CN112234607A - 一种考虑快速启停设备的多能虚拟电厂调节能力计算方法 - Google Patents

一种考虑快速启停设备的多能虚拟电厂调节能力计算方法 Download PDF

Info

Publication number
CN112234607A
CN112234607A CN202011022651.2A CN202011022651A CN112234607A CN 112234607 A CN112234607 A CN 112234607A CN 202011022651 A CN202011022651 A CN 202011022651A CN 112234607 A CN112234607 A CN 112234607A
Authority
CN
China
Prior art keywords
power plant
virtual power
scheduling
energy virtual
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011022651.2A
Other languages
English (en)
Other versions
CN112234607B (zh
Inventor
孙宏斌
孙勇
郭庆来
李宝聚
王彬
李振元
赵昊天
张海锋
潘昭光
王尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
State Grid Jilin Electric Power Corp
Original Assignee
Tsinghua University
State Grid Jilin Electric Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, State Grid Jilin Electric Power Corp filed Critical Tsinghua University
Priority to CN202011022651.2A priority Critical patent/CN112234607B/zh
Publication of CN112234607A publication Critical patent/CN112234607A/zh
Application granted granted Critical
Publication of CN112234607B publication Critical patent/CN112234607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提出一种考虑快速启停设备的多能虚拟电厂调节能力计算方法,属于综合能源系统的运行控制技术领域。该方法首先建立由目标函数和约束条件构成的多能虚拟电厂调节能力计算模型,并将该模型转化为矩阵形式;利用改进的嵌套列约束生成算法对矩阵形式的多能虚拟电厂调节能力计算模型进行求解,获得多能虚拟电厂调节能力计算结果。本方法计算的虚拟电厂调节能力包括每个调度时刻的功率基准值及最大向上、向下调节能力,计算出的功率基准及调节能力保证了多能虚拟电厂的成本最小,且本方法可保证计算出的调节能力鲁棒可行,避免了电力系统的二次调度。本发明旨在计算虚拟电厂在调峰辅助服务市场中的调节能力,提高电力系统的灵活性。

Description

一种考虑快速启停设备的多能虚拟电厂调节能力计算方法
技术领域
本发明涉及一种考虑快速启停设备的多能虚拟电厂调节能力计算方法,属于综合能源系统的运行控制技术领域。
技术背景
能源互联网环境下,以新能源发电为代表的大量分布式资源的随机性、波动性为电力系统乃至能源系统带来了巨大挑战,对电网的安全、可靠、经济运行产生重大影响。虚拟电厂作为对分布式资源接入电网进行有效管理的重要形式,将大量的分布式资源、可控负荷和储能装置聚合成一个虚拟的整体,从而参与电网的运行和调度,提升电网运行的安全性与经济性,同时降低电网投资成本。
多能虚拟电厂如何调度、利用其内部的多能分布式资源参与电网调度,是虚拟电厂需要研究的课题之一。对于一个多能虚拟电厂,计算其调节能力是电网对其进行调控,利用其灵活性的基础。例如专利申请号为201910092126.9、发明名称为“一种基于最大内嵌正方体的虚拟电厂灵活性聚合方法”的中国专利申请,用其最大内嵌正方体表示虚拟电厂的调节能力,但该聚合方法未考虑虚拟电厂中的多种能量转换设备,例如热电联产机组和电锅炉等,且未考虑虚拟电厂的调节能力可能随时间变化而变化的特点,因此该聚合方法过于保守,损失了一定的灵活性。
发明内容
本发明的目的是为克服已有技术的不足之处,提出一种考虑快速启停设备的多能虚拟电厂调节能力计算方法。本方法计算的虚拟电厂调节能力包括每个调度时刻的功率基准值及最大向上、向下调节能力,计算出的功率基准及调节能力保证了多能虚拟电厂的成本最小,且本方法可保证计算出的调节能力鲁棒可行,避免了电力系统的二次调度。本发明旨在计算虚拟电厂在调峰辅助服务市场中的调节能力,提高电力系统的灵活性。
本发明提出一种考虑快速启停设备的多能虚拟电厂聚合方法,其特征在于,该方法包括以下步骤:
(1)记多能虚拟电厂调节能力的变量集合为
Figure BDA0002701155280000011
其中,t为调度时段的编号,γ为调度时段的集合,
Figure BDA0002701155280000021
为多能虚拟电厂在调度时段t的联络线有功功率的基准值,
Figure BDA0002701155280000022
Figure BDA0002701155280000023
分别为多能虚拟电厂在调度时段t的联络线有功功率最大向上调节量和最大向下调节量;
(2)建立多能虚拟电厂调节能力计算模型的目标函数:
Figure BDA0002701155280000024
SSD=SG∪SCHP∪SGB∪SAC,SQD=SEB∪SEC
式中,Δt为相邻调度时段之间的时间间隔,i为多能虚拟电厂中任一设备的编号,SSD为多能虚拟电厂内部所有传统火电机组、热电联产机组、燃气锅炉和吸收式机组共同构成的集合,SG为多能虚拟电厂内部所有传统火电机组共同构成的集合,SCHP为多能虚拟电厂内部所有热电联产机组共同构成的集合,SGB为多能虚拟电厂内部所有燃气锅炉共同构成的集合,SAC为多能虚拟电厂内部所有吸收式机组共同构成的集合,SQD为多能虚拟电厂内部所有电锅炉和电制冷机共同构成的集合,SEB为多能虚拟电厂内部所有电锅炉共同构成的集合,SEC为多能虚拟电厂内部所有电制冷机共同构成的集合,
Figure BDA0002701155280000025
为调度时段t时的购电价格,
Figure BDA0002701155280000026
为多能虚拟电厂在调度时段t参与辅助服务市场向上调节单位有功功率的备用容量价格,
Figure BDA0002701155280000027
为多能虚拟电厂在调度时段t参与辅助服务市场向下调节单位有功功率的备用容量价格,cs,i为设备i的开机成本,
Figure BDA0002701155280000028
为设备i的固定费用,
Figure BDA0002701155280000029
为表征设备i在调度时段t开机动作的0-1变量,设备i在调度时段t由关机状态转变为开机状态,则
Figure BDA00027011552800000210
取值为1,其他情况下
Figure BDA00027011552800000211
取值为0,
Figure BDA00027011552800000212
为表征设备i在调度时段t运行状态的0-1变量,设备i在调度时段t处于开机状态时
Figure BDA00027011552800000213
的取值为1,设备i在调度时段t处于关机状态时
Figure BDA00027011552800000214
的取值为0,xU为第一阶段决策变量
Figure BDA00027011552800000215
Figure BDA00027011552800000216
共同构成集合,i∈SSD,即:
Figure BDA00027011552800000217
Figure BDA00027011552800000218
为调度时段t的上级电网可能向多能虚拟电厂下发的关口调度计划的有功功率值,
Figure BDA0002701155280000031
满足:
Figure BDA0002701155280000032
Ω1为所有调度时刻的
Figure BDA0002701155280000033
构成的集合,即
Figure BDA0002701155280000034
ci为传统火电机组、燃气锅炉和吸收式机组的运行成本系数,i∈SG∪SGB∪SAC;对于传统火电机组,
Figure BDA0002701155280000035
为传统火电机组i在调度时段t产生的有功功率;对于燃气锅炉,
Figure BDA0002701155280000036
为燃气锅炉i在调度时段t产生的热功率;对于吸收式机组,
Figure BDA0002701155280000037
为吸收式机组i在调度时段t产生的热功率;
Figure BDA0002701155280000038
Figure BDA0002701155280000039
分别为多能虚拟电厂在调度时段t参与辅助服务市场向上和向下调节单位有功功率的能量价格,
Figure BDA00027011552800000310
Figure BDA00027011552800000311
分别为多能虚拟电厂在调度时段t相对联络线有功功率的基准值向上调节和向下调节的有功功率值;cE,i和cH,i为热电联产机组i的成本系数,i∈SCHP
Figure BDA00027011552800000312
Figure BDA00027011552800000313
分别为热电联产机组i在调度时段t产生的有功功率和热功率,i∈SCHP;xL为第二阶段决策变量
Figure BDA00027011552800000314
Figure BDA00027011552800000315
共同构成集合,即:
Figure BDA00027011552800000316
其中,
Figure BDA00027011552800000317
中i∈SCHP
Figure BDA00027011552800000318
中i∈SHL∪SCL
Figure BDA00027011552800000319
中i∈SEB∪SEC
Figure BDA00027011552800000320
中i∈SEB∪SEC
Figure BDA00027011552800000321
为热电联产机组i在调度时段t第k个组合系数,,i∈SCHP
Figure BDA00027011552800000322
Figure BDA00027011552800000323
分别为蓄电池i在调度时段t的充电功率和放电功率,
Figure BDA00027011552800000324
为蓄电池i在调度时段t的电量,
Figure BDA00027011552800000325
为向热负荷i消耗的热功率,
Figure BDA00027011552800000326
为建筑i在调度时段t的室内温度;
(3)建立多能虚拟电厂调节能力计算模型的约束条件:
(3-1)建立设备运行状态的约束条件:
Figure BDA00027011552800000327
(3-2)建立设备运行的约束条件:
Figure BDA00027011552800000328
Figure BDA00027011552800000329
Figure BDA00027011552800000330
式中,对于传统火电机组,Pi,min和Pi,max分别为传统火电机组i在产生的有功功率的下限和上限;对于燃气锅炉,Pi,min和Pi,max分别为燃气锅炉i产生的热功率的下限和上限;对于吸收式机组,Pi,min和Pi,max分别为吸收式机组i产生的热功率的下限和上限;对于电锅炉,Pi,min和Pi,max分别为电锅炉i消耗的电功率的下限和上限;对于电制冷机,Pi,min和Pi,max分别为电制冷机i消耗的电功率的下限和上限;对于传统火电机组,
Figure BDA0002701155280000041
为传统火电机组i在调度时段t-1产生的有功功率;对于燃气锅炉,
Figure BDA0002701155280000042
为燃气锅炉i在调度时段t-1产生的热功率;对于吸收式机组,
Figure BDA0002701155280000043
为吸收式机组i在调度时段t-1产生的热功率;对于电锅炉,
Figure BDA0002701155280000044
为电锅炉i在调度时段t-1消耗的电功率;对于电制冷机,
Figure BDA0002701155280000045
为电制冷机i在调度时段t-1消耗的电功率;Ri,up和Ri,down分别为设备i的向上爬坡速率和向下爬坡速率,Ri,su和Ri,sd分别为设备i的开机速率和关机速率;
(3-3)建立可再生能源机组运行的约束条件:
Figure BDA0002701155280000046
式中,Pt i,pre为可再生能源机组i在调度时段t产生的有功功率的预测值,SW为多能虚拟电厂内部所有可再生能源机组共同构成的集合;
(3-4)建立热电联产机组运行的约束条件:
Figure BDA0002701155280000047
Figure BDA0002701155280000048
Figure BDA0002701155280000049
Figure BDA00027011552800000410
Figure BDA00027011552800000411
Figure BDA00027011552800000412
式中,EPi为热电联产机组i的可行域端点的集合,Pi,k和Hi,k分别为热电联产机组i的可行域的第k个端点的有功功率值和热功率值;
(3-5)建立蓄电池运行的约束条件:
Figure BDA0002701155280000051
Figure BDA0002701155280000052
Figure BDA0002701155280000053
Figure BDA0002701155280000054
Figure BDA0002701155280000055
式中,P c,i,max和P dc,i,max分别为蓄电池i充电功率的最大值和放电功率的最大值,Ei,min和Ei,max分别为蓄电池i电量的最小值和最大值,ηc,i和ηdc,i分别为蓄电池i充电效率和放电效率,et-1 ES,i为蓄电池i在调度时段t-1的电量;
(3-6)建立冷负荷和热负荷的约束条件:
Figure BDA0002701155280000056
Figure BDA0002701155280000057
Figure BDA0002701155280000058
式中,
Figure BDA0002701155280000059
为冷负荷i或热负荷i的热容,
Figure BDA00027011552800000510
为热负荷i或冷负荷i在调度时段t-1的室内温度,Ui为热负荷i或冷负荷i的热导,
Figure BDA00027011552800000511
为调度时段t的环境温度;τi,min和τi,max分别为热负荷i或冷负荷i室内温度的最小值和最大值,SHL为多能虚拟电厂内部所有热负荷构成的集合,SCL为能虚拟电厂内部所有冷负荷构成的集合;
(3-7)建立能量平衡的约束条件:
Figure BDA00027011552800000512
Figure BDA00027011552800000513
Figure BDA00027011552800000514
Figure BDA00027011552800000515
式中,ηEB,i为电锅炉i的制热系数,COPi为电制冷机i的制冷系数,Pt L,i为电负荷i在调度时段t消耗的有功功率,SL为多能虚拟电厂内部所有电负荷构成的集合;
(3-8)建立不确定性的约束条件:
Figure BDA0002701155280000061
Figure BDA0002701155280000062
Figure BDA0002701155280000063
式中,
Figure BDA0002701155280000064
为多能虚拟电厂在调度时段t参与辅助服务获得收益,
Figure BDA0002701155280000065
为上级电网在调度时段t采用的多能虚拟电厂的联络线有功功率向上调节量的比例,
Figure BDA0002701155280000066
为上级电网在调度时段t采用的多能虚拟电厂的联络线有功功率向下调节量的比例,
Figure BDA0002701155280000067
为表征上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向上调节和向下调节的0-1变量,当上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向上调节时,
Figure BDA0002701155280000068
的取值为1,当上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向下调节时,
Figure BDA0002701155280000069
的取值为0;
(4)建立一个由步骤(2)中建立的多能虚拟电厂调节能力计算模型的目标函数和步骤(3)中建立的多能虚拟电厂调节能力计算模型的约束条件共同构成多能虚拟电厂调节能力计算模型,该多能虚拟电厂调节能力计算模型中的决策变量包括:调度时段t的上级电网可能向多能虚拟电厂下发的关口调度计划的有功功率值
Figure BDA00027011552800000610
多能虚拟电厂在调度时段t的联络线有功功率调节量的上限
Figure BDA00027011552800000611
和下限
Figure BDA00027011552800000612
传统火电机组i在调度时段t产生的有功功率
Figure BDA00027011552800000613
开机动作变量
Figure BDA00027011552800000614
和运行状态变量
Figure BDA00027011552800000615
燃气锅炉i在调度时段t产生的热功率
Figure BDA00027011552800000616
开机动作变量
Figure BDA00027011552800000617
和运行状态变量
Figure BDA00027011552800000618
吸收式机组i在调度时段t产生的热功率
Figure BDA00027011552800000619
开机动作变量
Figure BDA00027011552800000620
和运行状态变量
Figure BDA00027011552800000621
热电联产机组i在调度时段t第k个组合系数
Figure BDA00027011552800000622
开机动作变量
Figure BDA00027011552800000623
和运行状态变量
Figure BDA00027011552800000624
电锅炉i在调度时段t的开机动作变量
Figure BDA00027011552800000625
电制冷机i在调度时段t的开机动作变量
Figure BDA00027011552800000626
蓄电池i在调度时段t的充电功率
Figure BDA00027011552800000627
和放电功率
Figure BDA00027011552800000628
蓄电池i在调度时段t的电量
Figure BDA00027011552800000629
在调度时段t向热负荷和冷负荷提供热功率
Figure BDA00027011552800000630
热负荷和冷负荷在调度时段t的室内温度
Figure BDA00027011552800000631
将该模型写为矩阵形式,即:
Figure BDA0002701155280000071
s.t.Ax+By≥q
Ω={u|Hu≥r}
Θ={v,z|Fv+Ez+Dx+Cy+Gu≥s,Tz≥p}
式中,y、x、u、z、v分别为由决策变量构成的列向量,其中,y由
Figure BDA0002701155280000072
Figure BDA0002701155280000073
共同构成,i∈SSD,t∈γ;x由
Figure BDA0002701155280000074
Figure BDA0002701155280000075
共同构成,t∈γ;u由
Figure BDA0002701155280000076
构成,t∈γ;z由
Figure BDA0002701155280000077
构成,i∈SQD,t∈γ;v由
Figure BDA0002701155280000078
Figure BDA0002701155280000079
共同构成,
Figure BDA00027011552800000710
中i∈SQD,t∈γ,
Figure BDA00027011552800000711
中i∈SCHP,t∈γ;
cy+dx的具体表达式为:
Figure BDA00027011552800000712
其中,c为目标函数中y对应的系数矩阵,d为目标函数中x对应的系数矩阵;
hu+ez+fv的具体表达式为:
Figure BDA00027011552800000713
其中,h为目标函数中u对应的系数矩阵,e为目标函数中z对应的系数矩阵,f为目标函数中v对应的系数矩阵;
Θ为z和v的可行域;A、B、q、H、r、F、E、D、C、G、T、p是以(2)为目标函数以(3)为约束条件的模型转换为矩阵形式后,对应形式的约束条件分别对应的系数矩阵;
(5)利用改进的嵌套列约束生成算法对步骤(4)中建立的矩阵形式的多能虚拟电厂调节能力计算模型进行求解,具体步骤如下:
(5-1)记外层列约束生成算法的目标函数的下界和上界分别为LBout和UBout,设置LBout的初始值为-∞,设置UBout的初始值为∞;
(5-2)记外层列约束生成算法的迭代次数为l,设置l的初始值为0;
(5-3)利用分支定界算法求解外层主问题优化模型,外层主问题优化模型形式如下:
Figure BDA0002701155280000081
s.t.Ax+By≥q,
Fvk+Ezk+Dx+Cy+Guk≥s,k=1,2,...,l
η≥huk+ezk+fvk,Tzk≥p,k=1,2,...,l
Figure BDA0002701155280000082
Figure BDA0002701155280000083
uk∈Ω={u1,u2,...uNU},k=1,2,...,l.
其中,η为外层列约束生成算法引入的辅助变量,记外层主问题优化模型的最优解为η*、x*和y*,其中,η*为η的最优解,x*为x的最优解,y*为y的最优解;
令LBout=cy*+dx**,对LBout和UBout之间的关系进行判断:如果不满足UBout-LBout≤εout,则进行步骤(5-4);如果满足UBout-LBout≤εout,则计算结束,本次迭代计算获得的x*和y*即为多能虚拟电厂调节能力计算模型的最优解,获得多能虚拟电厂调节能力计算结果,结束计算;
(5-4)记内层列约束生成算法目标函数的下界和上届分别为LBin和UBin,设置LBin的初始值为-∞,设置UBin的初始值为∞,记内层列约束生成算法的迭代次数为m,设置m的初始值为0;
(5-5)利用分支定界算法求解对偶后的内层主问题优化模型,内层主问题优化模型如下:
Figure BDA0002701155280000084
s.t.Hu≥r,
Figure BDA0002701155280000085
θ≤ezj+(s-Ezj-Dx*-Cy*-Gu)Tωj,j=1,2,...,NZ
ωj≥0,j=1,2,...,NZ
F'Tωj≤f'T,
Figure BDA0002701155280000086
其中ω为引入的对偶变量构成的列向量,记内层主问题优化模型的最优解为
Figure BDA0002701155280000087
Figure BDA0002701155280000088
其中,
Figure BDA0002701155280000089
为Θ的最优解,
Figure BDA00027011552800000810
为u的最优解;
Figure BDA00027011552800000811
对LBin和UBin之间的关系进行判断:如果满足UBin-LBin≤εin,则令
Figure BDA00027011552800000812
并进行步骤(5-8);如果不满足UBin-LBin≤εin,则进行步骤(5-6);
(5-6)利用分支定界算法求解内层子问题优化模型,内层子问题优化模型如下:
Figure BDA0002701155280000091
Figure BDA0002701155280000092
Tz≥p,δ≥0,
Figure BDA0002701155280000093
其中δ为内层子问题中引入的松弛变量构成的列向量;J为松弛变量的系数矩阵,为一个对角矩阵,其取值规则为:对应约束(3-7)的对角元取值为1,其他值均为0;记内层子问题优化模型的最优解为z*、v*和δ*,其中,z*为z的最优解,v*为v的最优解,δ*为δ的最优解;
令LBin=max(LBin,ez*+fv*+σ1Tδ*),对LBin和UBin之间的关系进行判断:如果满足UBin-LBin≤εin,则令
Figure BDA0002701155280000094
并进行步骤(5-8);如果不满足UBin-LBin≤εin,则进行步骤(5-7);
(5-7)建立新变量ωm+1,ωm+1为列约束生成算法添加的第m+1组对偶变量,建立下列约束条件,并添加至内层主问题优化模型:
θ≤(s-Ezj-Dx*-Cy*-Gu)Tωm+1,
F'Tωm+1≤f'T,
Figure BDA0002701155280000095
令m=m+1,然后重新返回步骤(5-5);
(5-8)令UBout=min(UBout,cy*+dx*+UBin),对LBout和UBout之间的关系进行判断:如果满足UBout-LBout≤εout,则计算结束,本次迭代计算获得的x*和y*即为多能虚拟电厂调节能力计算模型的最优解,获得多能虚拟电厂调节能力计算结果,结束计算;
如果不满足UBout-LBout≤εout,则建立新变量zl+1和vl+1,向外层主问题优化模型增加如下列约束:
Fvl+1+Ezl+1+Dx+Cy+Gul+1≥s,
η≥hul+1+ezl+1+fvl+1,Tzl+1≥p,
ul+1=u*.
令l=l+1,然后重新返回步骤(5-3)。
本发明的特点及有益效果:
本发明提出的一种考虑快速启停设备的多能虚拟电厂调节能力计算方法,可聚合多能虚拟电厂源、荷双侧灵活性,且考虑了电制冷机、电制热机组等日内可灵活启停的快速启停设备,聚合模型具有经济性和可行性的双重鲁棒性,避免了电力系统的二次调度,保证了多能虚拟电厂运行的安全可靠性和经济性及聚合模型的可行性,提高电力系统资源调度的灵活性。
具体实施方式
本发明提出一种考虑快速启停设备的多能虚拟电厂聚合方法,下面结合具体实施例对本发明进一步详细说明如下。
本发明提出一种考虑快速启停设备的多能虚拟电厂聚合方法,该方法包括以下步骤:
(1)记表示多能虚拟电厂调节能力的变量集合为
Figure BDA0002701155280000101
其中,t为调度时段的编号,γ为调度时段的集合,
Figure BDA0002701155280000102
为多能虚拟电厂在调度时段t的联络线有功功率的基准值,
Figure BDA0002701155280000103
Figure BDA0002701155280000104
分别为多能虚拟电厂在调度时段t的联络线有功功率最大向上调节量和最大向下调节量,虚拟电厂在调度时段t的功率调节能力即在区间
Figure BDA0002701155280000105
内;
(2)建立多能虚拟电厂调节能力计算模型的目标函数:
Figure BDA0002701155280000106
SSD=SG∪SCHP∪SGB∪SAC,SQD=SEB∪SEC
式中,Δt为相邻调度时段之间的时间间隔,i为多能虚拟电厂中任一设备的编号,SSD为多能虚拟电厂内部所有传统火电机组、热电联产机组、燃气锅炉和吸收式机组共同构成的集合,SSD内设备的特点是其启停计划必须在日前给定,SG为多能虚拟电厂内部所有传统火电机组共同构成的集合,SCHP为多能虚拟电厂内部所有热电联产机组共同构成的集合,SGB为多能虚拟电厂内部所有燃气锅炉共同构成的集合,SAC为多能虚拟电厂内部所有吸收式机组共同构成的集合,SQD为多能虚拟电厂内部所有电锅炉和电制冷机共同构成的集合,SQD内设备的特点是其启停计划不需在日前给定,可以在日内根据实际需要进行调节,SEB为多能虚拟电厂内部所有电锅炉共同构成的集合,SEC为多能虚拟电厂内部所有电制冷机共同构成的集合,
Figure BDA0002701155280000107
为调度时段t时的购电价格,
Figure BDA0002701155280000108
为多能虚拟电厂在调度时段t参与辅助服务市场向上调节单位有功功率的备用容量价格,
Figure BDA0002701155280000109
为多能虚拟电厂在调度时段t参与辅助服务市场向下调节单位有功功率的备用容量价格,cs,i为设备i的开机成本,
Figure BDA00027011552800001010
为设备i的固定费用,
Figure BDA0002701155280000111
cs,i
Figure BDA0002701155280000112
由市场规则或电力系统给出,
Figure BDA0002701155280000113
为表征设备i在调度时段t开机动作的0-1变量,设备i在调度时段t由关机状态转变为开机状态,则
Figure BDA0002701155280000114
取值为1,其他情况下
Figure BDA0002701155280000115
取值为0,
Figure BDA0002701155280000116
为表征设备i在调度时段t运行状态的0-1变量,设备i在调度时段t处于开机状态时
Figure BDA0002701155280000117
的取值为1,设备i在调度时段t处于关机状态时
Figure BDA0002701155280000118
的取值为0,xU为第一阶段决策变量
Figure BDA0002701155280000119
Figure BDA00027011552800001110
Figure BDA00027011552800001111
共同构成集合,即:
Figure BDA00027011552800001112
Figure BDA00027011552800001113
为调度时段t的上级电网可能向多能虚拟电厂下发的关口调度计划的有功功率值,
Figure BDA00027011552800001114
满足:
Figure BDA00027011552800001115
Ω1为所有调度时段的
Figure BDA00027011552800001116
构成的集合,即
Figure BDA00027011552800001117
ci(i∈SG∪SGB∪SAC)为传统火电机组、燃气锅炉和吸收式机组的运行成本系数,ci(i∈SG∪SGB∪SAC)从多能虚拟电厂能量管理系统获取,对于传统火电机组,
Figure BDA00027011552800001118
为传统火电机组i在调度时段t产生的有功功率,对于燃气锅炉,
Figure BDA00027011552800001119
为燃气锅炉i在调度时段t产生的热功率,对于吸收式机组,
Figure BDA00027011552800001120
为吸收式机组i在调度时段t产生的热功率,
Figure BDA00027011552800001121
Figure BDA00027011552800001122
分别为多能虚拟电厂在调度时段t参与辅助服务市场向上和向下调节单位有功功率的能量价格,
Figure BDA00027011552800001123
Figure BDA00027011552800001124
分别为多能虚拟电厂在调度时段t相对联络线有功功率的基准值向上调节和向下调节的有功功率值,cE,i(i∈SCHP)和cH,i(i∈SCHP)分别为热电联产机组i的成本系数,cE,i和cH,i从多能虚拟电厂能量管理系统获取,
Figure BDA00027011552800001125
Figure BDA00027011552800001126
分别为热电联产机组i在调度时段t产生的有功功率和热功率;
xL为第二阶段决策变量
Figure BDA00027011552800001127
Figure BDA00027011552800001128
Figure BDA00027011552800001129
Figure BDA00027011552800001130
Figure BDA00027011552800001131
Figure BDA00027011552800001132
Figure BDA00027011552800001133
共同构成集合,即:
Figure BDA00027011552800001134
其中,
Figure BDA00027011552800001135
为热电联产机组i在调度时段t第k个组合系数,
Figure BDA00027011552800001136
Figure BDA00027011552800001137
分别为蓄电池i在调度时段t的充电功率和放电功率,
Figure BDA0002701155280000121
为蓄电池i在调度时段t的电量,
Figure BDA0002701155280000122
为向热负荷i消耗的热功率,
Figure BDA0002701155280000123
为建筑i在调度时段t的室内温度,除
Figure BDA0002701155280000124
Figure BDA0002701155280000125
外,xL中其他变量在目标函数中的权重为0;
(3)建立多能虚拟电厂调节能力计算模型的约束条件:
(3-1)建立设备运行状态的约束条件:
Figure BDA0002701155280000126
式中,
Figure BDA0002701155280000127
为表征设备i在调度时段t运行状态的0-1变量,取值规则与步骤(1-2)中的
Figure BDA0002701155280000128
相同;
(3-2)建立设备运行的约束条件:
Figure BDA0002701155280000129
Figure BDA00027011552800001210
Figure BDA00027011552800001211
式中,对于传统火电机组,Pi,min和Pi,max分别为传统火电机组i在产生的有功功率的下限和上限,对于燃气锅炉,Pi,min和Pi,max分别为燃气锅炉i产生的热功率的下限和上限,对于吸收式机组,Pi,min和Pi,max分别为吸收式机组i产生的热功率的下限和上限,对于电锅炉,Pi,min和Pi,max分别为电锅炉i消耗的电功率的下限和上限,对于电制冷机,Pi,min和Pi,max分别为电制冷机i消耗的电功率的下限和上限,对于传统火电机组,
Figure BDA00027011552800001212
为传统火电机组i在调度时段t-1产生的有功功率,对于燃气锅炉,
Figure BDA00027011552800001213
为燃气锅炉i在调度时段t-1产生的热功率,对于吸收式机组,
Figure BDA00027011552800001214
为吸收式机组i在调度时段t-1产生的热功率,对于电锅炉,
Figure BDA00027011552800001215
为电锅炉i在调度时段t-1消耗的电功率,对于电制冷机,
Figure BDA00027011552800001216
为电制冷机i在调度时段t-1消耗的电功率,Ri,up和Ri,down分别为设备i的向上爬坡速率和向下爬坡速率,Ri,su和Ri,sd分别为设备i的开机速率和关机速率;
(3-3)建立可再生能源机组运行的约束条件:
Figure BDA0002701155280000131
式中,Pt i,pre为可再生能源机组i在调度时段t产生的有功功率的预测值,SW为多能虚拟电厂内部所有可再生能源机组共同构成的集合;
(3-4)建立热电联产机组运行的约束条件:
Figure BDA0002701155280000132
Figure BDA0002701155280000133
Figure BDA0002701155280000134
Figure BDA0002701155280000135
Figure BDA0002701155280000136
Figure BDA0002701155280000137
式中,EPi为热电联产机组i的可行域端点的集合,Pi,k和Hi,k分别为热电联产机组i的可行域的第k个端点的有功功率值和热功率值;
(3-5)建立蓄电池运行的约束条件:
Figure BDA0002701155280000138
Figure BDA0002701155280000139
Figure BDA00027011552800001310
Figure BDA00027011552800001311
Figure BDA00027011552800001312
式中,Pc,i,max和Pdc,i,max分别为蓄电池i充电功率的最大值和放电功率的最大值,Ei ,min和Ei,max分别为蓄电池i电量的最小值和最大值,ηc,i和ηdc,i分别为蓄电池i充电效率和放电效率,et-1 ES,i为蓄电池i在调度时段t-1的电量;
(3-6)建立冷负荷和热负荷的约束条件:
Figure BDA00027011552800001313
Figure BDA0002701155280000141
Figure BDA0002701155280000142
式中,
Figure BDA0002701155280000143
为冷负荷i或热负荷i的热容,
Figure BDA0002701155280000144
从多能虚拟电厂能量管理系统获取,
Figure BDA0002701155280000145
为热负荷i或冷负荷i在调度时段t-1的室内温度,Ui为热负荷i或冷负荷i的热导,Ui从多能虚拟电厂能量管理系统获取,
Figure BDA0002701155280000146
为调度时段t的环境温度;τi,min和τi,max分别为热负荷i或冷负荷i室内温度的最小值和最大值,SHL为多能虚拟电厂内部所有热负荷构成的集合,SCL为能虚拟电厂内部所有冷负荷构成的集合;
(3-7)建立能量平衡的约束条件:
Figure BDA0002701155280000147
Figure BDA0002701155280000148
Figure BDA0002701155280000149
Figure BDA00027011552800001410
式中,ηEB,i为电锅炉i的制热系数,ηEB,i从多能虚拟电厂能量管理系统获取,COPi为电制冷机i的制冷系数,COPi从多能虚拟电厂能量管理系统获取,Pt L,i为电负荷i在调度时段t消耗的有功功率,SL为多能虚拟电厂内部所有电负荷构成的集合;
(3-8)建立不确定性的约束条件:
Figure BDA00027011552800001411
Figure BDA00027011552800001412
Figure BDA00027011552800001413
式中,
Figure BDA00027011552800001414
为多能虚拟电厂在调度时段t参与辅助服务获得收益,
Figure BDA00027011552800001415
为上级电网在调度时段t采用的多能虚拟电厂的联络线有功功率向上调节量的比例,
Figure BDA00027011552800001416
为上级电网在调度时段t采用的多能虚拟电厂的联络线有功功率向下调节量的比例,
Figure BDA00027011552800001417
为表征上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向上调节和向下调节的0-1变量,当上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向上调节时,
Figure BDA0002701155280000151
的取值为1,当上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向下调节时,
Figure BDA0002701155280000152
的取值为0;
(4)建立一个由步骤(2)中建立的多能虚拟电厂调节能力计算模型的目标函数和步骤(3)中建立的多能虚拟电厂调节能力计算模型的约束条件共同构成多能虚拟电厂调节能力计算模型,该多能虚拟电厂调节能力计算模型中的决策变量包括:调度时段t的上级电网可能向多能虚拟电厂下发的关口调度计划的有功功率值
Figure BDA0002701155280000153
多能虚拟电厂在调度时段t的联络线有功功率调节量的上限
Figure BDA0002701155280000154
和下限
Figure BDA0002701155280000155
传统火电机组i在调度时段t产生的有功功率
Figure BDA0002701155280000156
开机动作变量
Figure BDA0002701155280000157
和运行状态变量
Figure BDA0002701155280000158
燃气锅炉i在调度时段t产生的热功率
Figure BDA0002701155280000159
开机动作变量
Figure BDA00027011552800001510
和运行状态变量
Figure BDA00027011552800001511
吸收式机组i在调度时段t产生的热功率
Figure BDA00027011552800001512
开机动作变量
Figure BDA00027011552800001513
和运行状态变量
Figure BDA00027011552800001514
热电联产机组i在调度时段t第k个组合系数
Figure BDA00027011552800001515
开机动作变量
Figure BDA00027011552800001516
和运行状态变量
Figure BDA00027011552800001517
电锅炉i在调度时段t的开机动作变量
Figure BDA00027011552800001518
电制冷机i在调度时段t的开机动作变量
Figure BDA00027011552800001519
蓄电池i在调度时段t的充电功率
Figure BDA00027011552800001520
和放电功率
Figure BDA00027011552800001521
Figure BDA00027011552800001522
蓄电池i在调度时段t的电量
Figure BDA00027011552800001523
在调度时段t向热负荷和冷负荷提供热功率
Figure BDA00027011552800001524
热负荷和冷负荷在调度时段t的室内温度
Figure BDA00027011552800001525
Figure BDA00027011552800001526
将该模型写为矩阵形式,即:
Figure BDA00027011552800001527
s.t.Ax+By≥q
Ω={u|Hu≥r}
Θ={v,z|Fv+Ez+Dx+Cy+Gu≥s,Tz≥p}
式中,y、x、u、z、v分别为由决策变量构成的列向量,其中,y由
Figure BDA00027011552800001528
Figure BDA00027011552800001529
共同构成,x由
Figure BDA00027011552800001530
Figure BDA00027011552800001531
共同构成,u由
Figure BDA00027011552800001532
构成,z由
Figure BDA00027011552800001533
构成,v由
Figure BDA00027011552800001534
Figure BDA0002701155280000161
共同构成;
cy+dx的具体表达式为:
Figure BDA0002701155280000162
其中,c为目标函数中y对应的系数矩阵,d为目标函数中x对应的系数矩阵;
hu+ez+fv的具体表达式为:
Figure BDA0002701155280000163
其中,h为目标函数中u对应的系数矩阵,e为目标函数中z对应的系数矩阵,f为目标函数中v对应的系数矩阵;
Θ为z和v的可行域;A、B、q、H、r、F、E、D、C、G、T、p是以(2)为目标函数以(3)为约束条件的模型转换为矩阵形式后,对应形式的约束条件分别对应的系数矩阵。
(5)利用改进的嵌套列约束生成算法对步骤(4)中建立的矩阵形式的多能虚拟电厂调节能力计算模型进行求解,具体步骤如下:
(5-1)记外层列约束生成算法的目标函数的下界和上界分别为LBout和UBout,设置LBout的初始值为-∞,设置UBout的初始值为∞;
(5-2)记外层列约束生成算法的迭代次数为l,设置l的初始值为0;
(5-3)利用分支定界算法求解外层主问题优化模型,外层主问题优化模型形式如下:
Figure BDA0002701155280000164
s.t.Ax+By≥q,
Fvk+Ezk+Dx+Cy+Guk≥s,k=1,2,...,l
η≥huk+ezk+fvk,Tzk≥p,k=1,2,...,l
Figure BDA0002701155280000165
Figure BDA0002701155280000166
uk∈Ω={u1,u2,...uNU},k=1,2,...,l.
其中,η为外层列约束生成算法引入的辅助变量,记外层主问题优化模型的最优解为η*、x*和y*,其中,η*为η的最优解,x*为x的最优解,y*为y的最优解;
令LBout=cy*+dx**,对LBout和UBout之间的关系进行判断:如果不满足UBout-LBout≤εout,则进行步骤(5-4);如果满足UBout-LBout≤εout,则计算结束,本次迭代计算获得的x*和y*即为多能虚拟电厂调节能力计算模型的最优解,获得多能虚拟电厂调节能力计算结果,结束计算;
(5-4)记内层列约束生成算法目标函数的下界和上届分别为LBin和UBin,设置LBin的初始值为-∞,设置UBin的初始值为∞,记内层列约束生成算法的迭代次数为m,设置m的初始值为0;
(5-5)利用分支定界算法求解对偶后的内层主问题优化模型,内层主问题优化模型如下:
Figure BDA0002701155280000171
s.t.Hu≥r,
z∈Θz={z|Tz≥p,z∈{0,1}nz}={z1,z2...,zNZ},
θ≤ezj+(s-Ezj-Dx*-Cy*-Gu)Tωj,j=1,2,...,NZ
ωj≥0,j=1,2,...,NZ
F'Tωj≤f'T,
Figure BDA0002701155280000172
其中ω为引入的对偶变量构成的列向量,记内层主问题优化模型的最优解为
Figure BDA0002701155280000173
Figure BDA0002701155280000174
其中,
Figure BDA0002701155280000175
为θ的最优解,
Figure BDA0002701155280000176
为u的最优解;
Figure BDA0002701155280000177
对LBin和UBin之间的关系进行判断:如果满足UBin-LBin≤εin,则令
Figure BDA0002701155280000178
并进行步骤(5-8);如果不满足UBin-LBin≤εin,则进行步骤(5-6);
(5-6)利用分支定界算法求解内层子问题优化模型,内层子问题优化模型如下:
Figure BDA0002701155280000179
Figure BDA00027011552800001710
Tz≥p,δ≥0,
Figure BDA00027011552800001711
其中δ为内层子问题中引入的松弛变量构成的列向量,J为松弛变量的系数矩阵,它是一个对角矩阵,其取值规则为:对应约束(3-7)的对角元取值为1,其他值均为0。记内层子问题优化模型的最优解为z*、v*和δ*,其中,z*为z的最优解,v*为v的最优解,δ*为δ的最优解;
令LBin=max(LBin,ez*+fv*+σ1Tδ*),对LBin和UBin之间的关系进行判断:如果满足UBin-LBin≤εin,则令
Figure BDA00027011552800001712
并进行步骤(5-8);如果不满足UBin-LBin≤εin,则进行步骤(5-7);
(5-7)建立新变量ωm+1,其含义为列约束生成算法添加的第m+1组对偶变量,建立下列约束条件,并添加至内层主问题优化模型:
θ≤(s-Ezj-Dx*-Cy*-Gu)Tωm+1,
F'Tωm+1≤f'T,
Figure BDA0002701155280000181
令m=m+1,然后重新返回步骤(5-5);
(5-8)令UBout=min(UBout,cy*+dx*+UBin),对LBout和UBout之间的关系进行判断:如果满足UBout-LBout≤εout,则计算结束,本次迭代计算获得的x*和y*即为多能虚拟电厂调节能力计算模型的最优解,获得多能虚拟电厂调节能力计算结果,结束计算;
如果不满足UBout-LBout≤εout,则建立新变量zl+1和vl+1,向外层主问题优化模型增加如下列约束:
Fvl+1+Ezl+1+Dx+Cy+Gul+1≥s,
η≥hul+1+ezl+1+fvl+1,Tzl+1≥p,
ul+1=u*.
令l=l+1,然后重新返回步骤(5-3)。

Claims (1)

1.一种考虑快速启停设备的多能虚拟电厂聚合方法,其特征在于,该方法包括以下步骤:
(1)记多能虚拟电厂调节能力的变量集合为
Figure FDA0002701155270000011
t∈γ;其中,t为调度时段的编号,γ为调度时段的集合,
Figure FDA0002701155270000012
为多能虚拟电厂在调度时段t的联络线有功功率的基准值,
Figure FDA0002701155270000013
Figure FDA0002701155270000014
分别为多能虚拟电厂在调度时段t的联络线有功功率最大向上调节量和最大向下调节量;
(2)建立多能虚拟电厂调节能力计算模型的目标函数:
Figure FDA0002701155270000015
SSD=SG∪SCHP∪SGB∪SAC,SQD=SEB∪SEC
式中,Δt为相邻调度时段之间的时间间隔,i为多能虚拟电厂中任一设备的编号,SSD为多能虚拟电厂内部所有传统火电机组、热电联产机组、燃气锅炉和吸收式机组共同构成的集合,SG为多能虚拟电厂内部所有传统火电机组共同构成的集合,SCHP为多能虚拟电厂内部所有热电联产机组共同构成的集合,SGB为多能虚拟电厂内部所有燃气锅炉共同构成的集合,SAC为多能虚拟电厂内部所有吸收式机组共同构成的集合,SQD为多能虚拟电厂内部所有电锅炉和电制冷机共同构成的集合,SEB为多能虚拟电厂内部所有电锅炉共同构成的集合,SEC为多能虚拟电厂内部所有电制冷机共同构成的集合,
Figure FDA0002701155270000016
为调度时段t时的购电价格,
Figure FDA0002701155270000017
为多能虚拟电厂在调度时段t参与辅助服务市场向上调节单位有功功率的备用容量价格,
Figure FDA0002701155270000018
为多能虚拟电厂在调度时段t参与辅助服务市场向下调节单位有功功率的备用容量价格,cs,i为设备i的开机成本,
Figure FDA0002701155270000019
为设备i的固定费用,
Figure FDA00027011552700000110
为表征设备i在调度时段t开机动作的0-1变量,设备i在调度时段t由关机状态转变为开机状态,则
Figure FDA00027011552700000111
取值为1,其他情况下
Figure FDA00027011552700000112
取值为0,
Figure FDA00027011552700000113
为表征设备i在调度时段t运行状态的0-1变量,设备i在调度时段t处于开机状态时
Figure FDA0002701155270000021
的取值为1,设备i在调度时段t处于关机状态时
Figure FDA0002701155270000022
的取值为0,xU为第一阶段决策变量
Figure FDA0002701155270000023
Figure FDA0002701155270000024
Figure FDA0002701155270000025
共同构成集合,i∈SSD,即:
Figure FDA0002701155270000026
Figure FDA0002701155270000027
为调度时段t的上级电网可能向多能虚拟电厂下发的关口调度计划的有功功率值,
Figure FDA0002701155270000028
满足:
Figure FDA0002701155270000029
Ω1为所有调度时刻的
Figure FDA00027011552700000210
构成的集合,即
Figure FDA00027011552700000211
ci为传统火电机组、燃气锅炉和吸收式机组的运行成本系数,i∈SG∪SGB∪SAC;对于传统火电机组,
Figure FDA00027011552700000212
为传统火电机组i在调度时段t产生的有功功率;对于燃气锅炉,
Figure FDA00027011552700000213
为燃气锅炉i在调度时段t产生的热功率;对于吸收式机组,
Figure FDA00027011552700000214
为吸收式机组i在调度时段t产生的热功率;
Figure FDA00027011552700000215
Figure FDA00027011552700000216
分别为多能虚拟电厂在调度时段t参与辅助服务市场向上和向下调节单位有功功率的能量价格,
Figure FDA00027011552700000217
Figure FDA00027011552700000218
分别为多能虚拟电厂在调度时段t相对联络线有功功率的基准值向上调节和向下调节的有功功率值;cE,i和cH,i为热电联产机组i的成本系数,i∈SCHP
Figure FDA00027011552700000219
Figure FDA00027011552700000220
分别为热电联产机组i在调度时段t产生的有功功率和热功率,i∈SCHP;xL为第二阶段决策变量
Figure FDA00027011552700000221
Figure FDA00027011552700000222
共同构成集合,即:
Figure FDA00027011552700000223
其中,
Figure FDA00027011552700000224
中i∈SCHP
Figure FDA00027011552700000225
中i∈SHL∪SCL
Figure FDA00027011552700000226
中i∈SEB∪SEC
Figure FDA00027011552700000227
中i∈SEB∪SEC
Figure FDA00027011552700000228
为热电联产机组i在调度时段t第k个组合系数,,i∈SCHP
Figure FDA00027011552700000229
Figure FDA00027011552700000230
分别为蓄电池i在调度时段t的充电功率和放电功率,
Figure FDA00027011552700000231
为蓄电池i在调度时段t的电量,
Figure FDA00027011552700000232
为向热负荷i消耗的热功率,
Figure FDA00027011552700000233
为建筑i在调度时段t的室内温度;
(3)建立多能虚拟电厂调节能力计算模型的约束条件:
(3-1)建立设备运行状态的约束条件:
Figure FDA00027011552700000234
(3-2)建立设备运行的约束条件:
Figure FDA0002701155270000031
Figure FDA0002701155270000032
Figure FDA0002701155270000033
式中,对于传统火电机组,Pi,min和Pi,max分别为传统火电机组i在产生的有功功率的下限和上限;对于燃气锅炉,Pi,min和Pi,max分别为燃气锅炉i产生的热功率的下限和上限;对于吸收式机组,Pi,min和Pi,max分别为吸收式机组i产生的热功率的下限和上限;对于电锅炉,Pi,min和Pi,max分别为电锅炉i消耗的电功率的下限和上限;对于电制冷机,Pi,min和Pi,max分别为电制冷机i消耗的电功率的下限和上限;对于传统火电机组,
Figure FDA0002701155270000034
为传统火电机组i在调度时段t-1产生的有功功率;对于燃气锅炉,
Figure FDA0002701155270000035
为燃气锅炉i在调度时段t-1产生的热功率;对于吸收式机组,
Figure FDA0002701155270000036
为吸收式机组i在调度时段t-1产生的热功率;对于电锅炉,
Figure FDA0002701155270000037
为电锅炉i在调度时段t-1消耗的电功率;对于电制冷机,
Figure FDA0002701155270000038
为电制冷机i在调度时段t-1消耗的电功率;Ri,up和Ri,down分别为设备i的向上爬坡速率和向下爬坡速率,Ri,su和Ri,sd分别为设备i的开机速率和关机速率;
(3-3)建立可再生能源机组运行的约束条件:
Figure FDA0002701155270000039
式中,Pt i,pre为可再生能源机组i在调度时段t产生的有功功率的预测值,SW为多能虚拟电厂内部所有可再生能源机组共同构成的集合;
(3-4)建立热电联产机组运行的约束条件:
Figure FDA00027011552700000310
Figure FDA00027011552700000311
Figure FDA00027011552700000312
Figure FDA00027011552700000313
Figure FDA0002701155270000041
Figure FDA0002701155270000042
式中,EPi为热电联产机组i的可行域端点的集合,Pi,k和Hi,k分别为热电联产机组i的可行域的第k个端点的有功功率值和热功率值;
(3-5)建立蓄电池运行的约束条件:
Figure FDA0002701155270000043
Figure FDA0002701155270000044
Figure FDA0002701155270000045
Figure FDA0002701155270000046
Figure FDA0002701155270000047
式中,Pc,i,max和Pdc,i,max分别为蓄电池i充电功率的最大值和放电功率的最大值,Ei,min和Ei,max分别为蓄电池i电量的最小值和最大值,ηc,i和ηdc,i分别为蓄电池i充电效率和放电效率,et-1 ES,i为蓄电池i在调度时段t-1的电量;
(3-6)建立冷负荷和热负荷的约束条件:
Figure FDA0002701155270000048
Figure FDA0002701155270000049
Figure FDA00027011552700000410
式中,
Figure FDA00027011552700000411
为冷负荷i或热负荷i的热容,
Figure FDA00027011552700000412
为热负荷i或冷负荷i在调度时段t-1的室内温度,Ui为热负荷i或冷负荷i的热导,
Figure FDA00027011552700000413
为调度时段t的环境温度;τi,min和τi,max分别为热负荷i或冷负荷i室内温度的最小值和最大值,SHL为多能虚拟电厂内部所有热负荷构成的集合,SCL为能虚拟电厂内部所有冷负荷构成的集合;
(3-7)建立能量平衡的约束条件:
Figure FDA0002701155270000051
Figure FDA0002701155270000052
Figure FDA0002701155270000053
Figure FDA0002701155270000054
式中,ηEB,i为电锅炉i的制热系数,COPi为电制冷机i的制冷系数,Pt L,i为电负荷i在调度时段t消耗的有功功率,SL为多能虚拟电厂内部所有电负荷构成的集合;
(3-8)建立不确定性的约束条件:
Figure FDA0002701155270000055
Figure FDA0002701155270000056
Figure FDA0002701155270000057
式中,
Figure FDA0002701155270000058
为多能虚拟电厂在调度时段t参与辅助服务获得收益,
Figure FDA0002701155270000059
为上级电网在调度时段t采用的多能虚拟电厂的联络线有功功率向上调节量的比例,
Figure FDA00027011552700000510
为上级电网在调度时段t采用的多能虚拟电厂的联络线有功功率向下调节量的比例,
Figure FDA00027011552700000511
为表征上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向上调节和向下调节的0-1变量,当上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向上调节时,
Figure FDA00027011552700000512
的取值为1,当上级电网在调度时段t要求多能虚拟电厂的联络线有功功率向下调节时,
Figure FDA00027011552700000513
的取值为0;
(4)建立一个由步骤(2)中建立的多能虚拟电厂调节能力计算模型的目标函数和步骤(3)中建立的多能虚拟电厂调节能力计算模型的约束条件共同构成多能虚拟电厂调节能力计算模型,该多能虚拟电厂调节能力计算模型中的决策变量包括:调度时段t的上级电网可能向多能虚拟电厂下发的关口调度计划的有功功率值
Figure FDA00027011552700000514
多能虚拟电厂在调度时段t的联络线有功功率调节量的上限
Figure FDA00027011552700000515
和下限
Figure FDA00027011552700000516
传统火电机组i在调度时段t产生的有功功率
Figure FDA00027011552700000517
开机动作变量
Figure FDA00027011552700000518
和运行状态变量
Figure FDA00027011552700000519
燃气锅炉i在调度时段t产生的热功率
Figure FDA00027011552700000520
开机动作变量
Figure FDA00027011552700000521
和运行状态变量
Figure FDA00027011552700000522
吸收式机组i在调度时段t产生的热功率
Figure FDA00027011552700000523
开机动作变量
Figure FDA0002701155270000061
和运行状态变量
Figure FDA0002701155270000062
热电联产机组i在调度时段t第k个组合系数
Figure FDA0002701155270000063
开机动作变量
Figure FDA0002701155270000064
和运行状态变量
Figure FDA0002701155270000065
电锅炉i在调度时段t的开机动作变量
Figure FDA0002701155270000066
电制冷机i在调度时段t的开机动作变量
Figure FDA0002701155270000067
蓄电池i在调度时段t的充电功率
Figure FDA0002701155270000068
和放电功率
Figure FDA0002701155270000069
蓄电池i在调度时段t的电量
Figure FDA00027011552700000610
在调度时段t向热负荷和冷负荷提供热功率
Figure FDA00027011552700000611
热负荷和冷负荷在调度时段t的室内温度
Figure FDA00027011552700000612
将该模型写为矩阵形式,即:
Figure FDA00027011552700000613
s.t.Ax+By≥q
Ω={u|Hu≥r}
Θ={v,z|Fv+Ez+Dx+Cy+Gu≥s,Tz≥p}
式中,y、x、u、z、v分别为由决策变量构成的列向量,其中,y由
Figure FDA00027011552700000614
Figure FDA00027011552700000615
共同构成,i∈SSD,t∈γ;x由
Figure FDA00027011552700000616
Figure FDA00027011552700000617
共同构成,t∈γ;u由
Figure FDA00027011552700000618
构成,t∈γ;z由
Figure FDA00027011552700000619
构成,i∈SQD,t∈γ;v由
Figure FDA00027011552700000620
(i∈SCHP,t∈γ)共同构成,
Figure FDA00027011552700000621
中i∈SQD,t∈γ,
Figure FDA00027011552700000622
中i∈SCHP,t∈γ;
cy+dx的具体表达式为:
Figure FDA00027011552700000623
其中,c为目标函数中y对应的系数矩阵,d为目标函数中x对应的系数矩阵;
hu+ez+fv的具体表达式为:
Figure FDA00027011552700000624
其中,h为目标函数中u对应的系数矩阵,e为目标函数中z对应的系数矩阵,f为目标函数中v对应的系数矩阵;
Θ为z和v的可行域;A、B、q、H、r、F、E、D、C、G、T、p是以(2)为目标函数以(3)为约束条件的模型转换为矩阵形式后,对应形式的约束条件分别对应的系数矩阵;
(5)利用改进的嵌套列约束生成算法对步骤(4)中建立的矩阵形式的多能虚拟电厂调节能力计算模型进行求解,具体步骤如下:
(5-1)记外层列约束生成算法的目标函数的下界和上界分别为LBout和UBout,设置LBout的初始值为-∞,设置UBout的初始值为∞;
(5-2)记外层列约束生成算法的迭代次数为l,设置l的初始值为0;
(5-3)利用分支定界算法求解外层主问题优化模型,外层主问题优化模型形式如下:
Figure FDA0002701155270000071
s.t.Ax+By≥q,
Fvk+Ezk+Dx+Cy+Guk≥s,k=1,2,...,l
η≥huk+ezk+fvk,Tzk≥p,k=1,2,...,l
Figure FDA0002701155270000072
Figure FDA0002701155270000073
uk∈Ω={u1,u2,...uNU},k=1,2,...,l.
其中,η为外层列约束生成算法引入的辅助变量,记外层主问题优化模型的最优解为η*、x*和y*,其中,η*为η的最优解,x*为x的最优解,y*为y的最优解;
令LBout=cy*+dx**,对LBout和UBout之间的关系进行判断:如果不满足UBout-LBout≤εout,则进行步骤(5-4);如果满足UBout-LBout≤εout,则计算结束,本次迭代计算获得的x*和y*即为多能虚拟电厂调节能力计算模型的最优解,获得多能虚拟电厂调节能力计算结果,结束计算;
(5-4)记内层列约束生成算法目标函数的下界和上届分别为LBin和UBin,设置LBin的初始值为-∞,设置UBin的初始值为∞,记内层列约束生成算法的迭代次数为m,设置m的初始值为0;
(5-5)利用分支定界算法求解对偶后的内层主问题优化模型,内层主问题优化模型如下:
Figure FDA0002701155270000074
s.t.Hu≥r,
Figure FDA0002701155270000075
θ≤ezj+(s-Ezj-Dx*-Cy*-Gu)Tωj,j=1,2,...,NZ
ωj≥0,j=1,2,...,NZ
Figure FDA0002701155270000076
其中ω为引入的对偶变量构成的列向量,记内层主问题优化模型的最优解为
Figure FDA0002701155270000081
Figure FDA0002701155270000082
其中,
Figure FDA0002701155270000083
为Θ的最优解,
Figure FDA0002701155270000084
为u的最优解;
Figure FDA0002701155270000085
对LBin和UBin之间的关系进行判断:如果满足UBin-LBin≤εin,则令
Figure FDA0002701155270000086
并进行步骤(5-8);如果不满足UBin-LBin≤εin,则进行步骤(5-6);
(5-6)利用分支定界算法求解内层子问题优化模型,内层子问题优化模型如下:
Figure FDA0002701155270000087
Figure FDA0002701155270000088
Tz≥p,δ≥0,
Figure FDA0002701155270000089
其中δ为内层子问题中引入的松弛变量构成的列向量;J为松弛变量的系数矩阵,为一个对角矩阵,其取值规则为:对应约束(3-7)的对角元取值为1,其他值均为0;记内层子问题优化模型的最优解为z*、v*和δ*,其中,z*为z的最优解,v*为v的最优解,δ*为δ的最优解;
令LBin=max(LBin,ez*+fv*+σ1Tδ*),对LBin和UBin之间的关系进行判断:如果满足UBin-LBin≤εin,则令
Figure FDA00027011552700000810
并进行步骤(5-8);如果不满足UBin-LBin≤εin,则进行步骤(5-7);
(5-7)建立新变量ωm+1,ωm+1为列约束生成算法添加的第m+1组对偶变量,建立下列约束条件,并添加至内层主问题优化模型:
θ≤(s-Ezj-Dx*-Cy*-Gu)Tωm+1
Figure FDA00027011552700000811
令m=m+1,然后重新返回步骤(5-5);
(5-8)令UBout=min(UBout,cy*+dx*+UBin),对LBout和UBout之间的关系进行判断:如果满足UBout-LBout≤εout,则计算结束,本次迭代计算获得的x*和y*即为多能虚拟电厂调节能力计算模型的最优解,获得多能虚拟电厂调节能力计算结果,结束计算;
如果不满足UBout-LBout≤εout,则建立新变量zl+1和vl+1,向外层主问题优化模型增加如下列约束:
Fvl+1+Ezl+1+Dx+Cy+Gul+1≥s,
η≥hul+1+ezl+1+fvl+1,Tzl+1≥p,
ul+1=u*.
令l=l+1,然后重新返回步骤(5-3)。
CN202011022651.2A 2020-09-25 2020-09-25 一种考虑快速启停设备的多能虚拟电厂调节能力计算方法 Active CN112234607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011022651.2A CN112234607B (zh) 2020-09-25 2020-09-25 一种考虑快速启停设备的多能虚拟电厂调节能力计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011022651.2A CN112234607B (zh) 2020-09-25 2020-09-25 一种考虑快速启停设备的多能虚拟电厂调节能力计算方法

Publications (2)

Publication Number Publication Date
CN112234607A true CN112234607A (zh) 2021-01-15
CN112234607B CN112234607B (zh) 2022-08-12

Family

ID=74107646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011022651.2A Active CN112234607B (zh) 2020-09-25 2020-09-25 一种考虑快速启停设备的多能虚拟电厂调节能力计算方法

Country Status (1)

Country Link
CN (1) CN112234607B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909932A (zh) * 2021-01-31 2021-06-04 国网黑龙江省电力有限公司 一种调峰型虚拟电厂的优化方法及终端
CN113325896A (zh) * 2021-05-31 2021-08-31 浙江工业大学 一种智能零售机的多目标温度优化控制方法
CN115237080A (zh) * 2022-09-19 2022-10-25 国网信息通信产业集团有限公司 基于虚拟电厂的设备调控方法、装置、设备和可读介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169108A (zh) * 2016-07-14 2016-11-30 河海大学 含电池储能系统的主动配电网短期有功优化方法
CN106487003A (zh) * 2016-05-10 2017-03-08 国网江苏省电力公司南京供电公司 一种主配网故障恢复优化调度的方法
KR101770064B1 (ko) * 2016-05-23 2017-08-22 가천대학교 산학협력단 가상발전소 시뮬레이터 및 이에 의한 가상발전소 최적운영시뮬레이션 방법
CN108388973A (zh) * 2018-01-11 2018-08-10 河海大学 一种虚拟电厂自适应鲁棒调度优化方法
CN110516851A (zh) * 2019-08-05 2019-11-29 华北电力大学 一种基于虚拟电厂的源荷双侧热电联合随机优化调度方法
CN110571867A (zh) * 2019-09-18 2019-12-13 东北大学 一种计及风电不确定性的虚拟电厂日前优化调度系统方法
CN111313400A (zh) * 2019-11-11 2020-06-19 国网吉林省电力有限公司 一种基于鲁棒修正的多能虚拟电厂运行参数聚合方法
KR20200081114A (ko) * 2018-12-27 2020-07-07 한국남동발전 주식회사 수요반응에 기반한 에너지 저장 시스템 충방전 제어 기능을 갖는 가상발전소 운영 시스템 및 그 운영 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487003A (zh) * 2016-05-10 2017-03-08 国网江苏省电力公司南京供电公司 一种主配网故障恢复优化调度的方法
KR101770064B1 (ko) * 2016-05-23 2017-08-22 가천대학교 산학협력단 가상발전소 시뮬레이터 및 이에 의한 가상발전소 최적운영시뮬레이션 방법
CN106169108A (zh) * 2016-07-14 2016-11-30 河海大学 含电池储能系统的主动配电网短期有功优化方法
CN108388973A (zh) * 2018-01-11 2018-08-10 河海大学 一种虚拟电厂自适应鲁棒调度优化方法
KR20200081114A (ko) * 2018-12-27 2020-07-07 한국남동발전 주식회사 수요반응에 기반한 에너지 저장 시스템 충방전 제어 기능을 갖는 가상발전소 운영 시스템 및 그 운영 방법
CN110516851A (zh) * 2019-08-05 2019-11-29 华北电力大学 一种基于虚拟电厂的源荷双侧热电联合随机优化调度方法
CN110571867A (zh) * 2019-09-18 2019-12-13 东北大学 一种计及风电不确定性的虚拟电厂日前优化调度系统方法
CN111313400A (zh) * 2019-11-11 2020-06-19 国网吉林省电力有限公司 一种基于鲁棒修正的多能虚拟电厂运行参数聚合方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANA BARINGO,等: "Day-Ahead Self-Scheduling of a Virtual Power Plant in Energy and Reserve Electricity Markets Under Uncertainty", 《IEEE TRANSACTIONS ON POWER SYSTEMS》 *
HAOTIAN ZHAO,等: "Active Dynamic Aggregation Model for Distributed Integrated Energy System as Virtual Power Plant", 《JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY》 *
陈玮,等: "考虑电动汽车配置的主动配电网鲁棒孤岛恢复", 《中国电机工程学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909932A (zh) * 2021-01-31 2021-06-04 国网黑龙江省电力有限公司 一种调峰型虚拟电厂的优化方法及终端
CN112909932B (zh) * 2021-01-31 2023-04-25 国网黑龙江省电力有限公司 一种调峰型虚拟电厂的优化方法及终端
CN113325896A (zh) * 2021-05-31 2021-08-31 浙江工业大学 一种智能零售机的多目标温度优化控制方法
CN113325896B (zh) * 2021-05-31 2022-03-01 浙江工业大学 一种智能零售机的多目标温度优化控制方法
CN115237080A (zh) * 2022-09-19 2022-10-25 国网信息通信产业集团有限公司 基于虚拟电厂的设备调控方法、装置、设备和可读介质
CN115237080B (zh) * 2022-09-19 2022-12-09 国网信息通信产业集团有限公司 基于虚拟电厂的设备调控方法、装置、设备和可读介质

Also Published As

Publication number Publication date
CN112234607B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN112234607B (zh) 一种考虑快速启停设备的多能虚拟电厂调节能力计算方法
Lu et al. Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming
CN115241931B (zh) 基于时变电碳因子曲线的园区综合能源系统调度方法
CN109409595B (zh) 一种园区多能互补系统日前调度方法
CN111144620A (zh) 一种考虑季节储氢的电氢综合能源系统及其鲁棒规划方法
CN111244939B (zh) 一种计及需求侧响应的多能互补系统两级优化设计方法
CN111697578B (zh) 多目标含储能区域电网运行控制方法
CN106950840A (zh) 面向电网削峰的综合能源系统分层分布式协调控制方法
CN112600253B (zh) 基于用能效率最优的园区综合能源协同优化方法及设备
CN110829408A (zh) 基于发电成本约束的计及储能电力系统的多域调度方法
CN111382902A (zh) 基于运行效益增量的区域综合能源系统储能优化配置方法
CN112084629A (zh) 一种基于两阶段鲁棒优化的多能虚拟电厂聚合方法
CN112398169A (zh) 考虑用户侧响应的含储热chp与火电深调联合优化调峰方法
CN111641233A (zh) 一种考虑新能源及负荷不确定性的电力系统日内灵活调峰方法
CN115498668A (zh) 一种综合能源系统的优化方法
CN112906988B (zh) 一种多能源建筑系统鲁棒双层协调调度的方法
CN115187018A (zh) 一种园区综合能源系统双层优化调度方法及装置
CN111030101A (zh) 一种基于多元化大数据清洁能源消纳联动调控方法及系统
Li et al. Optimal planning of dual-zero microgrid on an island towards net-zero carbon emission
CN111126675A (zh) 多能互补微网系统优化方法
Xue et al. Optimal capacity allocation method of integrated energy system considering renewable energy uncertainty
CN112993997A (zh) 一种提高风电消纳的固态储热与储能协调调度与控制方法
CN115936336B (zh) 一种虚拟电厂容量配置与调控运行优化方法
CN111861195A (zh) 一种提高风电二次消纳能力的热电联合调度方法
CN111523697A (zh) 一种综合能源服务成本分摊与定价计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant