p[-1][-1][>>1))) (8-54)
–否则(predModeIntra小于18),将应用以下有序步骤:
1、将参考样本阵列ref[x]指定如下:
–适用以下处理:
ref[x]=p[-1][-1+x],其中x=0..nTbS (8-55)
–如果intraPredAngle小于0,则将主参考样本阵列扩展如下:
–当(nTbS*intraPredAngle)>>5小于-1时,
ref[x]=p[-1+((x*invAngle+128)>>8)][-1],
其中x=-1..(nTbS*intraPredAngle)>>5 (8-56)
-否则,
ref[x]=p[-1][-1+x],其中x=nTbS+1..2*nTbS (8-57)
2、具有x,y=0..nTbS-1的预测样本predSamples[x][y]的值的推导如下:
a、索引变量iIdx和乘法因子iFact的推导如下:
iIdx=((x+1)*intraPredAngle)>>5 (8-58)
iFact=((x+1)*intraPredAngle)&31 (8-59)
b、根据iFact的值,适用以下处理:
–如果iFact不等于0,则预测样本predSamples[x][y]的值的推导如下:
predSamples[x][y]=((32-iFact)*ref[y+iIdx+1]+iFact*ref[y+iIdx+2]+16)>>5 (8-60)
–否则,预测样本predSamples[x][y]的值的推导如下:
predSamples[x][y]=ref[y+iIdx+1] (8-61)
c、当predModeIntra等于10(水平的),cIdx等于0且nTbS小于32时,以下过滤适用于x=0..nTbS-1,y=0:
predSamples[x][y]=Clip1Y(p[-1][y]+((p[x][-1]-p[-1][-1][>>1))) (8-62)
发明内容
根据实施例,一种控制帧内预测以对视频序列进行解码的方法由至少一个处理器执行,并且该方法包括:设置包括与多个帧内预测角分别对应的多个帧内预测模式的表。该多个帧内预测角包括与所有形状的编码单元的对角线方向分别对应的对角线帧内预测角。该方法还包括从所设置的表中选择该多个帧内预测模式中的一个,以对视频序列进行解码。
根据实施例,一种用于控制帧内预测以对视频序列进行解码的装置包括至少一个存储器和至少一个处理器,该至少一个存储器配置为存储计算机程序代码,以及该至少一个处理器配置为访问该至少一个存储器并且根据该计算机程序代码进行操作。该计算机程序代码包括设置代码,该设置代码配置为使至少一个处理器设置包括与多个帧内预测角分别对应的多个帧内预测模式的表。该多个帧内预测角包括与所有形状的编码单元的对角线方向分别对应的对角线帧内预测角。该计算机程序代码还包括选择代码,该选择代码配置为使至少一个处理器从所设置的表中选择多个帧内预测模式中的一个,以对视频序列进行解码。
根据实施例,一种非暂时性计算机可读存储介质存储指令,该指令使处理器设置包括与多个帧内预测角分别对应的多个帧内预测模式的表。该多个帧内预测角包括与所有形状的编码单元的对角线方向分别对应的对角线帧内预测角。该指令还使处理器从所设置的表中选择多个帧内预测模式中的一个,以对视频序列进行解码。
附图说明
图1是HEVC中的帧内预测模式的图。
图2是根据实施例的通信系统的简化框图。
图3是根据实施例的在流式传输环境中的视频编码器和视频解码器的放置的图。
图4是根据实施例的视频解码器的功能框图。
图5是根据实施例的视频编码器的功能框图。
图6A是多功能视频编码(Versatile Video Coding,VVC)测试模型(VTM1)中的帧内预测模式的图。
图6B是示出了针对非正方形块用广角帧内预测模式替换帧内预测模式的图。
图7A是根据实施例的在对角线方向之内和之外的预测角的图。
图7B是示出了根据实施例的调节对角线方向之外的预测角的图。
图8是示出了根据实施例的一种控制帧内预测以对视频序列进行解码的方法的流程图。
图9是根据实施例的一种控制帧内预测以对视频序列进行解码的装置的简化框图。
图10是适用于实施实施例的计算机系统的图。
具体实施方式
图2是根据实施例的通信系统(200)的简化框图。通信系统(200)可以包括经由网络(250)互连的至少两个终端(210-220)。对于单向传输数据,第一终端(210)可以在本地位置对视频数据进行编码,以通过网络(250)传输到另一终端(220)。第二终端(220)可以从网络(250)接收另一终端的已编码视频数据,对该已编码数据进行解码,并显示恢复的视频数据。单向数据传输在媒体服务应用等中可能是常见的。
图2示出了被提供用于支持已编码视频的双向传输的第二对终端(230、240),该双向传输可以在例如视频会议期间发生。对于数据的双向传输,每个终端(230、240)可以对在本地位置捕获的视频数据进行编码,以经由网络(250)传输到另一终端。每个终端(230、240)还可以接收由另一终端传输的已编码视频数据,可以对已编码数据进行解码,并且可以在本地显示装置上显示恢复的视频数据。
在图2中,终端(210-240)可以被示出为服务器、个人计算机和智能电话,但是实施例的原理不限于此。实施例适用于膝上型计算机、平板计算机、媒体播放器和/或专用视频会议装置。网络(250)表示在终端(210-240)之间传送已编码视频数据的任何数目的网络,包括例如有线通信网络和/或无线通信网络。通信网络(250)可以在电路交换信道和/或分组交换信道中交换数据。代表性的网络包括电信网络、局域网、广域网和/或互联网。为了本讨论的目的,除非在下文中有所解释,否则网络(250)的架构和拓扑对于实施例的操作可能是不重要的。
图3是根据实施例的在流式传输环境中的视频编码器和视频解码器的放置的图。所公开的主题可以同等地适用于其他支持视频的应用,包括例如视频会议、数字电视、在包括CD、DVD、内存条等的数字介质上存储压缩视频,等等。
流式传输系统可以包括采集子系统(313),该采集子系统(313)可以包括视频源(301),例如数字相机,该视频源创建例如未压缩的视频样本流(302)。相较于已编码的视频码流,被描绘为粗线以强调高数据量的样本流(302)可以由耦合至照相机(301)的编码器(303)来处理。编码器(303)可以包括硬件、软件或软硬件组合,以实现或实施如下文更详细地描述的所公开主题的各方面。相较于样本流,被描绘为细线以强调较低数据量的已编码视频码流(304)可以存储在流式传输服务器(305)上以供将来使用。一个或多个流式传输客户端(306、308)可以访问流式传输服务器(305)以检索已编码视频码流(304)的副本(307、309)。客户端(306)可以包括视频解码器(310),该视频解码器(210)对已编码视频码流的输入副本(307)进行解码,并创建可以在显示器(312)或其他呈现装置(未描绘)上呈现的输出视频样本流(311)。在一些流式传输系统中,可以根据某些视频编码/压缩标准来对视频码流(304、307、309)进行编码。这些标准的示例包括ITU-T H.265建议书。正在开发的是一种非正式地称为“通用视频编码(VVC)”的视频编码标准。所公开的主题可以在VVC的上下文下使用。
图4是根据实施例的视频解码器(310)的功能框图。
接收器(410)可以接收将由解码器(310)解码的一个或多个已编码视频序列;在同一实施例或另一实施例中,一次接收一个已编码视频序列,其中每个已编码视频序列的解码独立于其他已编码视频序列。可以从信道(412)接收已编码视频序列,该信道(312)可以是通向存储已编码视频数据的存储装置的硬件/软件链接。接收器(410)可以接收可转发到它们各自的使用实体(未描绘)的已编码视频数据以及其他数据,例如已编码的音频数据和/或辅助数据流。接收器(410)可以将已编码视频序列与其他数据分开。为了防止网络抖动,缓冲存储器(415)可以耦接在接收器(410)和熵解码器/解析器(420)(此后称为“解析器”)之间。当接收器(410)正从具有足够带宽和可控性的存储/转发装置接收数据或正从等时同步网络接收数据时,也可能不需要配置缓冲存储器(415),或可以将该缓冲存储器做得较小。为了在互联网等业务分组网络上使用,也可能需要缓冲器(415),该缓冲器可以相对较大并且可以有利地具有自适应大小。
视频解码器(310)可以包括解析器(420),以从熵编码视频序列重建符号(421)。这些符号的类别包括用于管理解码器(310)的操作的信息,以及用于控制诸如显示器(312)之类的呈现装置的潜在信息,该呈现装置不是解码器的组成部分,但是可以耦接到解码器,如图4所示。用于呈现装置的控制信息可以是辅助增强信息(SEI消息)或视频可用性信息(VUI)参数集片段(未描绘)。解析器(420)可以对接收到的已编码视频序列进行解析/熵解码。已编码视频序列的编码可以根据视频编码技术或标准,并且可以遵循本领域技术人员众所周知的原理,包括可变长度编码、霍夫曼编码、具有或不具有环境敏感性的算术编码,等等。解析器(420)可以基于对应于群组的至少一个参数,从已编码视频序列中提取用于视频解码器中的像素子群中的至少一个子群的子群参数集。子群可包括图片群组(Group ofPictures,GOP)、图片、图块、切片、宏块、编码单元(Coding Unit,CU)、块、变换单元(Transform Unit,TU)、预测单元(Prediction Unit,PU)等等。熵解码器/解析器还可以从已编码视频序列中提取诸如变换系数、量化器参数(QP)值、运动矢量之类的信息。
解析器(420)可以对从缓冲器(415)接收的视频序列执行熵解码/解析操作,从而创建符号(421)。解析器(420)可以接收已编码数据,并且选择性地解码特定符号(421)。此外,解析器(420)可以确定是否将特定符号(421)提供给运动补偿预测单元(453)、缩放器/逆变换单元(451)、帧内预测单元(452)或环路滤波器单元(454)。
取决于已编码视频图片或其部分的类型(例如,帧间和帧内图片,帧间和帧内块)以及其他因素,符号(421)的重建可涉及多个不同的单元。涉及哪些单元以及涉及方式可以由解析器(420)从已编码视频序列解析的子群控制信息来控制。为了清楚起见,未描述解析器(420)与下文的多个单元之间的此类子群控制信息流。
除了已经提及的功能块以外,解码器(310)可以在概念上细分为如下文所描述的多个功能单元。在商业约束下运行的实际实施例中,这些单元中的许多单元彼此紧密交互,并且可以至少部分地彼此集成。然而,出于描述所公开主题的目的,将概念细分为以下功能单元是适当的。
第一单元是缩放器/逆变换单元(451)。缩放器/逆变换单元(451)从解析器(420)接收作为一个(多个)符号(421)的量化变换系数以及控制信息,包括使用哪种变换、块大小、量化因子、量化缩放矩阵等。缩放器/逆变换单元(451)可以输出包括样本值的块,该样本值可以输入到聚合器(455)中。
在一些情况下,缩放器/逆变换(451)的输出样本可以属于帧内编码块,即,不使用来自先前重建的图片的预测信息,但是可以使用来自当前图片的先前重建部分的预测信息的块。此类预测信息可以由帧内图片预测单元(452)提供。在一些情况下,帧内图片预测单元(452)使用从当前(部分重建)图片(456)提取的周围已重建信息,来生成与正在重建的块具有相同大小和形状的块。在一些情况下,聚合器(455)基于每个样本将帧内预测单元(452)已经生成的预测信息添加到由缩放器/逆变换单元(451)提供的输出样本信息中。
在其他情况下,缩放器/逆变换单元(451)的输出样本可以属于帧间编码的并且可能运动补偿的块。在这种情况下,运动补偿预测单元(453)可以访问参考图片存储器(457)以提取用于预测的样本。在根据与该块相关的符号(421)对提取的样本进行运动补偿之后,这些样本可以由聚合器(455)添加到缩放器/逆变换单元的输出中(在这种情况下称为残差样本或残差信号),以生成输出样本信息。参考图片存储器内的地址(运动补偿单元从中获取预测样本)可以由运动矢量控制,该运动矢量可以以符号(421)的形式而供运动补偿单元使用,该符号(321)可以具有例如X、Y和参考图片分量。运动补偿还可以包括当使用子样本精确运动矢量时从参考图片存储器中提取的样本值的内插、运动矢量预测机制等。
聚集器(455)的输出样本可以在环路滤波器单元(454)中被各种环路滤波技术采用。视频压缩技术可以包括环路内滤波技术,该环路内滤波技术由包括在已编码视频码流中的参数控制,并且该参数可以作为来自解析器(420)的符号(421)而用于环路滤波单元(454)。但是,视频压缩技术也可以响应于在对已编码图片或已编码视频序列的先前(按解码顺序)部分进行解码期间获得的元信息,以及响应于先前重建且环路滤波的样本值。
环路滤波器单元(454)的输出可以是样本流,该样本流可以被输出到呈现装置(312),并且可以被存储在参考图片存储器(456)中,以用于后续的图片间预测。
某些已编码图片一旦完全重建,就可以用作参考图片,以用于将来预测。一旦完全重建了已编码图片并且已将该已编码图片(例如,通过解析器(420))识别为参考图片,当前参考图片(456)就可以变为参考图片缓冲器(457)的一部分,并且可以在开始重建后续的已编码图片之前重新分配新的当前图片存储器。
视频解码器(310)可以根据预定的视频压缩技术执行解码操作,该预定的视频压缩技术可能记录在诸如ITU-TH.265建议书之类的标准中。在遵循如视频压缩技术文档或标准(特别是其中的配置文件)中所指定的视频压缩技术或标准的语法的意义上,已编码视频序列可以符合所使用的视频压缩技术或标准所指定的语法。对于合规性,还要求已编码视频序列的复杂度处于视频压缩技术或标准的层级所限定的范围内。在一些情况下,层级限制最大图片大小、最大帧率、最大重建取样率(以例如每秒兆(mega)个样本为单位进行测量)、最大参考图片大小等。在一些情况下,由层级设定的限制可以通过假想参考解码器(Hypothetical Reference Decoder,HRD)规范和在已编码视频序列中用信号表示的HRD缓冲器管理的元数据来进一步限定。
在一个实施例中,接收器(410)可以连同已编码视频一起接收附加(冗余)数据。附加数据可以是一个(多个)已编码视频序列的一部分。视频解码器(310)可以使用附加数据来对数据进行适当解码和/或较准确地重建原始视频数据。附加数据可以以例如时间、空间或信噪比(signal noise ratio,SNR)增强层、冗余切片、冗余图片、前向纠错码等形式呈现。
图5是根据实施例的视频编码器(303)的功能框图。
编码器(303)可以从视频源(301)(并非编码器的一部分)接收视频样本,视频源可以采集将由编码器(303)编码的一个(多个)视频图像。
视频源(301)可以提供将由视频编码器(303)编码的呈数字视频样本流形式的源视频序列,该数字视频样本流可以具有任何合适的位深度(例如,8位、10位、12位等)、任何色彩空间(例如,BT.601Y CrCB、RGB等)和任何合适的取样结构(例如,Y CrCb 4:2:0、YCrCb 4:4:4)。在媒体服务系统中,视频源(301)可以是存储先前已准备的视频的存储装置。在视频会议系统中,视频源(301)可以是采集本地图像信息作为视频序列的相机。可以将视频数据提供为多个单独的图片,当按顺序观看时,这些图片被赋予运动。图片自身可以构建为空间像素阵列,其中取决于所用的取样结构、色彩空间等,每个像素可包括一个或多个样本。本领域技术人员可以很容易理解像素与样本之间的关系。下面的描述侧重于样本。
根据实施例,编码器(303)可以实时地或在由应用所要求的任何其它时间约束下,将源视频序列的图片编码且压缩成已编码视频序列(543)。施行适当的编码速度是控制器(550)的一个功能。控制器控制如下文所描述的其它功能单元,且在功能上耦接到这些单元。为了清楚起见,图中未标示耦接。由控制器设置的参数可以包括速率控制相关参数(图片跳过、量化器、率失真优化技术的λ值等)、图片大小、图片群组(group of pictures,GOP)布局,最大运动矢量搜索范围等。本领域技术人员可以容易地识别控制器(550)的其他功能,因为这些功能可能涉及针对某一系统设计优化的视频编码器(303)。
一些视频编码器以本领域技术人员容易识别为“编码环路”的方式进行操作。作为简单的描述,编码循环可以由编码器(530)的编码部分(此后称为“源编码器”)(负责基于待编码的输入图片和一个(多个)参考图片创建符号)和嵌入在编码器(303)中的(本地)解码器(533)组成,该(本地)解码器(433)重建符号以创建(远程)解码器也将创建的样本数据(因为在本公开主题所考虑的视频压缩技术中,符号与已编码视频码流之间的任何压缩是无损的)。将重建的样本流输入到参考图片存储器(534)。由于符号流的解码产生与解码器位置(本地或远程)无关的位精确结果,因此参考图片缓冲器内容在本地编码器与远程编码器之间也是按比特位精确对应的。换句话说,编码器的预测部分“看到”的参考图片样本与解码器将在解码期间使用预测时所“看到”的样本值完全相同。该参考图片同步性基本原理(以及在例如因信道误差而无法维持同步性的情况下产生的漂移)对于本领域技术人员而言是众所周知的。
“本地”解码器(533)的操作可以与已在上文结合图4详细描述的“远程”解码器(310)的操作相同。但是,另外简要参考图4,当符号可用且熵编码器(545)和解析器(420)能够无损地将符号编码/解码为已编码视频序列时,包括信道(412)、接收器(410)、缓冲器(415)和解析器(420)在内的解码器(310)的熵解码部分可能无法完全在本地解码器(533)中实施。
此时可以观察到,除了存在于解码器中的解析/熵解码之外的任何解码器技术,也必需以基本上相同的功能形式存在于对应的编码器中。编码器技术的描述可以被缩减,因为编码器技术与全面地描述的解码器技术互逆。仅在某些区域中需要更详细的描述,并且在下文提供。
作为操作的一部分,源编码器(530)可以执行运动补偿预测编码。参考来自视频序列中被指定为“参考帧”的一个或多个先前已编码帧,所述运动补偿预测编码对输入帧进行预测性编码。以此方式,编码引擎(532)对输入帧的像素块与一个(多个)参考帧的像素块之间的差异进行编码,该参考帧可以被选作该输入帧的一个(多个)预测参考。
本地视频解码器(533)可以基于源编码器(530)创建的符号,对可指定为参考帧的帧的已编码视频数据进行解码。编码引擎(532)的操作可以有利地是有损过程。当已编码视频数据可以在视频解码器(图4中未示出)处被解码时,重建的视频序列通常可以是具有一些误差的源视频序列的副本。本地视频解码器(533)复制解码过程,该解码过程可以由视频解码器对参考帧执行,并且可以使重建的参考帧存储在参考图片高速缓存(534)中。以此方式,编码器(303)可以在本地存储重建的参考帧的副本,该副本与将由远端视频解码器获得的重建参考帧具有共同内容(不存在传输误差)。
预测器(535)可以针对编码引擎(532)执行预测搜索。即,对于待编码的新帧,预测器(535)可以在参考图片存储器(534)中搜索可作为新图片的适当预测参考的样本数据(作为候选参考像素块)或某些元数据(例如参考图片运动矢量、块形状等)。预测器(535)可以基于样本块逐像素块操作,以找到合适的预测参考。在一些情况下,如由预测器(535)获得的搜索结果所确定的,输入图片可以具有从参考图片存储器(534)中存储的多个参考图片取得的预测参考。
控制器(550)可以管理视频编码器(530)的编码操作,包括例如设置用于对视频数据进行编码的参数和子群参数。
可以在熵编码器(545)中对所有上述功能单元的输出进行熵编码。熵编码器(545)根据本领域技术人员已知的技术(例如霍夫曼编码、可变长度编码、算术编码等)对各种功能单元生成的符号进行无损压缩,从而将该符号转换成已编码视频序列。
发射器(540)可以缓冲由熵编码器(545)创建的一个(多个)已编码视频序列,从而为通过通信信道(560)进行传输做准备,该通信信道(560)可以是通向可以存储已编码视频数据的存储装置的硬件/软件链路。发射器(540)可以将来自视频编码器(530)的已编码视频数据与待传输的其它数据合并,该其它数据例如是已编码音频数据和/或辅助数据流(未示出来源)。
控制器(550)可以管理编码器(303)的操作。在编码期间,控制器(550)可以为每个已编码图片分配某一已编码图片类型,这可能影响可应用于相应的图片的编码技术。例如,通常可将图片分配为以下任一种帧类型:
帧内图片(I图片),其可以是不将序列中的任何其它帧用作预测源就可被编码和解码的图片。一些视频编解码器容许不同类型的帧内图片,包括例如独立解码器刷新(Independent Decoder Refresh,IDR)图片。本领域技术人员了解I图片的变体及其相应的应用和特征。
预测性图片(P图片),其可以是可使用帧内预测或帧间预测进行编码和解码的图片,该帧内预测或帧间预测使用至多一个运动矢量和参考索引来预测每个块的样本值。
双向预测性图片(B图片),其可以是可使用帧内预测或帧间预测进行编码和解码的图片,该帧内预测或帧间预测使用至多两个运动矢量和参考索引来预测每个块的样本值。类似地,多个预测性图片可以使用多于两个参考图片和相关联元数据以用于重建单个块。
源图片通常可以在空间上细分成多个样本块(例如,4×4、8×8、4×8或16×16个样本的块),并且逐块进行编码。可以参考其它(已编码)块对这些块进行预测编码,该其他块是根据应用于块的相应图片的编码分配来确定的。例如,可以对I图片的块进行非预测编码,或可以参考同一图片的已经编码的块来对这些块进行预测编码(空间预测或帧内预测)。可以参考一个先前编码的参考图片通过空间预测或通过时域预测对P图片的像素块进行预测编码。可以参考一个或两个先前编码的参考图片通过空间预测或通过时域预测对B图片的块进行预测编码。
视频编码器(303)可以根据例如ITU-T H.265建议书的预定视频编码技术或标准执行编码操作。在操作中,视频编码器(303)可以执行各种压缩操作,包括利用输入视频序列中的时间和空间冗余的预测编码操作。因此,已编码视频数据可以符合所用视频编码技术或标准指定的语法。
在一个实施例中,发射器(540)可以连同已编码视频一起传输附加数据。视频编码器(530)可以将此类数据作为已编码视频序列的一部分。附加数据可以包括时间/空间/SNR增强层、诸如冗余图片和切片之类的其它形式的冗余数据、SEI消息、VUI参数集片段等。
图6A是VTM1中的帧内预测模式的图。
参考图6A,已经提出了基于65个定向模式的帧内预测方案,以获得自然视频中呈现的任意边缘方向,并且正在研究基于65个定向模式的帧内预测方案以用于VVC的开发。在VTM 1中,模式2和66指示同一预测方向。
对于非正方形块,可以用广角模式代替几种常规角帧内预测模式。可以使用原始方法来以信号发送替换的模式,并且在解析之后将替换的模式重新映射为广角模式的索引。帧内预测模式的总数量可以是不变的,即如VTM 1中的35,并且帧内模式编码可以是不变的。
在35种帧内预测模式的情况下,以下表1可以示出替换的帧内预测模式,其中,W表示块宽度,以及H表示块高度。
表1:当使用35种帧内预测模式时,帧内预测模式被广角模式替代
条件 替换的帧内预测模式
W/H=2 模式2、3、4
W/H>2 模式2、3、4、5、6
W/H=1
H/W=1/2 模式32、33、34
H/W<1/2 模式30、31、32、33、34
在67种帧内预测模式的情况下,以下表2可以示出替换的帧内预测模式,其中,W表示块宽度,以及H表示块高度。
表2:当使用67种帧内预测模式时,帧内预测模式被广角模式替代
条件 替换的帧内预测模式
W/H=2 模式2、3、4、5、6、7
W/H>2 模式2、3、4、5、6、7、8、9、10、11
W/H=1
H/W=1/2 模式61、62、63、64、65、66
H/W<1/2 模式57、58、59、60、61、62、63、64、65、66
图6B是示出了针对非正方形块用广角帧内预测模式替换帧内预测模式的图。
参考图6B,模式2(601)和模式3(602)被广角模式35(603)和模式36(604)替代。模式35(603)的方向指向模式3(602)的相反方向,并且模式36(604)的方向指向模式4(605)的相反方向。
但是,在VTM 1中,当应用广角帧内预测方向时,上方的行或左侧的列中的相邻参考样本不足以容纳非正方形块。
本文的实施例可以单独使用或以任何顺序组合使用。在本说明书中,如果宽度大于或等于高度,则顶行称为长边,以及左侧的列称为短边。否则,顶行称为短边,以及左侧的列称为长边。块宽度由nWidth表示,以及块高度由nHeight表示。
当填充N个参考样本的阵列或缓冲区时,这意味着参考样本值由位于参考样本关联位置处的相邻重构样本填充,或者从已经填充的参考样本中复制,或者从已经使用预定义函数(例如,线性外插)进行填充的参考样本中得到。
实施例可包括取决于已编码信息来填充不同数量的参考样本,该已编码信息包括但不限于块大小、块宽度、块高度、块宽度与块高度的比率、块区域大小和帧内预测方向。
在一个实施例中,提出针对上方的和左侧的相邻参考样本填充2*max(nWidth,nHeight)+1个样本。
在另一实施例中,提出针对长边填充2*max(nWidth,nHeight)+1个样本,并且针对短边填充nWidth+nHeight+1个样本。
在另一实施例中,提出针对上方的参考样本填充2*nWidth+3个样本,并且针对左侧的参考样本填充2*nHeight+3个样本。
在另一实施例中,提出当width/height<=4或height/width<=4时,针对上方的参考样本填充2*nWidth+3个样本,并且针对左侧的参考样本填充2*nHeight+3个样本。否则,针对长边填充2*max(nWidth,nHeight)+1个样本,并且对于短边填充2*min(nWidth,nHeight)+1+M个样本。M可以是10、11、12、13或14。
在另一实施例中,提出针对上方的参考样本填充2*nWidth+M个样本,并且针对左侧的参考样本填充2*nHeight+N个样本。M和N的值可取决于已编码信息,该已编码信息包括但不限于块大小、块宽度、块高度、块宽度与块高度的比率、块区域大小和帧内预测方向。
实施例可以包括去除短边中的几个常规角,并且将相同数量的广角增加到长边中。在去除短边中的角之后,剩余的角都在每个块形状的对角线方向之内,其中该对角线方向由连接右上角和左下角的线表示。
图7A是根据实施例的在对角线方向之内和之外的预测角的图。
参考图7A,位于左上纹理三角形区域(720)内的预测角(710)(实线箭头)是对角方向之内的帧内预测角,并且位于左上纹理三角形区域(720)外的预测角(730)(虚线角)是对角线方向之外的帧内预测角。
在一个实施例中,在35种帧内模式的情况下,以下表3示出去除的模式的数量,其中W表示块宽度,以及H表示块高度。
表3:当使用35种帧内预测模式时,帧内预测模式被广角模式替代
条件 替代的帧内预测模式
W/H=32 模式2、3、4、5、6、7、8、9
W/H=16 模式2、3、4、5、6、7、8
W/H=8 模式2、3、4、5、6、7、8
W/H=4 模式2、3、4、5、6、7
W/H=2 模式2、3、4、5
W/H=1
H/W=1/2 模式31、32、33、34
H/W=1/4 模式29、30、31、32、33、34
H/W=1/8 模式28、29、30、31、32、33、34
H/W=1/16 模式28、29、30、31、32、33、34
H/W=1/32 模式27、28、29、30、31、32、33、34
在一个实施例中,在67种帧内模式的情况下,以下表4示出被去除的模式的数量,其中W表示块宽度,以及H表示块高度。
表4:当使用67种帧内预测模式时,帧内预测模式被广角模式替代
实施例可以包括去除短边中的几个常规角,并且将相同数量的广角增加到长边中。在去除短边中的角之后,除了N个预测角之外,剩余的角均在每个块形状的对角线角之内。N的示例值包括但不限于1、2、3和4。此后,将该N个预测角进一步调整为在对角线角之内。
图7B是示出了根据实施例的调节对角线方向之外的预测角的图。
参考图7B,将对角线方向之外的预测角(730)(虚线箭头)调整为在对角线方向之内(在左上纹理三角形区域(720)内)的预测角(740)(粗箭头)。
在调整了一个或多个预测角的情况下,已经在对角线方向内的角还被进一步调整以均衡所有可用预测角的分布,例如,预测角变得均匀分布。
代替如上所述的将预测角约束在对角线方向内,实施例可以包括以可用的预测角仅利用参考样本的预定范围(或组或数量)内的参考样本的方式来约束预测角。
在一个实施例中,被约束的是仅顶部m*nWidth+1+偏移(offset)X(包括左上角)个参考样本可以用于帧内预测,并且不允许可能使用除了顶部n*nWidth+1+offsetX个样本之外的参考样本的任何帧内预测角。偏移X的示例值可以包括但不限于1、2、3、4、......、14、......和48。m和n的示例值可以包括但不限于1、2、3和4。
在一个实施例中,受限制的是仅顶部m*nWidth+1+offsetX(包括左上角)个参考样本可以用于帧内预测,并且不允许可能使用除了顶部n*nWidth+1+offsetX个样本之外的参考样本的任何帧内预测角。偏移Y的示例值可以包括但不限于1、2、3、4、......、14、......和48。m和n的示例值可以包括但不限于1、2、3和4。
在一个实施例中,受限制的是仅m*max(nHeight,nWidth)+1+offset(包括左上角)个参考样本可以用于帧内预测,并且不允许可能使用除了n*max(nHeight,nWidth)+1+offset个样本之外的参考样本的任何帧内预测角。偏移的示例值可以包括但不限于1、2、3、4、......、14、......和48。m和n的示例值可以包括但不限于1、2、3和4。
在一个实施例中,受限制的是仅m*min(nHeight,nWidth)+1+offset(包括左上角)个参考样本可以用于帧内预测,并且不允许可能使用除了n*min(nHeight,nWidth)+1+offset个样本之外的参考样本的任何帧内预测角。偏移的示例值可以包括但不限于1、2、3、4、......、14、......和48。m和n的示例值可以包括但不限于1、2、3和4。
实施例可以包括在35个帧内预测模式的情况下,当宽度/高度=2(或1/2)、4(或1/4)、8(或1/8)、16(或1/16)或32(1/32)时,在短边中去除3、5、6、7或8个模式,并且在67种帧内预测模式的情况下,当宽度/高度的比率为2(或1/2)、4(或1/4)、8(或1/8)、16(或1/16)或32(1/32)时,在短边中去除6、10、12、14或16个模式。
在一个实施例中,对于短边中的剩余模式,如果该模式的角在该块的对角线方向之外,则该角将被映射到该块的对角线方向。例如,在35个帧内预测模式的情况下,当宽度/高度=2(或1/2)时,模式5(或31)的角为17/32,该角在该块的对角线方向之外,则将模式5(或31)的角映射到16/32。当宽度/高度=4(或1/4)时,模式7(或29)的角为9/32,该角在该块的对角线方向之外,则将模式7(或29)的角映射到8/32。以及当宽度/高度=8(或1/8)时,模式8(或28)的角为5/32,该角在该块的对角线方向之外,则将模式8(或28)的角映射到4/32。
在另一示例中,在67个帧内预测模式的情况下,当宽度/高度=2(或1/2)时,模式8(或60)的角为17/32,该角在该块的对角线方向之外,则将模式8(或60)的角映射到16/32。当宽度/高度=4(或1/4)时,模式12(或56)的角为9/32,该角在该块的对角线方向之外,则将模式12(或56)的角映射到8/32。当宽度/高度=8(或1/8)时,模式14(或54)的角为5/32,该角在该块的对角线方向之外,则将模式14(或54)的角映射到4/32。
实施例可以包括修改或设置帧内预测模式的角,以使得角包括所有块形状的对角线方向。
在一个实施例中,提出将角α包括在角度表中,以使得tan(α)等于{1/32、2/32、4/32、8/32、16/32、32/32}。在另一实施例中,提出将预测角的精度从1/32样本增加到1/64样本,并且将角α包括在角度表中,以使得tan(α)等于{1/64、2/64、4/64、8/64、16/64、32/64、64/64}。在另一实施例中,提出将预测角的精度从1/32样本增加到1/128样本,并且将角α包括在角度表中,以使得tan(α)等于{1/128、2/128、4/128、8/128、16/128、32/128、64/128、128/128}。
在另一实施例中,在35个帧内预测模式的情况下,角度表可以由以下表5和表6来表示。
表5–intraPredAngle规范
predModeIntra 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
intraPredAngle 32 26 20 16 12 8 4 2 0 -2 -4 -8 -12 -16 -20 -26
predModeIntra 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
intraPredAngle -32 -26 -20 -16 -12 -8 -4 -2 0 2 4 8 12 16 20 26 32
表6–invAngle规范
predModeIntra 11 12 13 14 15 16 17 18
invAngle -4096 -2048 -1024 -683 -512 -410 -315 -256
predModeIntra 19 20 21 22 23 24 25 26
invAngle -315 -410 -512 -683 -1024 -2048 -4096 -
在另一实施例中,在67个帧内预测模式的情况下,角度表可以由以下表7来表示。
表7–intraPredAngle说明
在以上表5-7中,intraPredAngle表示帧内预测角,predModeIntra表示帧内预测模式,以及invAngle表示反角。
图8是示出了根据实施例的一种控制帧内预测以对视频序列进行解码的方法(800)的流程图。在一些实现中,图8的一个或多个处理框可以由解码器(310)执行。在一些实现中,图8的一个或多个处理框可以由与解码器(310)分离或包括解码器(310)的另一装置或一组装置(例如,编码器(303))执行。
参考图8,在第一框(810)中,方法(800)包括设置包括与多个帧内预测角分别对应的多个帧内预测模式的表,该多个帧内预测角包括与所有形状的编码单元的对角线方向分别对应的对角线帧内预测角。
对角线帧内预测角中的每一个可以由α表示,并且tan(α)等于{1/32,2/32,4/32,8/32,16/32,32/32}。
该设置的表中包括的多个帧内预测模式的数量可以是67,并且该设置的表可以包括上述表7。
对角线帧内预测角中的每一个可以由α表示,并且tan(α)等于{1/64,2/64,4/64,8/64,16/64,32/64,64/64}。
对角线帧内预测角中的每一个可以由α表示,并且tan(α)等于{1/128,2/128,4/128,8/128,16/128,32/128,64/128,128/128}。
该设置的表中包括的多个帧内预测模式的数量可以是35,并且该设置的表可以包括上述表5。
在第二框(820)中,方法(800)还包括从所设置的表中选择该多个帧内预测模式中的一个,以对视频序列进行解码。
方法(800)还可以包括确定编码单元的宽度和高度的比率,并且基于所确定的比率大于或等于4、或者小于或等于1/4,从所设置的表中去除多个帧内预测模式中的第一数量的预设模式,该第一数量与所确定的比率以及宽度和高度中的较短边相对应。选择多个帧内预测模式中的一个可以包括从已去除该多个帧内预测模式中的第一数量的预设模式的表中选择该多个帧内预测模式中的一个,以对视频序列进行解码。
去除该多个帧内预测模式中的第一数量的预测模式可以包括:基于该表中包括的该多个帧内预测模式的第二数量为35,执行以下处理:基于所确定的比率为4、8、16或32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为5、6、7或8,以及基于所确定的比率为1/4、1/8、1/16或1/32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为5、6、7或8。
去除该多个帧内预测模式中的第一数量的预测模式可以包括:基于该表中包括的该多个帧内预测模式的第二数量为67,执行以下处理:基于所确定的比率为4、8、16或32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为10、12、14或16,以及基于所确定的比率为1/4、1/8、1/16或1/32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为10、12、14或16。
该方法还可以包括:对于已去除该多个帧内预测模式中的第一数量的预设模式的表中包括的该多个帧内预测模式中的每一个,基于该多个帧内预测角中大于编码单元的对角线方向的各个角,将该多个帧内预测角中的该各个角映射到对角线方向。
虽然图8示出了方法(800)的示例框,在一些实现中,方法(800)可以包括比图8中所描绘的框更多的框、更少的框、与图8中所描绘的框不同的框或不同地布置的框。附加地或可替代地,可以并行地执行方法(800)的框中的两个或更多个。
此外,可以通过处理电路(例如,一个或多个处理器,或一个或多个集成电路)来实现所提出的方法。在一个示例中,一个或多个处理器执行存储在非暂时性计算机可读介质中的程序以执行所提出的方法中的一个或多个。
图9是根据实施例的一种控制帧内预测以对视频序列进行解码的装置(900)的简化框图。
参考图9,装置(900)包括设置代码(910)和选择代码(920)。
设置代码(910)配置为设置包括与多个帧内预测角分别对应的多个帧内预测模式的表,该多个帧内预测角包括与所有形状的编码单元的对角线方向分别对应的对角线帧内预测角。
对角线帧内预测角中的每一个可以由α表示,并且tan(α)等于{1/32,2/32,4/32,8/32,16/32,32/32}。
该设置的表中包括的多个帧内预测模式的数量可以是67,并且该设置的表可以包括上述表7。
对角线帧内预测角中的每一个可以由α表示,并且tan(α)等于{1/64,2/64,4/64,8/64,16/64,32/64,64/64}。
对角线帧内预测角中的每一个可以由α表示,并且tan(α)等于{1/128,2/128,4/128,8/128,16/128,32/128,64/128,128/128}。
该设置的表中包括的多个帧内预测模式的数量可以是35,并且该设置的表可以包括上述表5。
选择代码(920)配置为从所设置的表中选择多个帧内预测模式中的一个,以对视频序列进行解码。
装置(900)还可以包括确定代码(930)和去除代码(940),该确定代码(930)配置为确定编码单元的宽度和高度的比率,并且该去除代码(940)配置为基于所确定的比率大于或等于4、或者小于或等于1/4,从所设置的表中去除多个帧内预测模式中的第一数量的预设模式,该第一数量与所确定的比率以及宽度和高度中的较短边相对应。该选择代码(920)还可以配置为使至少一个处理器从已去除该多个帧内预测模式中的第一数量的预设模式的表中选择该多个帧内预测模式中的一个,以对视频序列进行解码。
该去除代码(930)还可以配置为基于该表中包括的该多个帧内预测模式的第二数量为35,执行以下处理:基于所确定的比率为4、8、16或32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为5、6、7或8,以及基于所确定的比率为1/4、1/8、1/16或1/32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为5、6、7或8。
该去除代码(930)还可以配置为基于该表中包括的该多个帧内预测模式的第二数量为67,执行以下处理:基于所确定的比率为4、8、16或32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为10、12、14或16,以及基于所确定的比率为1/4、1/8、1/16或1/32,从所设置的表中去除该多个帧内预测模式中的第一数量的预测模式,该第一数量分别为10、12、14或16。
装置(900)还可以包括映射代码(950),该映射代码(950)配置为对于已去除多个帧内预测模式中的第一数量的预设模式的表中包括的多个帧内预测模式中的每一个,基于多个帧内预测角中大于编码单元的对角线方向的各个角,将该多个帧内预测角中的该各个角映射到对角线方向。
可以将上述技术实现为计算机软件,该计算机软件使用计算机可读指令,并且物理存储在一个或多个计算机可读介质中。
图10是适用于实现实施例的计算机系统(1000)的图。
可以使用任何合适的机器代码或计算机语言对计算机软件进行编码,任何合适的机器代码或计算机语言可以经受汇编、编译、链接或类似的机制以创建包括指令的代码,该指令可以由计算机中央处理单元(CPU)、图形处理单元(GPU)等直接执行或通过译码、微码执行等执行。
指令可以在各种类型的计算机或其组件上执行,例如包括个人计算机、平板计算机、服务器、智能电话、游戏装置、物联网装置等。
图10所示的计算机系统(1000)的组件本质上是示例性的,并且不旨在对实施实施例的计算机软件的用途或功能的范围提出任何限制。组件的配置也不应被解释为具有与计算机系统(1000)的示例性实施例中所示的组件中的任何一个组件或组件的组合有关的任何依赖或要求。
计算机系统(1000)可以包括某些人机接口输入装置。此类人机接口输入装置可以响应于一个或多个人类用户通过例如下述的输入:触觉输入(例如:击键、划动,数据手套移动)、音频输入(例如:语音、拍手)、视觉输入(例如:手势)、嗅觉输入(未描绘)。人机接口装置还可以用于捕获不一定与人的意识输入直接相关的某些介质,例如音频(例如:语音、音乐、环境声音)、图像(例如:扫描的图像、从静止图像相机获取摄影图像)、视频(例如二维视频、包括立体视频的三维视频)等。
输入人机接口装置可以包括下述中的一个或多个(每种中仅描绘一个):键盘(1001)、鼠标(1002)、触控板(1003)、触摸屏(1010)、数据手套(1004)、操纵杆(1005)、麦克风(1006)、扫描仪(1007)、相机(1008)。
计算机系统(1000)也可以包括某些人机接口输出装置。这样的人机接口输出装置可以例如通过触觉输出、声音、光和气味/味道来刺激一个或多个人类用户的感官。此类人机接口输出装置可以包括触觉输出装置(例如触摸屏(1010)的触觉反馈、数据手套(1004)或操纵杆(1005),但也可以是不作为输入装置的触觉反馈装置)、音频输出装置(例如:扬声器(1009)、耳机(未描绘))、视觉输出装置(例如包括阴极射线管(CRT)屏幕、液晶显示(LCD)屏幕、等离子屏幕、有机发光二极管(OLED)屏幕的屏幕(1010),每种屏幕有或没有触摸屏输入功能,每种屏幕都有或没有触觉反馈功能,其中的一些屏幕能够通过诸如立体图像输出之类的装置、虚拟现实眼镜(未描绘)、全息显示器和烟箱(未描绘)以及打印机(未描绘)来输出二维视觉输出或超过三维的输出。
计算机系统(1000)也可以包括人类可访问存储装置及其关联介质:例如包括具有CD/DVD等介质(1021)的CD/DVD ROM/RW(1020)的光学介质、指状驱动器(1022)、可拆卸硬盘驱动器或固态驱动器(1023)、诸如磁带和软盘之类的传统磁性介质(未描绘)、诸如安全软件狗之类的基于专用ROM/ASIC/PLD的装置(未描绘)等。
本领域技术人员还应该理解,结合当前公开的主题使用的所术语“计算机可读介质”不涵盖传输介质、载波或其他暂时性信号。
计算机系统(1000)还可以包括到一个或多个通信网络的一个(多个)接口。网络可以例如是无线网络、有线网络、光网络。网络可以进一步地是本地网络、广域网络、城域网络、车辆和工业网络、实时网络、延迟容忍网络等。网络的示例包括诸如以太网之类的局域网、无线LAN、包括全球移动通信系统(GSM)、第三代(3G)、第四代(4G)、第五代(5G)、长期演进(LTE)等的蜂窝网络、包括有线电视、卫星电视和地面广播电视的电视有线或无线广域数字网络、包括CANBus的车辆和工业用电视等等。某些网络通常需要连接到某些通用数据端口或外围总线(1049)的外部网络接口适配器(例如计算机系统(1000)的通用串行总线(USB)端口);如下所述,其他网络接口通常通过连接到系统总线而集成到计算机系统(1000)的内核中(例如,连接到PC计算机系统中的以太网接口或连接到智能手机计算机系统中的蜂窝网络接口)。计算机系统(1000)可以使用这些网络中的任何一个网络与其他实体通信。此类通信可以是仅单向接收的(例如,广播电视)、仅单向发送的(例如,连接到某些CANbus装置的CANbus)或双向的,例如,使用局域网或广域网数字网络连接到其他计算机系统。如上所述,可以在那些网络和网络接口的每一个上使用某些协议和协议栈。
上述人机接口装置、人机可访问的存储装置和网络接口可以附接到计算机系统(1000)的内核(1040)。
内核(1040)可以包括一个或多个中央处理单元(CPU)(1041)、图形处理单元(GPU)(1042)、现场可编程门区域(FPGA)(1043)形式的专用可编程处理单元、用于某些任务的硬件加速器(1044)等。这些装置以及只读存储器(ROM)(1045)、随机存取存储器(RAM)(1046)、诸如内部非用户可访问的硬盘驱动器、固态驱动(SSD)等之类的内部大容量存储器(1047)可以通过系统总线(1048)连接。在一些计算机系统中,可以以一个或多个物理插头的形式访问系统总线(1048),以能够通过附加的CPU、GPU等进行扩展。外围装置可以直接连接到内核的系统总线(1048)或通过外围总线(1049)连接到内核的系统总线(1048)。外围总线的体系结构包括外围部件互连(PCI)、USB等。
CPU(1041)、GPU(1042)、FPGA(1043)和加速器(1044)可以执行某些指令,这些指令可以组合来构成上述计算机代码。该计算机代码可以存储在ROM(1045)或RAM(1046)中。过渡数据也可以存储在RAM(1046)中,而永久数据可以例如存储在内部大容量存储器(1047)中。可以通过使用高速缓存来进行到任何存储装置的快速存储及检索,该高速缓存可以与下述紧密关联:一个或多个CPU(1041)、GPU(1042)、大容量存储(1047)、ROM(1045)、RAM(1046)等。
计算机可读介质可以在其上具有执行各种由计算机实现的操作的计算机代码。介质和计算机代码可以是出于实施例的目的而专门设计和构造的介质和计算机代码,或者介质和计算机代码可以是计算机软件领域的技术人员公知且可用的类型。
作为非限制性示例,可以由于一个或多个处理器(包括CPU、GPU、FPGA、加速器等)执行包含在一种或多种有形的计算机可读介质中的软件而使得具有架构(1000),特别是内核(1040)的计算机系统提供功能。此类计算机可读介质可以是与如上所述的用户可访问的大容量存储相关联的介质,以及某些非暂时性内核(1040)的存储器,例如内核内部大容量存储器(1047)或ROM(1045)。可以将实施本公开的各种实施例的软件存储在此类装置中并由内核(1040)执行。根据特定需要,计算机可读介质可以包括一个或多个存储装置或芯片。软件可以使得内核(1040),特别是其中的处理器(包括CPU、GPU、FPGA等)执行本文所描述的特定过程或特定过程的特定部分,包括定义存储在RAM中的数据结构(1046)以及根据由软件定义的过程来修改此类数据结构。附加地或替换地,可以由于硬连线或以其他方式体现在电路(例如,加速器(1044))中的逻辑而使得计算机系统提供功能,该电路可以替换软件或与软件一起运行以执行本文描述的特定过程或特定过程的特定部分。在适当的情况下,提及软件的部分可以包含逻辑,反之亦然。在适当的情况下,提及计算机可读介质的部分可以包括存储用于执行的软件的电路(例如集成电路(integrated circuit,IC))、体现用于执行的逻辑的电路或包括两者。实施例包括硬件和软件的任何合适的组合。
尽管本公开已经描述了多个示例性实施例,但是存在落入本公开的范围内的改变、置换和各种替代等同物。因此,应当理解,本领域技术人员将能够设计出许多系统和方法,这些系统和方法虽然未在本文中明确示出或描述,但是体现了本公开的原理,并因此属于本公开的精神和范围内。

Claims (16)

1.一种对视频序列进行解码的方法,所述方法由至少一个处理器执行,并且所述方法包括:
确定编码单元的多个帧内预测模式,所述多个帧内预测模式与多个帧内预测角分别对应;以及
确定编码单元的宽度与高度的比率;
在67个帧内预测模式的情况下,当所述宽度与所述高度的比率等于2或者1/2时,将帧内预测模式8或者帧内预测模式60对应的第一帧内预测角的tan(α)映射到16/32;
当所述宽度与所述高度的比率等于4或者1/4时,将帧内预测模式12或者帧内预测模式56对应的第二帧内预测角的tan(α)映射到8/32;
当所述宽度与所述高度的比率等于8或者1/8时,将帧内预测模式14或者帧内预测模式54对应的第三帧内预测角的tan(α)映射到4/32;
选择所述多个帧内预测模式中的一个,以对所述视频序列进行解码。
2.根据权利要求1所述的方法,其中,所述多个帧内预测角包括与编码单元的对角线方向分别对应的对角线帧内预测角,所述对角线帧内预测角中的每一个的tan(α)等于{1/32,2/32,4/32,8/32,16/32,32/32}。
3.根据权利要求1所述的方法,其中,所述多个帧内预测模式与多个帧内预测角的对应关系通过一个表来表示,所述表中包括的所述多个帧内预测模式的数量是67,以及
所述表包括:
其中,predModeIntra表示所述多个帧内预测模式,以及intraPredAngle表示所述多个帧内预测角,所述表中的所述帧内预测模式与所述帧内预测角具有一一对应的关系。
4.根据权利要求3所述的方法,其中,
在所述确定编码单元的宽度与高度的比率之后,所述方法还包括:
当所确定的比率大于或等于4、或者小于或等于1/4时,从所述表中去除多个帧内预测模式中的第一数量的预设模式,所述第一数量与所述确定的比率以及所述宽度和所述高度中的较短边相对应,
其中,选择所述多个帧内预测模式中的一个包括:从已去除所述多个帧内预测模式中的所述第一数量的预设模式的表中选择所述多个帧内预测模式中的一个,以对所述视频序列进行解码。
5.根据权利要求4所述的方法,其中,去除所述多个帧内预测模式中的所述第一数量的预测模式包括:执行以下处理:
当所述确定的比率为4、8、16或32时,从所述表中去除所述多个帧内预测模式中的所述第一数量的预测模式,所述第一数量分别为10、12、14或16;以及
当所述确定的比率为1/4、1/8、1/16或1/32时,从所述表中去除所述多个帧内预测模式中的所述第一数量的预测模式,所述第一数量分别为10、12、14或16。
6.根据权利要求4所述的方法,其中,还包括:对于已去除所述多个帧内预测模式中的所述第一数量的预设模式的表中包括的所述多个帧内预测模式中的每一个,基于所述多个帧内预测角中大于所述编码单元的对角线方向的各个角,将所述多个帧内预测角中的所述各个角映射到所述对角线方向。
7.一种视频编码方法,所述方法包括:
确定编码单元的多个帧内预测模式,所述多个帧内预测模式与多个帧内预测角分别对应;以及
确定编码单元的宽度与高度的比率;
在67个帧内预测模式的情况下,当所述宽度与所述高度的比率等于2或者1/2时,将帧内预测模式8或者帧内预测模式60对应的第一帧内预测角的tan(α)映射到16/32;
当所述宽度与所述高度的比率等于4或者1/4时,将帧内预测模式12或者帧内预测模式56对应的第二帧内预测角的tan(α)映射到8/32;
当所述宽度与所述高度的比率等于8或者1/8时,将帧内预测模式14或者帧内预测模式54对应的第三帧内预测角的tan(α)映射到4/32;
根据所述多个帧内预测模式,对所述编码单元进行编码。
8.一种对视频序列进行解码的装置,所述装置包括:
至少一个存储器,配置为存储计算机程序代码;以及
至少一个处理器,配置为访问所述至少一个存储器并按照所述计算机程序代码进行操作,所述计算机程序代码包括:
设置代码,配置为使所述至少一个处理器执行以下处理:确定编码单元的多个帧内预测模式,所述多个帧内预测模式与多个帧内预测角分别对应;以及
确定编码单元的宽度与高度的比率;
在67个帧内预测模式的情况下,当所述宽度与所述高度的比率等于2或者1/2时,将帧内预测模式8或者帧内预测模式60对应的第一帧内预测角的tan(α)映射到16/32;
当所述宽度与所述高度的比率等于4或者1/4时,将帧内预测模式12或者帧内预测模式56对应的第二帧内预测角的tan(α)映射到8/32;
当所述宽度与所述高度的比率等于8或者1/8时,将帧内预测模式14或者帧内预测模式54对应的第三帧内预测角的tan(α)映射到4/32;
选择代码,配置为使所述至少一个处理器选择所述多个帧内预测模式中的一个,以对所述视频序列进行解码。
9.根据权利要求8所述的装置,其中,所述多个帧内预测角包括与编码单元的对角线方向分别对应的对角线帧内预测角,所述对角线帧内预测角中的每一个的tan(α)等于{1/32,2/32,4/32,8/32,16/32,32/32}。
10.根据权利要求8所述的装置,其中,所述多个帧内预测模式与多个帧内预测角的对应关系通过一个表来表示,所述表中包括的所述多个帧内预测模式的数量是67,以及
所述表包括:
其中,predModeIntra表示所述多个帧内预测模式,以及intraPredAngle表示所述多个帧内预测角,所述表中的所述帧内预测模式与所述帧内预测角具有一一对应的关系。
11.根据权利要求10所述的装置,其中,所述计算机程序代码还包括:
去除代码,配置为使所述至少一个处理器当所确定的比率大于或等于4、或者小于或等于1/4时,从所述表中去除多个帧内预测模式中的第一数量的预设模式,所述第一数量与所述确定的比率以及所述宽度和所述高度中的较短边相对应,
其中,所述选择代码还配置为使所述至少一个处理器从已去除所述多个帧内预测模式中的所述第一数量的预设模式的表中选择所述多个帧内预测模式中的一个,以对所述视频序列进行解码。
12.根据权利要求11所述的装置,其中,所述去除代码还配置为使所述至少一个处理器执行:
当所述确定的比率为4、8、16或32时,从所述表中去除所述多个帧内预测模式中的所述第一数量的预测模式,所述第一数量分别为10、12、14或16;以及
当所述确定的比率为1/4、1/8、1/16或1/32时,从所述表中去除所述多个帧内预测模式中的所述第一数量的预测模式,所述第一数量分别为10、12、14或16。
13.一种对视频序列进行编码的装置,所述装置包括:
至少一个存储器,配置为存储计算机程序代码;以及
至少一个处理器,配置为访问所述至少一个存储器并按照所述计算机程序代码进行操作,所述计算机程序代码包括:
设置代码,配置为使所述至少一个处理器执行以下处理:确定编码单元的多个帧内预测模式,所述多个帧内预测模式与多个帧内预测角分别对应;以及
确定编码单元的宽度与高度的比率;
在67个帧内预测模式的情况下,当所述宽度与所述高度的比率等于2或者1/2时,将帧内预测模式8或者帧内预测模式60对应的第一帧内预测角的tan(α)映射到16/32;
当所述宽度与所述高度的比率等于4或者1/4时,将帧内预测模式12或者帧内预测模式56对应的第二帧内预测角的tan(α)映射到8/32;
当所述宽度与所述高度的比率等于8或者1/8时,将帧内预测模式14或者帧内预测模式54对应的第三帧内预测角的tan(α)映射到4/32;
根据所述多个帧内预测模式,对所述编码单元进行编码。
14.一种对视频序列进行解码的装置,包括:
设置模块,被配置为确定编码单元的多个帧内预测模式,所述多个帧内预测模式与多个帧内预测角分别对应;以及
确定编码单元的宽度与高度的比率;
在67个帧内预测模式的情况下,当所述宽度与所述高度的比率等于2或者1/2时,将帧内预测模式8或者帧内预测模式60对应的第一帧内预测角的tan(α)映射到16/32;
当所述宽度与所述高度的比率等于4或者1/4时,将帧内预测模式12或者帧内预测模式56对应的第二帧内预测角的tan(α)映射到8/32;
当所述宽度与所述高度的比率等于8或者1/8时,将帧内预测模式14或者帧内预测模式54对应的第三帧内预测角的tan(α)映射到4/32;
选择模块,被配置为选择所述多个帧内预测模式中的一个,以对所述视频序列进行解码。
15.一种对视频序列进行编码的装置,包括:
设置模块,被配置为确定编码单元的多个帧内预测模式,所述多个帧内预测模式与多个帧内预测角分别对应;以及
确定编码单元的宽度与高度的比率;
在67个帧内预测模式的情况下,当所述宽度与所述高度的比率等于2或者1/2时,将帧内预测模式8或者帧内预测模式60对应的第一帧内预测角的tan(α)映射到16/32;
当所述宽度与所述高度的比率等于4或者1/4时,将帧内预测模式12或者帧内预测模式56对应的第二帧内预测角的tan(α)映射到8/32;
当所述宽度与所述高度的比率等于8或者1/8时,将帧内预测模式14或者帧内预测模式54对应的第三帧内预测角的tan(α)映射到4/32;
选择模块,被配置为根据所述多个帧内预测模式,对所述编码单元进行编码。
16.一种非暂时性计算机可读存储介质,所述计算机可读存储介质存储有计算机可读指令,用于被处理器执行时,实现权利要求1至6中任一项所述的对视频序列进行解码的方法、根据权利要求7所述的编码方法。
CN201980021903.9A 2018-07-16 2019-06-03 对视频序列进行解码、编码的方法、装置及存储介质 Active CN112236997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311187543.4A CN117156140A (zh) 2018-07-16 2019-06-03 对视频序列进行解码、编码的方法、装置及存储介质

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862698526P 2018-07-16 2018-07-16
US62/698,526 2018-07-16
US16/202,876 2018-11-28
US16/202,876 US10630979B2 (en) 2018-07-16 2018-11-28 Reference sample padding and filtering for intra prediction in video compression
PCT/US2019/035116 WO2020018181A1 (en) 2018-07-16 2019-06-03 Reference sample padding and filtering for intra prediction in video compression

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311187543.4A Division CN117156140A (zh) 2018-07-16 2019-06-03 对视频序列进行解码、编码的方法、装置及存储介质

Publications (2)

Publication Number Publication Date
CN112236997A CN112236997A (zh) 2021-01-15
CN112236997B true CN112236997B (zh) 2023-09-26

Family

ID=69139809

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201980021903.9A Active CN112236997B (zh) 2018-07-16 2019-06-03 对视频序列进行解码、编码的方法、装置及存储介质
CN202311187543.4A Pending CN117156140A (zh) 2018-07-16 2019-06-03 对视频序列进行解码、编码的方法、装置及存储介质

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311187543.4A Pending CN117156140A (zh) 2018-07-16 2019-06-03 对视频序列进行解码、编码的方法、装置及存储介质

Country Status (6)

Country Link
US (4) US10630979B2 (zh)
EP (1) EP3824626A4 (zh)
JP (3) JP7106661B2 (zh)
KR (3) KR20240023237A (zh)
CN (2) CN112236997B (zh)
WO (1) WO2020018181A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630979B2 (en) 2018-07-16 2020-04-21 Tencent America LLC Reference sample padding and filtering for intra prediction in video compression
KR20210121053A (ko) 2019-01-02 2021-10-07 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 인트라 예측 방법, 장치 및 컴퓨터 저장 매체
JP2023005868A (ja) * 2021-06-29 2023-01-18 Kddi株式会社 画像復号装置、画像復号方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159631A1 (ko) * 2015-03-29 2016-10-06 엘지전자(주) 비디오 신호의 인코딩/디코딩 방법 및 장치
WO2017192995A1 (en) * 2016-05-06 2017-11-09 Vid Scale, Inc. Method and system for decoder-side intra mode derivation for block-based video coding
CN107743705A (zh) * 2015-06-18 2018-02-27 高通股份有限公司 帧内预测及帧内模式译码
WO2018117892A1 (en) * 2016-12-23 2018-06-28 Huawei Technologies Co., Ltd. An intra-prediction apparatus for extending a set of predetermined directional intra-prediction modes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609763B2 (en) * 2003-07-18 2009-10-27 Microsoft Corporation Advanced bi-directional predictive coding of video frames
US8885701B2 (en) * 2010-09-08 2014-11-11 Samsung Electronics Co., Ltd. Low complexity transform coding using adaptive DCT/DST for intra-prediction
US9008175B2 (en) * 2010-10-01 2015-04-14 Qualcomm Incorporated Intra smoothing filter for video coding
KR20120140181A (ko) * 2011-06-20 2012-12-28 한국전자통신연구원 화면내 예측 블록 경계 필터링을 이용한 부호화/복호화 방법 및 그 장치
CN104247422B (zh) * 2011-11-07 2018-09-11 华为技术有限公司 用于改进帧内预测的新的角度表的方法和装置
US9344722B2 (en) * 2011-11-18 2016-05-17 Futurewei Technologies, Inc. Scanning of prediction residuals in high efficiency video coding
US20150003524A1 (en) 2012-01-13 2015-01-01 Sharp Kabushiki Kaisha Image decoding device, image encoding device, and data structure of encoded data
CN107509078B (zh) * 2012-04-16 2021-07-20 韩国电子通信研究院 用于解码视频信号的方法
US9967594B2 (en) * 2013-06-28 2018-05-08 Mozilla Corporation Probability modeling of intra prediction modes
US10321140B2 (en) * 2015-01-22 2019-06-11 Mediatek Singapore Pte. Ltd. Method of video coding for chroma components
US20160373742A1 (en) * 2015-06-18 2016-12-22 Qualcomm Incorporated Intra prediction and intra mode coding
WO2017034331A1 (ko) * 2015-08-27 2017-03-02 엘지전자 주식회사 영상 코딩 시스템에서 크로마 샘플 인트라 예측 방법 및 장치
WO2017105141A1 (ko) * 2015-12-17 2017-06-22 삼성전자 주식회사 영상을 부호화/복호화 하는 방법 및 그 장치
US10523949B2 (en) * 2016-05-25 2019-12-31 Arris Enterprises Llc Weighted angular prediction for intra coding
US10630979B2 (en) * 2018-07-16 2020-04-21 Tencent America LLC Reference sample padding and filtering for intra prediction in video compression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159631A1 (ko) * 2015-03-29 2016-10-06 엘지전자(주) 비디오 신호의 인코딩/디코딩 방법 및 장치
CN107743705A (zh) * 2015-06-18 2018-02-27 高通股份有限公司 帧内预测及帧内模式译码
WO2017192995A1 (en) * 2016-05-06 2017-11-09 Vid Scale, Inc. Method and system for decoder-side intra mode derivation for block-based video coding
WO2018117892A1 (en) * 2016-12-23 2018-06-28 Huawei Technologies Co., Ltd. An intra-prediction apparatus for extending a set of predetermined directional intra-prediction modes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CE3-related: Wide angular intra prediction for non-square blocks,JVET-K0289_v1;Liang Zhao等;《Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 11th Meeting: Ljubljana, SI, 10–18 July 2018》;20180715;正文第1-6页 *
CE3-related: Wide-angle intra prediction for non-square blocks,JVET-K0500_r3;Liang Zhao等;《Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 11th Meeting: Ljubljana, SI, 10–18 July 2018》;20180715;正文第1-11页 *
Liang Zhao等.CE3-related: Wide-angle intra prediction for non-square blocks,JVET-K0500_r3.《Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 11th Meeting: Ljubljana, SI, 10–18 July 2018》.2018, *

Also Published As

Publication number Publication date
US20210377522A1 (en) 2021-12-02
CN117156140A (zh) 2023-12-01
KR20200125683A (ko) 2020-11-04
JP7106661B2 (ja) 2022-07-26
JP2021513815A (ja) 2021-05-27
US20230379457A1 (en) 2023-11-23
KR102459185B1 (ko) 2022-10-27
US20200221082A1 (en) 2020-07-09
US11128863B2 (en) 2021-09-21
KR102635400B1 (ko) 2024-02-13
EP3824626A1 (en) 2021-05-26
US10630979B2 (en) 2020-04-21
JP7305851B2 (ja) 2023-07-10
US20200021803A1 (en) 2020-01-16
KR20220143971A (ko) 2022-10-25
KR20240023237A (ko) 2024-02-20
EP3824626A4 (en) 2022-04-20
CN112236997A (zh) 2021-01-15
US11736685B2 (en) 2023-08-22
WO2020018181A1 (en) 2020-01-23
JP2022132417A (ja) 2022-09-08
JP2023115281A (ja) 2023-08-18

Similar Documents

Publication Publication Date Title
CN111989921B (zh) 一种用于视频解码的方法和相关装置
JP7062788B2 (ja) ビデオを復号する方法、装置およびコンピュータプログラム
CN112154661B (zh) 一种用于视频编码、解码的方法和相关装置
CN113228659B (zh) 帧内模式编解码的方法和装置
JP2022105007A (ja) ビデオ圧縮における複数ラインのフレーム内予測のための方法および装置
JP7027617B2 (ja) ビデオエンコーディング及びデコーディングのための方法、装置、コンピュータプログラム、及び非一時的なコンピュータ可読媒体
CN112997483A (zh) 用于多行帧内预测的方法和装置
CN113545091B (zh) 对视频序列执行最大变换大小控制的解码方法和装置
CN110784711B (zh) 生成用于视频序列编码或解码的合并候选列表的方法、装置
CN110708558B (zh) 变换类型的表示方法和设备
CN115118997A (zh) 使用dst-vii变换核对视频序列进行编码的方法和设备
JP7457170B2 (ja) サブブロックに基づく時間的動きベクトル予測のための方法並びにその機器及びコンピュータプログラム
CN110784724B (zh) 控制用于解码或编码视频序列的残差编码的方法和装置
CN117978990A (zh) 视频解码、编码方法、计算机设备及计算机可读介质
CN112753223A (zh) 用于视频编码的方法和装置
US20220201307A1 (en) Method and apparatus for video coding
CN112236997B (zh) 对视频序列进行解码、编码的方法、装置及存储介质
CN112235573A (zh) 视频编解码的方法、装置、电子设备、存储介质
CN112118456A (zh) 莱斯参数选择方法、装置、计算机设备及存储介质
CN115088260A (zh) 视频编解码方法和装置
CN113508582B (zh) 视频编码、解码的方法、装置及可读介质
JP7061680B2 (ja) ビデオ符号化において縮減された前のラインバッファを使用するインター予測の方法及び装置
CN115104308A (zh) 视频编解码的方法和装置
CN115804089A (zh) 零残差标志编解码
CN113348664A (zh) 用于视频编解码的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant