CN112234633A - 一种基于提高电网运行可靠性的储能单元分配方法 - Google Patents

一种基于提高电网运行可靠性的储能单元分配方法 Download PDF

Info

Publication number
CN112234633A
CN112234633A CN202011091923.4A CN202011091923A CN112234633A CN 112234633 A CN112234633 A CN 112234633A CN 202011091923 A CN202011091923 A CN 202011091923A CN 112234633 A CN112234633 A CN 112234633A
Authority
CN
China
Prior art keywords
energy storage
power
storage unit
dsi
judging whether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011091923.4A
Other languages
English (en)
Other versions
CN112234633B (zh
Inventor
徐青山
李佳泓
夏元兴
李强
吴盛军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Southeast University
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical Southeast University
Priority to CN202011091923.4A priority Critical patent/CN112234633B/zh
Publication of CN112234633A publication Critical patent/CN112234633A/zh
Application granted granted Critical
Publication of CN112234633B publication Critical patent/CN112234633B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提出了一种基于提高电网运行可靠性的储能单元分配方法,属于电力系统技术领域,包括步骤:S1、对配电系统进行N‑1应急分析,以确定每个分配的分布式储能单元需要多少电力,以满足所有可能微岛的需求电力;S2、利用顺序蒙特卡罗模拟,通过估计预期未供应能量和中断成本指数,对配电系统的可靠性进行评估;本发明的主要目标是确定要安装的存储单元和要卸载的负载的最佳组合,以便有效地解决所有可能的突发事件,本发明能精准计算得到储能单元以及负荷容量配置结果。

Description

一种基于提高电网运行可靠性的储能单元分配方法
技术领域
本发明涉及一种基于提高电网运行可靠性的储能单元分配方法,属于电力系统技术领域。
背景技术
电力系统正在从传统的集中发电连接到输电网络的调节系统,演变为一种不受管制的结构,允许小型发电机直接连接到电网络。这样的网络变得活跃起来,通常被称为主动电网络,在这种网络中,新技术应该促进适应这种活跃的环境,并使智能电网概念的使用成为可能。能源存储系统是一项很有前途的技术,可以支持智能电网的整合,因为它们有能力实现成功的孤岛化,并促进可再生能源的高渗透水平的整合。储能系统还可以为配电设施提供额外的好处,比如一个有效的扩展替代方案、需求侧管理,以及减轻电能质量问题的方法。
发明内容
发明目的:本发明提出一种基于提高电网运行可靠性的储能单元分配方法,能精准计算得到储能单元以及负荷容量配置结果。
本发明的目的可以通过以下技术方案实现:
一种基于提高电网运行可靠性的储能单元分配方法,包括如下步骤:
S1:对配电系统进行N-1应急分析,以确定每个分配的分布式储能单元需要多少电力,以满足所有可能微岛的需求电力;
S2:利用顺序蒙特卡罗模拟,通过估计预期未供应能量和中断成本指数,对配电系统的可靠性进行评估。
作为本发明的一种优选方案,在S1中,对配电系统进行N-1应急分析,以确定每个分配的分布式储能单元需要多少电力,以满足所有可能微岛的需求电力,主要步骤如下:
S11:分析每一种线路故障情况,定义k为故障线路变量,令k=1;
S12:断开故障线路k,行程包含一个或多个储能单元的孤岛;
S13:分析孤岛m,具体步骤如下:
S131:定义负荷与分布式发电组合状态l,令l=1;
S132:根据下述公式分析微岛潮流情况,并计算出微岛有功和无功功率需求:
对于第k种故障发生时,第l种负荷与分布式发电组合状态下,第i个母线如果没有安装分布式储能单元,则功率计算公式如下:
Figure BDA0002722407720000021
Figure BDA0002722407720000022
对于第k种故障发生时,第l种负荷与分布式发电组合状态下,第i个母线如果没有安装分布式储能单元,则功率计算公式如下:
Figure BDA0002722407720000023
Figure BDA0002722407720000024
Figure BDA0002722407720000025
Figure BDA0002722407720000026
Figure BDA0002722407720000027
式中:i和j为系统母线变量;N为系统母线总数;PDS和QDS为系统输出有功和无功功率;PD和QD为系统需要的有功和无功功率;PG和QG系统产生的有功和无功功率;Mk是发生故障k时装储能单元的母线变量;PSH是需要被卸载负荷的比例,若全部卸载则为1;V和δ分别为电压的幅值和角度;Y和θ分别为母线导纳矩阵参数的大小和角度;
S133:判断系统是否满足以下约束:
电压约束:
Figure BDA0002722407720000031
Figure BDA0002722407720000032
线路电流约束:
Figure BDA0002722407720000033
分布式储能大小约束:
Figure BDA0002722407720000034
Figure BDA0002722407720000035
Figure BDA0002722407720000036
Figure BDA0002722407720000037
负荷卸载约束:
Figure BDA0002722407720000038
Figure BDA0002722407720000039
式中:I为线路电流;SDS为储能功率大小;EDS为储能能量大小;xi、yi和zi为控制需要安装的储能装置和母线i上需要卸载的负荷的整型决策变量;CB为安装分布式储能装置的候选母线;
S134判断l是否等于L,即负荷与分布式发电组合总状态,若等于,则继续;反之,则令l=l+1,并跳回S132,重新执行;
S14:判断是否所有孤岛都被分析了,若均被分析了,则继续执行;反之则令m=m+1,并跳回S13,重新执行;
S15:判断k是否等于所有可能出现的故障情况数目,若等于,则结束循环;反之则令k=k+1,并跳回S12,重新执行。
作为本发明的一种优选方案,S2所述利用顺序蒙特卡罗模拟,通过估计预期未供应能量和中断成本指数,对配电系统的可靠性进行评估,主要步骤如下:
S21:建立用于研究的系统历史运行记录;
S22:分析t小时电网状态,判断其处于正常运行模式还是孤岛模式,若为正常运行模式,则执行S23;若为孤岛运行模式,则执行S24;
S23:设置PSHi,t=0,PDSi,t=SDSt,并判断是否满足下述约束条件:
Figure BDA0002722407720000041
Figure BDA0002722407720000042
若满足上述条件,则储能系统处于充电状态,计算
Figure BDA0002722407720000043
Figure BDA0002722407720000044
若不满足上述条件,则储能系统处于充电状态,设置PDSi,t=0
继续执行S25,
S24:判断每个储能单元是否储能充足,判断公式如下:
Figure BDA0002722407720000045
若满足,则储能单元处于成功状态,设置PSHi,t=0和PDSi,t=0
若不满足,则判断该母线上是否安装了储能单元
S241:若安装了储能单元,则设置PDSi,t=0,并二次调用PDSi,t和QDSi,t;判断储能单元容量和功率是否满足以下条件:
EDSi,t≥PDSi,tΔt
SDSi,t≥SDSi
若满足条件,则储能系统处于放电状态,并计算
Figure BDA0002722407720000046
Figure BDA0002722407720000047
若不满足上述条件,则储能系统处于失败,设置PDSi,t=0和PSHi,t=1
继续执行S25:
S242:若没有安装储能单元,则判断是否满足以下条件:
Figure BDA0002722407720000051
若满足条件,则处于成功状态,设置PSHi,t=PSHi
若不满足条件,则处于失败状态,设置PSHi,t=PSHi
S25:判断是否所有时刻都已经循环完,判断公式如下:
t=8760*Ny
若还未循环完,则令t=t+1,并跳回S22重新执行;若循环完,则计算年未供应能量ENS和年中断成本ECOST,计算公式如下:
Figure BDA0002722407720000052
Figure BDA0002722407720000053
根据上述式判断电网运行可靠性,年未供应能量越小,则电网运行可靠性越高。
本发明的有益效果:
本发明确定要安装的储能单元和要卸载的负荷最佳组合,以便有效地解决所有可能的突发事件。随着用电用户数量的与日俱增与极端天气情况等现象频频发生,各种停电现象不断发生。在出现紧急事故时,为了提高电网的稳定性,储能装置的使用将带来巨大好处。同时,最优安排储能装置与卸载负荷能够最科学得解决所有可能出现的突发事件。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的步骤S1的流程图。
图2为本发明的步骤S2的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图所示,一种基于提高电网运行可靠性的储能单元分配方法,包括如下步骤:
S1:对配电系统进行N-1应急分析,以确定每个分配的分布式储能单元需要多少电力,以满足所有可能微岛的需求电力。
S2:利用顺序蒙特卡罗模拟,通过估计预期未供应能量和中断成本指数,对配电系统的可靠性进行评估。
在S1中,对配电系统进行N-1应急分析,以确定每个分配的分布式储能单元需要多少电力,以满足所有可能微岛的需求电力,主要步骤如下:
S11:分析每一种线路故障情况,定义k为故障线路变量,令k=1;
S12:断开故障线路k,行程包含一个或多个储能单元的孤岛;
S13:分析孤岛m,具体步骤如下:
S131:定义负荷与分布式发电组合状态l,令l=1;
S132:根据下述公式分析微岛潮流情况,并计算出微岛有功和无功功率需求:
对于第k种故障发生时,第l种负荷与分布式发电组合状态下,第i个母线如果没有安装分布式储能单元,则功率计算公式如下:
Figure BDA0002722407720000071
Figure BDA0002722407720000072
对于第k种故障发生时,第l种负荷与分布式发电组合状态下,第i个母线如果没有安装分布式储能单元,则功率计算公式如下:
Figure BDA0002722407720000073
Figure BDA0002722407720000074
Figure BDA0002722407720000075
Figure BDA0002722407720000076
Figure BDA0002722407720000077
式中:i和j为系统母线变量;N为系统母线总数;PDS和QDS为系统输出有功和无功功率;PD和QD为系统需要的有功和无功功率;PG和QG系统产生的有功和无功功率;Mk是发生故障k时装储能单元的母线变量;PSH是需要被卸载负荷的比例,若全部卸载则为1;V和δ分别为电压的幅值和角度;Y和θ分别为母线导纳矩阵参数的大小和角度;
S133:判断系统是否满足以下约束:
电压约束:
Figure BDA0002722407720000078
Figure BDA0002722407720000079
线路电流约束:
Figure BDA00027224077200000710
分布式储能大小约束:
Figure BDA0002722407720000081
Figure BDA0002722407720000082
Figure BDA0002722407720000083
Figure BDA0002722407720000084
负荷卸载约束:
Figure BDA0002722407720000085
Figure BDA0002722407720000086
式中:I为线路电流;SDS为储能功率大小;EDS为储能能量大小;xi、yi和zi为控制需要安装的储能装置和母线i上需要卸载的负荷的整型决策变量;CB为安装分布式储能装置的候选母线。
S134判断l是否等于L,即负荷与分布式发电组合总状态,若等于,则继续;反之,则令l=l+1,并跳回S132,重新执行;
S14:判断是否所有孤岛都被分析了,若均被分析了,则继续执行;反之则令m=m+1,并跳回S13,重新执行;
S15:判断k是否等于所有可能出现的故障情况数目,若等于,则结束循环;反之则令k=k+1,并跳回S12,重新执行。
S2所述利用顺序蒙特卡罗模拟,通过估计预期未供应能量和中断成本指数,对配电系统的可靠性进行评估,主要步骤如下:
S21:建立用于研究的系统历史运行记录。
S22:分析t小时电网状态,判断其处于正常运行模式还是孤岛模式,若为正常运行模式,则执行S23;若为孤岛运行模式,则执行S24。
S23:设置PSHi,t=0,PDSi,t=SDSt,并判断是否满足下述约束条件:
Figure BDA0002722407720000087
Figure BDA0002722407720000091
若满足上述条件,则储能系统处于充电状态,计算
Figure BDA0002722407720000092
Figure BDA0002722407720000093
若不满足上述条件,则储能系统处于充电状态,设置PDSi,t=0
继续执行S25,
S24:判断每个储能单元是否储能充足,判断公式如下:
Figure BDA0002722407720000094
若满足,则储能单元处于成功状态,设置PSHi,t=0和PDSi,t=0
若不满足,则判断该母线上是否安装了储能单元
S241:若安装了储能单元,则设置PDSi,t=0,并二次调用PDSi,t和QDSi,t。判断储能单元容量和功率是否满足以下条件:
EDSi,t≥PDSi,tΔt
SDSi,t≥SDSi
若满足条件,则储能系统处于放电状态,并计算
Figure BDA0002722407720000095
Figure BDA0002722407720000096
若不满足上述条件,则储能系统处于失败,设置PDSi,t=0和PSHi,t=1
继续执行S25:
S242:若没有安装储能单元,则判断是否满足以下条件:
Figure BDA0002722407720000097
若满足条件,则处于成功状态,设置PSHi,t=PSHi
若不满足条件,则处于失败状态,设置PSHi,t=PSHi
S25:判断是否所有时刻都已经循环完,判断公式如下:
t=8760*Ny
若还未循环完,则令t=t+1,并跳回S22重新执行;若循环完,则计算年未供应能量ENS和年中断成本ECOST,计算公式如下:
Figure BDA0002722407720000101
Figure BDA0002722407720000102
根据上述式判断电网运行可靠性,年未供应能量越小,则电网运行可靠性越高。
本发明提出了一种基于提高电网运行可靠性的储能单元分配方法。近年来,分布式发电的应用导致了智能电网概念的出现。智能电网的目的主要是促进可再生能源的整合,实现更高的系统可靠性和效率。储能系统提供了许多好处,其中一个好处是通过成功的孤岛运行提高了系统的可靠性。为了避免停电,储能装置的成本根据用户愿意支付的可靠性值进行优化。因此,本发明的主要目标是确定要安装的存储单元和要卸载的负载的最佳组合,以便有效地解决所有可能的突发事件。同时,本发明采用了一种包括考虑系统组成部分的随机性质的概率方法。
本发明确定要安装的储能单元和要卸载的负荷最佳组合,以便有效地解决所有可能的突发事件。随着用电用户数量的与日俱增与极端天气情况等现象频频发生,各种停电现象不断发生。在出现紧急事故时,为了提高电网的稳定性,储能装置的使用将带来巨大好处。同时,最优安排储能装置与卸载负荷能够最科学得解决所有可能出现的突发事件。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (3)

1.一种基于提高电网运行可靠性的储能单元分配方法,其特征在于,包括如下步骤:
S1:对配电系统进行N-1应急分析,以确定每个分配的分布式储能单元需要多少电力,以满足所有可能微岛的需求电力;
S2:利用顺序蒙特卡罗模拟,通过估计预期未供应能量和中断成本指数,对配电系统的可靠性进行评估。
2.根据权利要求1所述的一种基于提高电网运行可靠性的储能单元分配方法,其特征在于,在S1中,对配电系统进行N-1应急分析,以确定每个分配的分布式储能单元需要多少电力,以满足所有可能微岛的需求电力,主要步骤如下:
S11:分析每一种线路故障情况,定义k为故障线路变量,令k=1;
S12:断开故障线路k,行程包含一个或多个储能单元的孤岛;
S13:分析孤岛m,具体步骤如下:
S131:定义负荷与分布式发电组合状态l,令l=1;
S132:根据下述公式分析微岛潮流情况,并计算出微岛有功和无功功率需求:
对于第k种故障发生时,第l种负荷与分布式发电组合状态下,第i个母线如果没有安装分布式储能单元,则功率计算公式如下:
Figure FDA0002722407710000011
Figure FDA0002722407710000012
对于第k种故障发生时,第l种负荷与分布式发电组合状态下,第i个母线如果没有安装分布式储能单元,则功率计算公式如下:
Figure FDA0002722407710000021
Figure FDA0002722407710000022
Figure FDA0002722407710000023
Figure FDA0002722407710000024
Figure FDA0002722407710000025
式中:i和j为系统母线变量;N为系统母线总数;PDS和QDS为系统输出有功和无功功率;PD和QD为系统需要的有功和无功功率;PG和QG系统产生的有功和无功功率;Mk是发生故障k时装储能单元的母线变量;PSH是需要被卸载负荷的比例,若全部卸载则为1;V和δ分别为电压的幅值和角度;Y和θ分别为母线导纳矩阵参数的大小和角度;
S133:判断系统是否满足以下约束:
电压约束:
Figure FDA0002722407710000026
Figure FDA0002722407710000027
线路电流约束:
Figure FDA0002722407710000028
分布式储能大小约束:
Figure FDA0002722407710000029
Figure FDA00027224077100000210
Figure FDA00027224077100000211
Figure FDA00027224077100000212
负荷卸载约束:
Figure FDA0002722407710000031
Figure FDA0002722407710000032
式中:I为线路电流;SDS为储能功率大小;EDS为储能能量大小;xi、yi和zi为控制需要安装的储能装置和母线i上需要卸载的负荷的整型决策变量;CB为安装分布式储能装置的候选母线;
S134判断l是否等于L,即负荷与分布式发电组合总状态,若等于,则继续;反之,则令l=l+1,并跳回S132,重新执行;
S14:判断是否所有孤岛都被分析了,若均被分析了,则继续执行;反之则令m=m+1,并跳回S13,重新执行;
S15:判断k是否等于所有可能出现的故障情况数目,若等于,则结束循环;反之则令k=k+1,并跳回S12,重新执行。
3.根据权利要求1所述的一种基于提高电网运行可靠性的储能单元分配方法,其特征在于,S2所述利用顺序蒙特卡罗模拟,通过估计预期未供应能量和中断成本指数,对配电系统的可靠性进行评估,主要步骤如下:
S21:建立用于研究的系统历史运行记录;
S22:分析t小时电网状态,判断其处于正常运行模式还是孤岛模式,若为正常运行模式,则执行S23;若为孤岛运行模式,则执行S24;
S23:设置PSHi,t=0,PDSi,t=SDSt,并判断是否满足下述约束条件:
Figure FDA0002722407710000033
Figure FDA0002722407710000034
若满足上述条件,则储能系统处于充电状态,计算
Figure FDA0002722407710000035
Figure FDA0002722407710000036
若不满足上述条件,则储能系统处于充电状态,设置PDSi,t=0
继续执行S25,
S24:判断每个储能单元是否储能充足,判断公式如下:
Figure FDA0002722407710000041
若满足,则储能单元处于成功状态,设置PSHi,t=0和PDSi,t=0
若不满足,则判断该母线上是否安装了储能单元
S241:若安装了储能单元,则设置PDSi,t=0,并二次调用PDSi,t和QDSi,t;判断储能单元容量和功率是否满足以下条件:
EDSi,t≥PDSi,tΔt
SDSi,t≥SDSi
若满足条件,则储能系统处于放电状态,并计算
Figure FDA0002722407710000042
Figure FDA0002722407710000043
若不满足上述条件,则储能系统处于失败,设置PDSi,t=0和PSHi,t=1
继续执行S25:
S242:若没有安装储能单元,则判断是否满足以下条件:
Figure FDA0002722407710000044
若满足条件,则处于成功状态,设置PSHi,t=PSHi
若不满足条件,则处于失败状态,设置PSHi,t=PSHi
S25:判断是否所有时刻都已经循环完,判断公式如下:
t=8760*Ny
若还未循环完,则令t=t+1,并跳回S22重新执行;若循环完,则计算年未供应能量ENS和年中断成本ECOST,计算公式如下:
Figure FDA0002722407710000051
Figure FDA0002722407710000052
根据上述式判断电网运行可靠性,年未供应能量越小,则电网运行可靠性越高。
CN202011091923.4A 2020-10-13 2020-10-13 一种基于提高电网运行可靠性的储能单元分配方法 Active CN112234633B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011091923.4A CN112234633B (zh) 2020-10-13 2020-10-13 一种基于提高电网运行可靠性的储能单元分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011091923.4A CN112234633B (zh) 2020-10-13 2020-10-13 一种基于提高电网运行可靠性的储能单元分配方法

Publications (2)

Publication Number Publication Date
CN112234633A true CN112234633A (zh) 2021-01-15
CN112234633B CN112234633B (zh) 2022-05-17

Family

ID=74112508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011091923.4A Active CN112234633B (zh) 2020-10-13 2020-10-13 一种基于提高电网运行可靠性的储能单元分配方法

Country Status (1)

Country Link
CN (1) CN112234633B (zh)

Also Published As

Publication number Publication date
CN112234633B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Farzin et al. Role of outage management strategy in reliability performance of multi-microgrid distribution systems
Wong et al. Review on the optimal placement, sizing and control of an energy storage system in the distribution network
Chen et al. Multi-time step service restoration for advanced distribution systems and microgrids
Moghaddam et al. Predictive operation and optimal sizing of battery energy storage with high wind energy penetration
WO2022257712A1 (zh) 面向韧性提升的配电网分布式电源储能控制方法及系统
US9876356B2 (en) Dynamic and adaptive configurable power distribution system
Mansouri et al. Resilience enhancement via automatic switching considering direct load control program and energy storage systems
Krishnamurthy et al. Effects of power electronics, energy storage, power distribution architecture, and lifeline dependencies on microgrid resiliency during extreme events
KR101899123B1 (ko) 국가 전력의 효율적 운용을 위한 국가 전력 통합 운용 시스템
Xu et al. Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation
Choobineh et al. Emergency electric service restoration in the aftermath of a natural disaster
KR20190140296A (ko) 위험도 분석을 이용한 가상발전소 운영시스템 및 방법
Moghimi et al. Battery energy storage cost and capacity optimization for university research center
Zhu et al. Co-optimization of supply and demand resources for load restoration of distribution system under extreme weather
Narkhede et al. Trends and challenges in optimization techniques for operation and control of Microgrid-A review
CN110061492B (zh) 考虑配电网供电可靠性的储能系统容量优化配置方法
Malla et al. Coordinated priority-aware charging of distributed batteries in oversubscribed data centers
Brunaccini et al. Fuel cells hybrid systems for resilient microgrids
Ramesh et al. Enhancing system flexibility through corrective demand response in security-constrained unit commitment
Wang et al. The design of battery energy storage system in a unified power-flow control scheme
CN112234633B (zh) 一种基于提高电网运行可靠性的储能单元分配方法
Bai et al. A Renewable Energy Capacity Allocation Planning Method Considering the Balance of Renewable Energy Accommodation and System Investment Costs
Shimim et al. Resilient and extreme-event-aware microgrid using energy storage and load curtailment
Ramabhotla et al. A review on reliability of microgrid
Etherden et al. The use of battery storage for increasing the hosting capacity of the grid for renewable electricity production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant