CN112230371A - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
CN112230371A
CN112230371A CN202011158811.6A CN202011158811A CN112230371A CN 112230371 A CN112230371 A CN 112230371A CN 202011158811 A CN202011158811 A CN 202011158811A CN 112230371 A CN112230371 A CN 112230371A
Authority
CN
China
Prior art keywords
lens
optical
denotes
image
optical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011158811.6A
Other languages
English (en)
Other versions
CN112230371B (zh
Inventor
于笑枝
曾昊杰
刘绪明
曾吉勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Lianyi Optics Co Ltd
Original Assignee
Jiangxi Lianyi Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Lianyi Optics Co Ltd filed Critical Jiangxi Lianyi Optics Co Ltd
Priority to CN202011158811.6A priority Critical patent/CN112230371B/zh
Publication of CN112230371A publication Critical patent/CN112230371A/zh
Priority to PCT/CN2021/125993 priority patent/WO2022089344A1/zh
Application granted granted Critical
Publication of CN112230371B publication Critical patent/CN112230371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种光学镜头及成像设备,所述光学镜头沿光轴从物侧到成像面依次包括第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜、第六透镜及第七透镜。第一透镜具有负光焦度,物侧面为凸面,像侧面为凹面;第二透镜具有光焦度,物侧面在为凹面;第三透镜具有正光焦度,像侧面为凸面;第四透镜具有正光焦度,物侧面和像侧面均为凸面;第五透镜具有正光焦度,物侧面为凹面,像侧面为凸面;第六透镜具有负光焦度,物侧面和像侧面均为凹面;第七透镜具有正光焦度,物侧面在近光轴处为凸面且具有反曲点,像侧面在近光轴处为凹面且具有反曲点。所述光学镜头具有超大广角且结构紧凑,光学畸变极小,实现超大广角、镜头小型化和高像素均衡。

Description

光学镜头及成像设备
技术领域
本发明涉及透镜成像技术领域,特别涉及一种光学镜头及成像设备。
背景技术
近年来摄像镜头在各领域都有广泛应用,尤其包括超广角镜头、鱼眼镜头在内的广角镜头在越来越多的场合发挥着重要作用。在摄像方面,广角镜头具有短焦大视场特点,能够产生较大的桶形畸变,以创造特殊效果,给观察者带来强烈的视觉冲击。在测量方面,广角镜头利用大视场特点单次成像可获得更多的数据,以捕捉更多的场景信息。与此同时,市场对镜头的小型化要求也越来越高。然而,镜头尺寸的减小对镜头的成像质量影响很大,尤其是对于大视场广角镜头。因此,需要一种兼具大视场角和小型化的高质量成像镜头。
发明内容
基于此,本发明的目的是提供一种光学镜头及成像设备,以改善上述问题。
本发明实施例通过以下技术方案实现上述的目的。
第一方面,本发明实施例提供一种光学镜头,由七片透镜组成,沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜、第六透镜及第七透镜。第一透镜具有负光焦度,其物侧面为凸面、像侧面为凹面;第二透镜具有光焦度,其物侧面为凹面;第三透镜具有正光焦度,其像侧面为凸面;第四透镜具有正光焦度,其物侧面和像侧面均为凸面;第五透镜具有正光焦度,其物侧面为凹面、像侧面为凸面;第六透镜具有负光焦度,其物侧面和像侧面均为凹面;第七透镜具有正光焦度,其物侧面在近光轴处为凸面,其像侧面在近光轴处为凹面,且第七透镜的物侧面和像侧面均具有至少一个反曲点。其中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜均为塑胶非球面镜片;光学镜头满足以下条件式:6<TTL/EPD<7;其中,TTL表示光学镜头的光学总长,EPD表示光学镜头的入瞳直径。
第二方面,本发明实施例还提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本申请实施例提供的光学镜头及成像设备,通过合理的搭配七个具有特定屈折力的透镜之间的镜片形状和合理的光焦度组合,在满足大广角的同时结构更加紧凑,从而较好地实现了光学镜头的小型化和高像素的均衡,能够有效提升用户的摄像体验。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅为本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请第一实施例提供的光学镜头的结构示意图;
图2为本申请第一实施例提供的光学镜头的场曲曲线图;
图3为本申请第一实施例提供的光学镜头的畸变曲线图;
图4为本申请第一实施例提供的光学镜头的垂轴色差曲线图;
图5为本申请第一实施例提供的光学镜头的轴向色差曲线图;
图6为本申请第二实施例提供的光学镜头的结构示意图;
图7为本申请第二实施例提供的光学镜头的场曲曲线图;
图8为本申请第二实施例提供的光学镜头的畸变曲线图;
图9为本申请第二实施例提供的光学镜头的垂轴色差曲线图;
图10为本申请第二实施例提供的光学镜头的轴向色差曲线图;
图11为本申请第三实施例提供的光学镜头的结构示意图;
图12为本申请第三实施例提供的光学镜头的场曲曲线图;
图13为本申请第三实施例提供的光学镜头的畸变曲线图;
图14为本申请第三实施例提供的光学镜头的垂轴色差曲线图;
图15为本申请第三实施例提供的光学镜头的轴向色差曲线图;
图16为本申请第四实施例提供的成像设备的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中为本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
本申请实施例提供一种光学镜头,该光学镜头沿光轴从物侧到像侧依次包括:第一透镜,第二透镜,第三透镜,光阑,第四透镜,第五透镜,第六透镜,第七透镜及滤光片,这里的像侧即指成像面所在的一侧,物侧为与像侧相对的一侧。
第一透镜具有负光焦度,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面。
第二透镜具有光焦度,第二透镜的物侧面为凹面,第二透镜的像侧面为凹面或者凸面。
第三透镜具有正光焦度,第三透镜的物侧面为凹面或者凸面,第三透镜的像侧面为凸面。
第四透镜具有正光焦度,第四透镜的物侧面和第四透镜的像侧面均为凸面。
第五透镜具有正光焦度,第五透镜的物侧面为凹面,第五透镜的像侧面为凸面。
第六透镜具有负光焦度,第六透镜的物侧面和第六透镜的像侧面均为凹面。
第七透镜具有正光焦度,第七透镜的物侧面在近光轴处为凸面且具有至少一个反曲点,第七透镜的像侧面在近光轴处为凹面且具有至少一个反曲点(inflection point)。
在一些可选的实施例中,光学镜头满足以下条件式:
6<TTL/EPD<7;(1)
其中,TTL表示光学镜头的光学总长,EPD表示光学镜头的入瞳直径。
满足条件式(1)时,能够合理地控制光学镜头的通光量和光学总长,有利于增加光学镜头上的通光量,同时缩短光学镜头的光学总长,实现镜头的小型化。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
1<f/DM1<1.5;(2)
其中,f表示光学镜头的焦距,DM1表示第一透镜的有效半口径。
满足条件式(2)时,能够合理控制第一透镜的有效口径,实现光学镜头的头部尺寸做小,减小便携式电子设备的屏幕开窗面积,实现头部小型化,提高便携式电子产品的屏占比。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.5<R1/f<1.5;(3)
其中,f表示光学镜头的焦距,R1表示第一透镜的物侧面的曲率半径。
满足条件式(3)时,通过控制第一透镜的面型及焦距,能够合理控制光学镜头的成像空间深度和有效焦距,有利于实现光学镜头的超大广角特性。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.5mm<R2/tan(θ2)<1.2mm;(4)
其中,R2表示第一透镜的像侧面的曲率半径,θ2表示第一透镜的像侧面的最大面倾角。
满足条件式(4)时,能够合理控制第一透镜像侧面的曲度,增强第一透镜的光焦度,使镜头在大孔径下也能很好的校正像差,同时有利于减小后续透镜的口径和镜头的总长。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-1<f1/f2<2;(5)
-1<R3/R2<0;(6)
其中,f1表示第一透镜的焦距,f2表示第二透镜的焦距,R2表示第一透镜的像侧面的曲率半径,R3表示第二透镜的物侧面的曲率半径。
满足条件式(5)、(6)时,能够合理均衡第一透镜和第二透镜的焦距,使第一透镜和第二透镜的焦距正负搭配,有利于校正色差,同时能够合理控制光线进入第二透镜物侧面的入射角,降低光学镜头的敏感度。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-1<(R3+R4)/(R3-R4)<30;(7)
-30<(R5+R6)/(R5-R6)<1;(8)
其中,R3表示第二透镜的物侧面的曲率半径,R4表示第二透镜的像侧面的曲率半径,R4表示第三透镜的物侧面的曲率半径,R5表示第三透镜的像侧面的曲率半径。
满足条件式(7)、(8)时,能够合理控制第二透镜和第三透镜的面型,缓和轴外视场的聚光强度,减小边缘视场与中心视场的像差,有利于校正球差和畸变。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.05<CT2/TTL<0.1;(9)
0.04<CT3/TTL<0.1;(10)
其中,CT2表示第二透镜的中心厚度,CT3表示第三透镜的中心厚度,TTL表示光学镜头的光学总长。
满足条件式(9)、(10)时,能够合理控制第二透镜和第三透镜的中心厚度,满足镜头小型化及薄型化透镜的设计,有利于校正像差和f-θ畸变,同时,能够维持通光量,有利于相对照度的提升。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
1<f456/f<1.5;(11)
0<f4/f5<0.5;(12)
-6<f5/f6<-3;(13)
其中,f456表示第四透镜、第五透镜和第六透镜的组合焦距,f4表示第四透镜的焦距,f5表示第五透镜的焦距,f6表示第六透镜的焦距。
满足条件式(11)、(12)、(13)时,能够实现第四透镜、第五透镜和第六透镜的光焦度的平衡分配,并使第四透镜至第六透镜具有正的组合光焦度,有利于校正光学镜头的像差,提高光学镜头的解像力。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.2<(CT4+CT5+CT6)/TTL<0.4;(14)
其中,CT4表示第四透镜的中心厚度,CT5表示第五透镜的中心厚度,CT6表示第六透镜的中心厚度,TTL表示光学镜头的光学总长。
满足条件式(14)时,能够合理分配光阑后的第四透镜至第六透镜的中心厚度,降低镜头的总长,同时,能够合理控制各透镜之间的搭配,降低光学镜头的敏感度。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-50<(R13+R14)/(R13-R14)<-10;(15)
2mm<R14/tan(θ14)<3mm;(16)
其中,R13表示第七透镜的物侧面的曲率半径,R14表示第七透镜的像侧面的曲率半径,θ14表示第七透镜的像侧面的最大面倾角。
满足条件式(15)、(16)时,通过合理控制第七透镜的物侧面和像侧面的曲率半径,能够有效控制光线入射角的分布,提高光学镜头与成像芯片的匹配度,提高光学镜头的解像质量,同时,能够合理控制第七透镜的像侧面的曲度,减小光学镜头鬼像的产生。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
CRA<33°;(17)
0.1<BFL/TTL<0.2;(18)
其中,CRA表示光学镜头的主光线入射角,BFL表示第七透镜的像侧面与成像面在光轴上的距离,也称作光学后焦,TTL表示光学镜头的光学总长。
满足条件式(17)、(18)时,能够合理控制光学镜头的主光线入射角和光学后焦,提高镜头的成像质量,同时,有利于缩短总长,实现光学镜头的小型化。
作为一种实施方式,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜可以是非球面镜片,可选的,上述透镜均采用塑胶非球面镜片。采用非球面镜片,可以有效减少镜片的数量,修正像差,提供更好的光学性能。
作为一种实施方式,当光学镜头100中的各个透镜均为非球面透镜时,光学镜头的各个非球面面型可以均满足下列方程:
Figure BDA0002743632440000051
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数conic,A2i为第2i阶的非球面面型系数。
本发明实施例提供的光学镜头通过采用七个具有特定屈折力的透镜,合理搭配第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜之间的镜片形状与光焦度组合,可以满足镜头具有大广角的前提下使得光学镜头的结构更加紧凑,较好的实现了镜头小型化和高像素的均衡,能够有效提升用户的摄像体验。
下面分多个实施例对本发明进行进一步的说明。在以下各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学镜头100的结构示意图,光学镜头100沿光轴从物侧到成像面S15依次包括:第一透镜L1、第二透镜L2、第三透镜L3、光阑ST、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7。
第一透镜L1具有负光焦度,第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面。
第二透镜L2具有正光焦度,第二透镜L2的物侧面S3为凹面,第二透镜L2的像侧面S4为凸面。
第三透镜L3具有正光焦度,第三透镜L3的物侧面S5为凹面,第三透镜L3的像侧面S6为凸面。
第四透镜L4具有正光焦度,第四透镜L4的物侧面S7和第四透镜L4的像侧面S8均为凸面。
第五透镜L5具有正光焦度,第五透镜L5的物侧面S9为凹面,第五透镜L5的像侧面S10为凸面。
第六透镜L6具有负光焦度,第六透镜L6的物侧面S11和第六透镜L6的像侧面S12均为凹面。
第七透镜L7具有正光焦度,第七透镜L7的物侧面S13在近光轴处为凸面,第七透镜L7的像侧面S14在近光轴处为凹面;在本实施例中,第七透镜L7的物侧面S13的反曲点与光轴的垂直距离为1.13mm,第七透镜L7的像侧面S14的反曲点与光轴的垂直距离为1.19mm。
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7均为塑胶非球面镜片。
请参照表1所示,本发明第一实施例提供的光学镜头100中各个镜片的相关参数如表1所示。
表1
Figure BDA0002743632440000061
请参照表2所示,本发明第一实施例提供的光学镜头100的各非球面的面型系数如表2所示:
表2
Figure BDA0002743632440000062
Figure BDA0002743632440000071
请参照图2、图3、图4及图5,所示分别为光学镜头100的场曲曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度。其中,图2中横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.5mm以内,说明光学镜头100的场曲校正良好。
图3的畸变曲线表示成像面S17上不同像高处的畸变。其中,图3中横轴表示f-θ畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面S17上不同像高处的f-θ畸变控制在±5%以内,说明光学镜头100的畸变得到良好的校正。
图4的垂轴色差曲线表示最长波长与最短波长在成像面S17上不同像高处的色差。其中,图4中横轴表示各波长相对中心波长的垂轴色差值(单位:um),纵轴表示归一化视场角。从图4中可以看出,最长波长与最短波长的垂轴色差控制在±2um以内,说明光学镜头100的垂轴色差得到良好的校正。
图5的轴向色差曲线表示成像面S17处光轴上的像差。其中,图5中纵轴表示球值(单位:mm),横轴表示归一化光瞳半径(单位:mm)。从图5中可以看出,轴向色差的偏移量控制在±0.02mm以内,说明该光学镜头100能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第二实施例
请参阅图6,所示为本发明第二实施例提供的光学镜头200的结构示意图,本实施例中的光学镜头200与第一实施例提供的光学镜头100的结构大致相同,不同之处主要在于,光学镜头200中的第二透镜L2具有负光焦度,第二透镜L2的像侧面S4为凹面,第三透镜L3的物侧面S5为凸面,以及各透镜的曲率半径、材料选择不同。
在本发明第二实施例中,第七透镜L7的物侧面S13的反曲点与光轴的垂直距离为1.08mm,第七透镜L7的像侧面S14的反曲点与光轴的垂直距离为1.16mm。
请参照表3所示,本发明第二实施例提供的光学镜头200中各个镜片的相关参数如表3所示。
表3
Figure BDA0002743632440000081
请参照表4所示,本发明第二实施例提供的光学镜头200的各非球面的面型系数如表4所示:
表4
Figure BDA0002743632440000082
Figure BDA0002743632440000091
请参照图7、图8、图9和图10,所示分别为光学镜头200的场曲曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图7表示子午像面和弧矢像面的弯曲程度。从图7中可以看出,子午像面和弧矢像面的场曲控制在±0.1mm以内,说明光学镜头200的场曲校正良好。
图8表示成像面S17上不同像高处的畸变。从图8中可以看出,成像面S17上不同像高处的f-θ畸变控制在±5%以内,说明光学镜头200的畸变得到良好的校正。
图9表示最长波长与最短波长在成像面S17上不同像高处的色差。从图9中可以看出,最长波长与最短波长的垂轴色差控制在±2um以内,说明光学镜头200的垂轴色差得到良好的校正。
图10表示成像面S17处光轴上的像差。从图10中可以看出,轴向色差的偏移量控制在±0.03mm以内,说明该光学镜头200能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第三实施例
请参阅图11,所示为本发明第三实施例提供的光学镜头300的结构示意图,本实施例中的光学镜头300与第一实施例提供的光学镜头100的结构大致相同,不同之处主要在于,光学镜头300中的第二透镜L2具有负光焦度,第二透镜L2的像侧面S4为凹面,第三透镜L3的物侧面S5为凸面,以及各透镜的曲率半径、材料选择不同。
在本发明第三实施例中,第七透镜L7的物侧面S13的反曲点与光轴的垂直距离为1.15mm,第七透镜L7的像侧面S14的反曲点与光轴的垂直距离为1.21mm。
请参照表5所示,本发明第三实施例提供的光学镜头300中各个镜片的相关参数如表5所示。
表5
Figure BDA0002743632440000092
Figure BDA0002743632440000101
请参照表6所示,本发明第三实施例中的光学镜头300的各非球面的面型系数如表6所示:
表6
面号 k A<sub>4</sub> A<sub>6</sub> A<sub>8</sub> A<sub>10</sub> A<sub>12</sub> A<sub>14</sub> A<sub>16</sub>
S1 -3.06626 -0.01052 -0.00718 -0.00114 -0.00060 0.00037 0.00011 -3.29634E-05
S2 -1.10328 0.01361 0.00092 -0.01025 -0.00151 -0.06666 -0.03880 0.06042
S3 0.33816 0.02751 0.02522 -0.00261 -0.02933 0.02149 0.04247 -0.03070
S4 50.58251 -0.01298 0.02175 -0.03366 -0.01100 0.06933 0.07641 0.23866
S5 17.89255 0.01018 -0.03045 0.02014 0.00007 -0.14594 -0.33766 -0.67047
S6 -23.90262 0.07037 0.01497 0.12757 0.07416 -0.91243 -1.73195 0.11374
S7 3.06722 -0.05011 -0.31039 -0.44318 -0.02301 0.42298 -0.16510 -15.89582
S8 -0.32910 0.00819 0.08597 0.22332 -0.07597 -0.09580 -1.77101 -0.67307
S9 -0.42566 0.03989 -0.07261 -0.15967 0.47267 1.73623 1.93091 -7.15822
S10 1.71768 -0.03272 -0.22387 0.22457 0.78746 0.77871 0.19455 -3.39040
S11 72.97474 -0.30052 0.24090 -0.20337 0.06217 0.48871 0.16664 -4.28600
S12 -33.85426 0.11265 0.14071 -0.08597 -0.12298 -0.01471 0.09720 -0.02091
S13 -5.71786 -0.12478 0.01752 0.00892 -0.00081 -0.00103 0.00024 -9.12865E-06
S14 -3.21474 -0.11818 0.01547 0.00270 -0.00210 0.00029 1.82824E-05 -2.17561E-06
请参照图12、图13、图14和图15,所示分别为光学镜头300的场曲曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图12表示子午像面和弧矢像面的弯曲程度。从图12中可以看出,子午像面和弧矢像面的场曲控制在±0.1mm以内,说明光学镜头300的场曲校正良好。
图13表示成像面S17上不同像高处的畸变。从图13中可以看出,成像面S17上不同像高处的f-θ畸变控制在±5%以内,说明光学镜头300的畸变得到良好的校正。
图14表示最长波长与最短波长在成像面上不同像高处的色差。从图14中可以看出,最长波长与最短波长的垂轴色差控制在±2.0um以内,说明光学镜头300的垂轴色差得到良好的校正。
图15表示成像面S17处光轴上的像差。从图15中可以看出,成像面S17处轴向色差的偏移量控制在±0.01mm以内,说明该光学镜头300能够有效地校正边缘视场的像差以及整个像面的二级光谱。
请参照表7,所示是上述三个实施例提供的光学镜头分别对应的光学特性。其中,光学特性主要包括光学镜头的焦距f、光圈数F#、入瞳直径EPD、光学总长TTL及视场角FOV,以及与前述每个条件式对应的相关数值。
表7
Figure BDA0002743632440000111
Figure BDA0002743632440000121
综上,本发明实施例提供的光学镜头100具有以下的优点:
(1)由于光阑及各透镜形状设置合理,一方面使得光学镜头100具有较小的入瞳直径(EPD<0.84mm),从而使镜头的头部外径可以做得较小,满足高屏占比的需求;另一方面,使得光学镜头100的总长较短(TTL<5.7mm),体积减小,能够更好的满足便携式智能电子产品,例如手机的轻薄化的发展趋势。
(2)采用七个具有特定屈折力的塑胶非球面镜片,并且各个透镜通过特定的表面形状搭配,使得光学镜头100具有超高像素的成像质量。
(3)光学镜头100的视场角可达150°,可有效修正光学畸变,控制f-θ畸变小于±5%,能够满足大视场角且高清晰成像需要。
第四实施例
本申请实施例还提供了一种成像设备400,请参阅图16所示,成像设备400包括成像元件410和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件410可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备400可以是相机、移动终端以及其他任意一种形态的装载了光学镜头100的电子设备,移动终端可以是智能手机、智能平板、智能阅读器等终端设备。
本申请实施例提供的成像设备400包括光学镜头100,由于光学镜头100具有头部外径小、广视角、成像品质高的优点,具有该光学镜头100的成像设备400也具有体积小、广视角、成像品质高的优点。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

1.一种光学镜头,由七片透镜组成,其特征在于,沿光轴从物侧到成像面依次包括:
具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
具有光焦度的第二透镜,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凹面或者凸面;
具有正光焦度的第三透镜,所述第三透镜的物侧面为凹面或者凸面,所述第三透镜的像侧面为凸面;
光阑;
具有正光焦度的第四透镜,所述第四透镜的物侧面和所述第四透镜的像侧面均为凸面;
具有正光焦度的第五透镜,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凸面;
具有负光焦度的第六透镜,所述第六透镜的物侧面和所述第六透镜的像侧面均为凹面;以及
具有正光焦度的第七透镜,所述第七透镜的物侧面在近光轴处为凸面,所述第七透镜的像侧面在近光轴处为凹面,所述第七透镜的物侧面和像侧面均具有至少一个反曲点;
其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为塑胶非球面镜片;
所述光学镜头满足以下条件式:
6<TTL/EPD<7;
其中,TTL表示所述光学镜头的光学总长,EPD表示所述光学镜头的入瞳直径。
2.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
1<f/DM1<1.5;
其中,f表示所述光学镜头的焦距,DM1表示所述第一透镜的有效半口径。
3.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.5<R1/f<1.5;
其中,f表示所述光学镜头的焦距,R1表示所述第一透镜的物侧面的曲率半径。
4.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.5mm<R2/tan(θ2)<1.2mm;
其中,R2表示所述第一透镜的像侧面的曲率半径,θ2表示所述第一透镜的像侧面的最大面倾角。
5.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
-1<f1/f2<2;
-1<R3/R2<0;
其中,f1表示所述第一透镜的焦距,f2表示所述第二透镜的焦距,R2表示所述第一透镜的像侧面的曲率半径,R3表示所述第二透镜的物侧面的曲率半径。
6.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
-1<(R3+R4)/(R3-R4)<30;
-30<(R5+R6)/(R5-R6)<1;
其中,R3表示所述第二透镜的物侧面的曲率半径,R4表示所述第二透镜的像侧面的曲率半径,R5表示所述第三透镜的物侧面的曲率半径,R6表示所述第三透镜的像侧面的曲率半径。
7.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.05<CT2/TTL<0.1;
0.04<CT3/TTL<0.1;
其中,CT2表示所述第二透镜的中心厚度,CT3表示所述第三透镜的中心厚度,TTL表示所述光学镜头的光学总长。
8.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
1<f456/f<1.5;
0<f4/f5<0.5;
-6<f5/f6<-3;
其中,f456表示所述第四透镜、所述第五透镜和所述第六透镜的组合焦距,f4表示所述第四透镜的焦距,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距。
9.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
0.2<(CT4+CT5+CT6)/TTL<0.4;
其中,CT4表示所述第四透镜的中心厚度,CT5表示所述第五透镜的中心厚度,CT6表示所述第六透镜的中心厚度,TTL表示所述光学镜头的光学总长。
10.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
-50<(R13+R14)/(R13-R14)<-10;
2mm<R14/tan(θ14)<3mm;
其中,R13表示所述第七透镜的物侧面的曲率半径,R14表示所述第七透镜的像侧面的曲率半径,θ14表示所述第七透镜的像侧面的最大面倾角。
11.根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
CRA<33°;
0.1<BFL/TTL<0.2;
其中,CRA表示所述光学镜头的主光线入射角,BFL表示所述第七透镜的像侧面与所述成像面在光轴上的距离,TTL表示所述光学镜头的光学总长。
12.一种成像设备,其特征在于,包括成像元件和如权利要求1-11任一项所述的光学镜头,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
CN202011158811.6A 2020-10-26 2020-10-26 光学镜头及成像设备 Active CN112230371B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011158811.6A CN112230371B (zh) 2020-10-26 2020-10-26 光学镜头及成像设备
PCT/CN2021/125993 WO2022089344A1 (zh) 2020-10-26 2021-10-25 光学镜头及成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011158811.6A CN112230371B (zh) 2020-10-26 2020-10-26 光学镜头及成像设备

Publications (2)

Publication Number Publication Date
CN112230371A true CN112230371A (zh) 2021-01-15
CN112230371B CN112230371B (zh) 2022-06-24

Family

ID=74109445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011158811.6A Active CN112230371B (zh) 2020-10-26 2020-10-26 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN112230371B (zh)
WO (1) WO2022089344A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987263A (zh) * 2021-04-27 2021-06-18 江西联创电子有限公司 定焦镜头及成像设备
WO2022089344A1 (zh) * 2020-10-26 2022-05-05 江西联益光学有限公司 光学镜头及成像设备
TWI767679B (zh) * 2021-04-29 2022-06-11 大陸商信泰光學(深圳)有限公司 廣角鏡頭(三十二)
WO2022174724A1 (zh) * 2021-02-22 2022-08-25 华为技术有限公司 光学镜头、摄像头模组和电子设备
CN115128780A (zh) * 2022-08-30 2022-09-30 江西联创电子有限公司 光学成像镜头及成像设备
TWI792202B (zh) * 2021-02-26 2023-02-11 大陸商信泰光學(深圳)有限公司 成像鏡頭(五十六)
CN115951484A (zh) * 2023-03-15 2023-04-11 江西联创电子有限公司 光学镜头
TWI805073B (zh) * 2021-11-12 2023-06-11 大陸商信泰光學(深圳)有限公司 廣角鏡頭(三十八)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951483B (zh) * 2023-03-15 2023-06-13 江西联创电子有限公司 光学镜头
CN116643388B (zh) * 2023-07-24 2023-11-14 江西联益光学有限公司 光学镜头
CN117170069B (zh) * 2023-11-02 2024-03-08 江西联创电子有限公司 光学镜头
CN117289437B (zh) * 2023-11-27 2024-03-08 江西联创电子有限公司 光学镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180059362A1 (en) * 2016-08-29 2018-03-01 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly
CN109387926A (zh) * 2017-08-04 2019-02-26 先进光电科技股份有限公司 光学成像系统
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5546232A (en) * 1993-06-14 1996-08-13 Asahi Kogaku Kogyo Kabushiki Kaisha Two-group zoom lens
CN109683279B (zh) * 2018-12-18 2023-10-03 中山联合光电科技股份有限公司 一种大光圈红外共焦光学系统
CN110737073A (zh) * 2019-10-29 2020-01-31 广东弘景光电科技股份有限公司 广角高像素4k光学系统及其应用的摄像模组
CN111650731B (zh) * 2020-08-10 2020-11-20 江西联创电子有限公司 广角镜头及成像设备
CN112230371B (zh) * 2020-10-26 2022-06-24 江西联益光学有限公司 光学镜头及成像设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180059362A1 (en) * 2016-08-29 2018-03-01 Sintai Optical (Shenzhen) Co., Ltd. Lens assembly
CN109387926A (zh) * 2017-08-04 2019-02-26 先进光电科技股份有限公司 光学成像系统
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022089344A1 (zh) * 2020-10-26 2022-05-05 江西联益光学有限公司 光学镜头及成像设备
WO2022174724A1 (zh) * 2021-02-22 2022-08-25 华为技术有限公司 光学镜头、摄像头模组和电子设备
TWI792202B (zh) * 2021-02-26 2023-02-11 大陸商信泰光學(深圳)有限公司 成像鏡頭(五十六)
CN112987263A (zh) * 2021-04-27 2021-06-18 江西联创电子有限公司 定焦镜头及成像设备
TWI767679B (zh) * 2021-04-29 2022-06-11 大陸商信泰光學(深圳)有限公司 廣角鏡頭(三十二)
TWI805073B (zh) * 2021-11-12 2023-06-11 大陸商信泰光學(深圳)有限公司 廣角鏡頭(三十八)
CN115128780A (zh) * 2022-08-30 2022-09-30 江西联创电子有限公司 光学成像镜头及成像设备
CN115128780B (zh) * 2022-08-30 2022-12-16 江西联创电子有限公司 光学成像镜头及成像设备
CN115951484A (zh) * 2023-03-15 2023-04-11 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
CN112230371B (zh) 2022-06-24
WO2022089344A1 (zh) 2022-05-05

Similar Documents

Publication Publication Date Title
CN112230371B (zh) 光学镜头及成像设备
CN111338060B (zh) 光学镜头及成像设备
CN112034600B (zh) 光学镜头及成像设备
CN112285907B (zh) 光学镜头及成像设备
CN114114650B (zh) 光学镜头及成像设备
CN112987262B (zh) 光学镜头及成像设备
CN112014957B (zh) 光学镜头及成像设备
CN114185157B (zh) 光学镜头
CN112684594B (zh) 光学镜头及成像设备
CN112596215B (zh) 光学镜头及成像设备
CN114114654B (zh) 光学系统、取像模组及电子设备
CN112147764B (zh) 光学镜头及成像设备
CN111929874B (zh) 光学镜头及成像设备
CN113433674B (zh) 光学镜头及成像设备
CN112526730B (zh) 光学镜头及成像设备
CN112859291B (zh) 摄像镜头
CN113820835B (zh) 光学镜头及成像设备
CN112505901B (zh) 光学镜头及成像设备
CN113156612A (zh) 光学系统、取像模组及电子设备
CN112526729B (zh) 光学镜头及成像设备
CN113900225B (zh) 光学系统、取像模组及电子设备
CN113031228B (zh) 光学镜头及成像设备
CN112630944B (zh) 光学镜头及成像设备
CN113253429B (zh) 广角镜头及成像设备
CN113238338A (zh) 光学镜头及成像设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant