CN112214931B - Electromagnetic force feedback device and method for virtual interventional operation system - Google Patents
Electromagnetic force feedback device and method for virtual interventional operation system Download PDFInfo
- Publication number
- CN112214931B CN112214931B CN202011067266.XA CN202011067266A CN112214931B CN 112214931 B CN112214931 B CN 112214931B CN 202011067266 A CN202011067266 A CN 202011067266A CN 112214931 B CN112214931 B CN 112214931B
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- force feedback
- electromagnetic
- value
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000012549 training Methods 0.000 claims abstract description 50
- 230000005284 excitation Effects 0.000 claims description 35
- 238000001356 surgical procedure Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 12
- 238000012795 verification Methods 0.000 claims description 10
- 230000004927 fusion Effects 0.000 claims description 8
- 238000013507 mapping Methods 0.000 claims description 7
- 238000004088 simulation Methods 0.000 claims description 7
- 238000013528 artificial neural network Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000007500 overflow downdraw method Methods 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- -1 polyethylene Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 238000007654 immersion Methods 0.000 abstract description 5
- 238000013152 interventional procedure Methods 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 description 14
- 230000005291 magnetic effect Effects 0.000 description 13
- 238000010200 validation analysis Methods 0.000 description 11
- 238000005339 levitation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
- A61B2017/00128—Electrical control of surgical instruments with audible or visual output related to intensity or progress of surgical action
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Instructional Devices (AREA)
Abstract
本发明公开了一种面向虚拟介入手术系统的电磁力反馈装置及方法,装置包括电磁线圈阵列和手术器械;电磁线圈阵列由以特定拓扑结构分布在同一平面上的四个大小完全相同的电磁线圈组成;手术器械由两个长筒形永磁体和一根刚性棒状操作杆组成。同时,本发明提出了一种适用于本装置的电磁力反馈方法,包括装置的基本运行原则、最优电流分配策略和力矩‑电流回归预测模型,用于简洁、高效、实时、精确地产生虚拟介入手术中产生周向旋转力反馈。本发明极大地还原了真实介入手术的操作模式,提高了操作者的沉浸感,能提高虚拟介入手术系统术前训练的效果。
The invention discloses an electromagnetic force feedback device and method for a virtual interventional operation system. The device includes an electromagnetic coil array and a surgical instrument; the electromagnetic coil array consists of four electromagnetic coils of identical size distributed on the same plane with a specific topology structure Composition; The surgical instrument consists of two long cylindrical permanent magnets and a rigid rod-shaped operating rod. At the same time, the present invention proposes an electromagnetic force feedback method suitable for the device, including the basic operation principle of the device, an optimal current distribution strategy and a torque-current regression prediction model, which is used to generate virtual simulations in a concise, efficient, real-time and accurate manner. Circumferential rotational force feedback is generated in interventional procedures. The invention greatly restores the operation mode of the real interventional operation, improves the immersion of the operator, and can improve the effect of preoperative training of the virtual interventional operation system.
Description
技术领域technical field
本发明属于虚拟现实技术领域,涉及一种面向虚拟介入手术的电磁力反馈装置及方法,特别涉及一种基于磁悬浮原理设计的电磁线圈阵列拓扑结构和对应手术器械,以及一种使用计算机仿真技术和机器学习技术的电磁力反馈方法,用于实时精确地产生虚拟介入手术中的周向旋转力反馈。The invention belongs to the technical field of virtual reality, and relates to an electromagnetic force feedback device and method for virtual interventional surgery, in particular to a topological structure of an electromagnetic coil array and corresponding surgical instruments designed based on the principle of magnetic levitation, and a Electromagnetic force feedback method of machine learning technology for accurate real-time generation of circumferential rotational force feedback in virtual interventional procedures.
背景技术Background technique
在虚拟血管介入手术系统中,用户通过操作与导丝导管高度相似的手术器械与虚拟血管场景交互,从而获得视觉、触觉的多感知反馈,高沉浸感地体验介入手术进行过程([文献1])。虚拟介入手术系统的难点在于实时精确地产生介入手术操作过程中的反馈力,尤其是导丝捻拧过程中的周向旋转反馈力([文献2])。然而,现有的虚拟介入手术系统中力反馈模块大都是由接触式的机械导轨和滑轮设计而成([文献3][文献4])。机械导轨的存在,极大限制了操作自由性,与实际介入手术实施情况差距较大,导致虚拟手术系统训练效果并不理想。随着磁悬浮技术的成熟,其诸多优越性逐渐体现,不仅能获得更加灵活的操作空间,还具有精密运动控制和低能耗等优点,除此之外还消除了其他驱动方法中的摩擦和动态非线性磁滞等([文献5])。In the virtual vascular interventional surgery system, the user interacts with the virtual vascular scene by operating surgical instruments that are highly similar to the guide wire catheter, so as to obtain visual and tactile multi-sensory feedback, and experience the process of interventional surgery with high immersion ([Reference 1] ). The difficulty of the virtual interventional surgery system is to accurately generate the feedback force during the interventional surgery operation in real time, especially the circumferential rotation feedback force during the guide wire twisting process ([Reference 2]). However, most of the force feedback modules in the existing virtual interventional surgery systems are designed with contact-type mechanical guide rails and pulleys ([Document 3][Document 4]). The existence of mechanical guide rails greatly limits the freedom of operation, and there is a big gap with the actual implementation of interventional surgery, resulting in an unsatisfactory training effect of the virtual surgical system. With the maturity of magnetic levitation technology, its many advantages are gradually reflected, not only can it obtain a more flexible operating space, but also have the advantages of precise motion control and low energy consumption, in addition to eliminating friction and dynamic non-consumption in other driving methods. Linear hysteresis, etc. ([Literature 5]).
在基于磁悬浮的电磁力反馈装置上,Berkelman([文献6][文献7])等人最先使用由单个电磁线圈为基本单位组成的具有特定拓扑结构的电磁线圈阵列和相应的带永磁体的操作杆来获取无接触式的力触觉感知,但是并没有过多解释电磁线圈摆放的依据。武汉大学袁志勇课题组([文献8])将电磁力反馈技术运用到虚拟手术系统的力反馈模块上,特别是针对肾脏等有弹性形变的器官组织。实验结果表明基于电磁式的力反馈模块的操作体验比机械式的沉浸感更强烈,但该研究侧重于虚拟组织的刚度感知。截止目前,针对较为复杂的虚拟介入手术系统中的电磁力反馈还缺乏系统的研究,其技术难点在于高还原度地复现手术操作方式和实时精确地产生手术过程中的力反馈。On the electromagnetic force feedback device based on magnetic levitation, Berkelman ([Literature 6] [Literature 7]) et al. first used a single electromagnetic coil as the basic unit with a specific topology of electromagnetic coil arrays and corresponding permanent magnets. The lever is used to obtain non-contact force-tactile perception, but the basis for the placement of the electromagnetic coil is not explained too much. The research group of Yuan Zhiyong of Wuhan University ([Reference 8]) applied electromagnetic force feedback technology to the force feedback module of virtual surgery system, especially for elastically deformable organs such as kidneys. The experimental results show that the operation experience based on the electromagnetic force feedback module is stronger than the mechanical immersion, but the research focuses on the stiffness perception of virtual tissue. So far, there is still a lack of systematic research on electromagnetic force feedback in complex virtual interventional surgery systems, and the technical difficulties lie in reproducing the surgical operation mode with high degree of reduction and accurately generating force feedback during the operation in real time.
要满足复杂的虚拟接入手术中电磁力反馈的实时性和精确性,则需要建立电磁力与各个线圈激励电流之间快速高效的计算模型。本发明根据拓扑结构和操作器械的特点,结合模型融合等方法创建了一个简洁精确的计算模型,保证了力反馈产生的实时性和精确性。To meet the real-time and accuracy of electromagnetic force feedback in complex virtual access surgery, it is necessary to establish a fast and efficient calculation model between the electromagnetic force and the excitation current of each coil. According to the characteristics of the topology structure and the operating instrument, the invention creates a concise and accurate calculation model in combination with methods such as model fusion, which ensures the real-time and accuracy of the force feedback.
参考文献:references:
[文献1]:Omisore O M,Han S P,Ren L X,et al.Towards Characterizationand Adaptive Compensation of Backlash in a Novel Robotic Catheter System forCardiovascular Interventions[J].IEEE Transactions on Biomedical Circuits&Systems,2018,PP(4):1-15.[Document 1]: Omisore O M, Han S P, Ren L X, et al. Towards Characterization and Adaptive Compensation of Backlash in a Novel Robotic Catheter System for Cardiovascular Interventions [J]. IEEE Transactions on Biomedical Circuits&Systems, 2018, PP(4): 1- 15.
[文献2]:Shi Y,Zhou C,Xie L,et al.Research of the master-slave robotsurgical system with the function of force feedback[J].Int J Med Robot,2017:e1826.[Document 2]: Shi Y, Zhou C, Xie L, et al. Research of the master-slave robotsurgical system with the function of force feedback [J]. Int J Med Robot, 2017: e1826.
[文献3]:Guo J,Jin X,Guo S,et al.A Vascular Interventional SurgicalRobotic System Based on Force-Visual Feedback[J].IEEE Sensors Journal,2019,19(23):11081-11089.[Document 3]: Guo J, Jin X, Guo S, et al. A Vascular Interventional SurgicalRobotic System Based on Force-Visual Feedback [J]. IEEE Sensors Journal, 2019, 19(23): 11081-11089.
[文献4]:Guo J,Yu Y,Guo S,et al.Design and performance evaluation of anovel master manipulator for the robot-assist catheter system[C]//IEEEInternational Conference on Mechatronics&Automation.IEEE,2016:937-924.[Document 4]: Guo J, Yu Y, Guo S, et al. Design and performance evaluation of novel master manipulator for the robot-assist catheter system [C]//IEEE International Conference on Mechatronics & Automation. IEEE, 2016: 937-924.
[文献5]:Kim Y,Parada G A,Liu S,et al.Ferromagnetic soft continuumrobots[J].Science Robotics,2019,4(33):eaax7329.[Literature 5]: Kim Y, Parada G A, Liu S, et al. Ferromagnetic soft continuumrobots [J]. Science Robotics, 2019, 4(33): eaax7329.
[文献6]:Berkelman P,Dzadovsky M.Magnet levitation and trajectoryfollowing motion control using a planar array of cylindrical coils[C]//ASME2008 Dynamic Systems and Control Conference.American Society of MechanicalEngineers,2008:923-930.[Document 6]: Berkelman P, Dzadovsky M. Magnet levitation and trajectory following motion control using a planar array of cylindrical coils [C]//ASME2008 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2008: 923-930.
[文献7]:Berkelman P,Dzadovsky M.Magnetic Levitation Over LargeTranslation and Rotation Ranges in All Directions[J].IEEE/ASME Transactionson Mechatronics,2013,18(1):44-52.[Document 7]: Berkelman P, Dzadovsky M. Magnetic Levitation Over LargeTranslation and Rotation Ranges in All Directions [J]. IEEE/ASME Transactionson Mechatronics, 2013, 18(1): 44-52.
[文献8]:Tong Q,Yuan Z,Liao X,et al.Magnetic Levitation HapticAugmentation for Virtual Tissue Stiffness Perception[J].IEEE Transactions onVisualization and Computer Graphics,2018,24(12):3123-3136.[Document 8]: Tong Q, Yuan Z, Liao X, et al. Magnetic Levitation HapticAugmentation for Virtual Tissue Stiffness Perception [J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(12): 3123-3136.
发明内容SUMMARY OF THE INVENTION
针对现有虚拟介入手术系统中力反馈模块难以产生沉浸逼真的操作感问题,本发明通过研究通电线圈阵列磁场特性和分析血管介入手术操作模式,设计了一套包含高度对称的电磁线圈阵列和多自由度的手术操作杆的装置来复现介入手术中的关键力反馈——周向旋转力反馈。此外,针对电磁力触觉模块难以动态产生实时精确力反馈问题,提出了适用于该套装置的电磁力反馈方法,用于简洁、高效、实时、精确地产生虚拟介入手术中产生周向旋转力反馈。Aiming at the problem that the force feedback module in the existing virtual interventional operation system is difficult to produce an immersive and realistic operation sense, the present invention designs a set of electromagnetic coil arrays including a highly symmetrical electromagnetic coil array and multiple A device with a degree of freedom surgical joystick to reproduce the key force feedback in interventional procedures - circumferential rotational force feedback. In addition, in view of the problem that the electromagnetic force haptic module is difficult to dynamically generate real-time accurate force feedback, an electromagnetic force feedback method suitable for this set of devices is proposed, which can be used for simple, efficient, real-time and accurate generation of circumferential rotational force feedback in virtual interventional surgery. .
本发明的装置所采用的技术方案是:一种面向虚拟介入手术系统的电磁力反馈装置,其特征在于:包括电磁线圈阵列和手术器械;所述电磁线圈阵列包括四个完全相同的电磁线圈、四个保护基座、底盘滑轨;所述四个完全相同的电磁线圈摆放在同一平面上,各个电磁线圈中距离较近的底面的圆心依次相连会组成一个正方形,正方形中心为两对互为对角线线圈的底面圆心连线交点;所述四个完全相同的电磁线圈均分别固定设置在保护基座上;所述四个保护基座均设置在所述底盘滑轨上,可在所述底盘滑轨上移动;所述手术器械为多自由度的手术操作杆。The technical scheme adopted by the device of the present invention is: an electromagnetic force feedback device for a virtual interventional operation system, which is characterized in that it includes an electromagnetic coil array and a surgical instrument; the electromagnetic coil array includes four identical electromagnetic coils, Four protective bases and chassis slide rails; the four identical electromagnetic coils are placed on the same plane, and the centers of the bottom surfaces that are closer to each other in each electromagnetic coil are connected in turn to form a square, and the centers of the squares are two pairs of each other. is the intersection point of the bottom surface of the diagonal coil; the four identical electromagnetic coils are fixed on the protection base respectively; the four protection bases are all set on the chassis slide rail, which can be The chassis moves on the slide rail; the surgical instrument is a multi-degree-of-freedom surgical operating rod.
作为优选,所述保护基座角度可调。角度为电磁线圈底面与水平面的夹角,角度调整范围为0°至90°,可增加装置二次开发性和灵活性。Preferably, the angle of the protection base is adjustable. The angle is the angle between the bottom surface of the electromagnetic coil and the horizontal plane, and the angle adjustment range is 0° to 90°, which can increase the secondary development and flexibility of the device.
作为优选,所述手术器械包括刚性操作杆、第一永磁体、第二永磁体;所述第一永磁体设置所述刚性操作杆上端顶,所述第二永磁体固定设置在所述第一永磁体中上部,与所述第一永磁体呈十字交叉状。两者互相配合从而能高度模拟还原实际介入手术中导丝的力学特性。Preferably, the surgical instrument includes a rigid operating rod, a first permanent magnet, and a second permanent magnet; the first permanent magnet is disposed on the top of the rigid operating rod, and the second permanent magnet is fixedly disposed on the first permanent magnet The upper part of the permanent magnet is in a cross shape with the first permanent magnet. The two cooperate with each other to highly simulate and restore the mechanical properties of the guide wire in the actual interventional operation.
作为优选,所述第一永磁体和第二永磁体均为长筒形永磁体,市面上永磁体制作工艺的限制使得长筒形永磁体能满足磁化面为较小面。Preferably, the first permanent magnet and the second permanent magnet are both long cylindrical permanent magnets, and the limitation of the manufacturing process of permanent magnets on the market makes the long cylindrical permanent magnets meet the requirement that the magnetization surface is smaller.
作为优选,所述刚性操作杆由聚乙烯制作而成,底面半径为9mm,高度为200mm。这些参数可根据实际情况进行调整,操作杆应尽量细长且应选择密度较小的材料,从而与实际介入手术中导管性质较为吻合。Preferably, the rigid operating rod is made of polyethylene, the radius of the bottom surface is 9mm, and the height is 200mm. These parameters can be adjusted according to the actual situation. The operating rod should be as slender as possible and the material with lower density should be selected, so as to be more consistent with the nature of the catheter in the actual interventional operation.
作为优选,所述第一永磁体底面半径为8mm,高度为15mm。这些参数可根据实际情况进行调整,第一永磁体应尽量轻质化,与实际介入手术中导丝尖端吻合,从而保持力反馈的纯粹性。Preferably, the radius of the bottom surface of the first permanent magnet is 8mm, and the height is 15mm. These parameters can be adjusted according to the actual situation. The first permanent magnet should be as light as possible and fit with the tip of the guide wire in the actual interventional operation, so as to maintain the purity of the force feedback.
作为优选,所述第二永磁体底面半径为6mm,高度为35mm。这些参数可根据实际情况进行调整,第二永磁体应尽量细长化,从而在获得更强周向反馈力的同时保持轻质化。Preferably, the radius of the bottom surface of the second permanent magnet is 6mm, and the height is 35mm. These parameters can be adjusted according to the actual situation, and the second permanent magnet should be as slender as possible, so as to obtain a stronger circumferential feedback force while keeping the weight light.
作为优选,电磁线圈材料为Copper,互为对角线的电磁线圈对之间距离为74mm,单个电磁线圈的线圈匝数为1024。这些参数可根据实际情况进行调整,根据毕奥萨伐尔定律,距离电流源越近,磁场强度越大;电磁线圈截面电流越大,磁场强度越大。故线圈对之间的距离应尽可能小但略大于第二永磁体的长度,线圈匝数经计算在1000左右会使得截面电流较大,从而在两个因素的共同促进下产生较强的电磁反馈力。Preferably, the material of the electromagnetic coil is Copper, the distance between the pair of electromagnetic coils that are diagonal to each other is 74 mm, and the number of turns of a single electromagnetic coil is 1024. These parameters can be adjusted according to the actual situation. According to Bio-Savart's law, the closer the distance to the current source, the greater the magnetic field strength; the greater the cross-sectional current of the electromagnetic coil, the greater the magnetic field strength. Therefore, the distance between the coil pairs should be as small as possible but slightly larger than the length of the second permanent magnet. The number of turns of the coil is calculated to be around 1000, which will make the cross-sectional current larger, thereby generating a strong electromagnetic force under the joint promotion of the two factors. feedback force.
本发明的方法所采用的技术方案是:一种面向虚拟介入手术系统的电磁力反馈方法,其特征在于,包括以下步骤:The technical scheme adopted by the method of the present invention is: an electromagnetic force feedback method for a virtual interventional operation system, which is characterized in that it includes the following steps:
步骤1:对电磁力反馈装置中的电磁线圈和第二永磁体进行等比例大小等材质的建模仿真,获得电磁力反馈模型;Step 1: Carry out modeling and simulation of materials such as the electromagnetic coil and the second permanent magnet in the electromagnetic force feedback device to obtain an electromagnetic force feedback model;
确定电磁力反馈装置的基本运行原则:互为对角线位置的电磁线圈给予大小方向相同的激励电流;Determine the basic operating principle of the electromagnetic force feedback device: the electromagnetic coils in the diagonal positions of each other are given excitation currents of the same magnitude and direction;
确定电磁力反馈装置的最优电流分配策略:对第二永磁体的N极与以互为对角线的线圈底面中心所连成的直角坐标系中X轴正方向夹角θ,提出一个三维元组(x,y,z),来决定电磁线圈阵列中电流的最优分配策略;Determine the optimal current distribution strategy of the electromagnetic force feedback device: For the angle θ in the positive direction of the X-axis in the Cartesian coordinate system formed by the N pole of the second permanent magnet and the center of the bottom surface of the coil which is a diagonal line to each other, a three-dimensional tuple (x, y, z) to determine the optimal distribution strategy of the current in the electromagnetic coil array;
x=[θ/90]mod2x=[θ/90]mod2
y=|(45·[θ/45])mod2-θmod45|y=|(45·[θ/45])mod2-θmod45|
z=[θ/180]z=[θ/180]
其中,三维元组(x,y,z)中,x决定施加电流的电磁线圈对,y为等价映射在最小对称区间内的夹角,z用来指示线圈对中电流方向;每一个θ对应唯一一个三元组,即唯一一个最优电流分配策略;Among them, in the three-dimensional tuple (x, y, z), x determines the electromagnetic coil pair to which the current is applied, y is the included angle of the equivalent mapping in the minimum symmetric interval, and z is used to indicate the current direction in the coil pair; each θ Corresponds to a unique triple, that is, a unique optimal current distribution strategy;
步骤2:构建力矩-电流回归预测模型;Step 2: Build a torque-current regression prediction model;
调整步骤1中建立的电磁力反馈模型中第二永磁体的N极与直角坐标系X轴正方向夹角θ和电磁线圈激励电流数值I,计算第二永磁体绕轴旋转的力矩数值T;从而获得若干组离线数据,组成离线数据集;Adjust the angle θ between the N pole of the second permanent magnet and the positive direction of the X-axis of the Cartesian coordinate system in the electromagnetic force feedback model established in
利用离线数据集训练用于回归预测的BPNN网络和GRNN网络,将表现最优的神经网络作为子模型,通过模型融合方法构建强力矩-电流预测模型,从而能根据第二永磁体的N极与直角坐标系X轴正方向夹角θ和力矩数值T快速精确地计算线圈阵列的激励电流数值I;The BPNN network and GRNN network for regression prediction are trained using offline data sets, and the neural network with the best performance is used as a sub-model, and a strong torque-current prediction model is constructed by the model fusion method, so that it can be based on the N pole and the second permanent magnet. The included angle θ in the positive direction of the X-axis of the Cartesian coordinate system and the torque value T can quickly and accurately calculate the excitation current value I of the coil array;
步骤3:生成电磁线圈阵列的电流分配模式;Step 3: Generate the current distribution pattern of the electromagnetic coil array;
根据θ计算出三元组(x,y,z),再通过力矩-电流回归预测模型输入三元组中的y和力矩数值T求解激励电流数值I,最终组成新的三元组(x,I,z),利用该三元组指导电磁线圈阵列中各个电磁线圈电流的分配,从而生成对应的周向旋转力反馈。Calculate the triplet (x, y, z) according to θ, and then input the y and torque value T in the triplet through the torque-current regression prediction model to solve the excitation current value I, and finally form a new triplet (x, I, z), the triplet is used to guide the distribution of the current of each solenoid in the solenoid array, thereby generating the corresponding circumferential rotational force feedback.
作为优选,步骤2的具体实现包括以下子步骤:Preferably, the specific implementation of
步骤2.1:不断调整第二永磁体的旋转角度θ和电磁线圈激励电流数值I,求解得到相应的力矩数据T从而获得若干组离线数据,组成离线数据集;Step 2.1: continuously adjust the rotation angle θ of the second permanent magnet and the electromagnetic coil excitation current value I, and solve to obtain the corresponding torque data T to obtain several sets of offline data to form an offline data set;
步骤2.2:搭建包括输入层、隐含层、输出层的BPNN网络;其中,网络的输入值为第二永磁体应该受到的力矩数值T和手术器械上第二永磁体的N极与直角坐标系X轴正方向的夹角θ,输出值为电磁线圈激励电流数值I;Step 2.2: Build a BPNN network including an input layer, a hidden layer, and an output layer; wherein, the input value of the network is the torque value T that the second permanent magnet should receive, and the N pole and the rectangular coordinate system of the second permanent magnet on the surgical instrument The included angle θ in the positive direction of the X axis, the output value is the excitation current value I of the electromagnetic coil;
步骤2.3:搭建包含输入层、模式层、求和层、输出层的GRNN网络;其中,网络的输入值为第二永磁体应该受到的力矩数值T和手术器械上第二永磁体的N极与直角坐标系X轴正方向的夹角θ,输出值为电磁线圈激励电流数值I;Step 2.3: Build a GRNN network including an input layer, a model layer, a summation layer, and an output layer; wherein, the input value of the network is the torque value T that the second permanent magnet should receive and the N pole of the second permanent magnet on the surgical instrument. The included angle θ in the positive direction of the X-axis of the Cartesian coordinate system, the output value is the excitation current value I of the electromagnetic coil;
步骤2.4:训练BPNN网络和GRNN网络;Step 2.4: Train BPNN network and GRNN network;
在BPNN网络的离线训练过程中,在将离线数据集归一化处理后,使用k-折训练法将离线数据集划分为训练集和验证集并进行网络训练;随后以电磁线圈激励电流的均方误差作为损失函数,当训练至网络在验证集上的误差小于阈值时,停止训练并将BPNN网络保存,作为模型融合的子模型之一,记为BPNN网络预测子模型;In the offline training process of the BPNN network, after normalizing the offline dataset, the k-fold training method is used to divide the offline dataset into a training set and a validation set and conduct network training; The square error is used as a loss function. When the error of the training network on the validation set is less than the threshold, the training is stopped and the BPNN network is saved as one of the sub-models of the model fusion, which is recorded as the BPNN network prediction sub-model;
在GRNN网络的离线训练过程中,根据机器运行时间选择适量的训练数据并随机生成一个超参数初始值,以此确定GRNN的网络结构和参数,同时选取数据集中训练集之外的若干条数据作为验证集;使用验证集进行GRNN网络训练并在训练过程中根据误差来动态调整超参数的值;当训练至网络在验证集上的均方误差小于阈值时,保存该超参数和训练集,作为另一个模型融合的子模型,记为GRNN网络预测子模型;In the offline training process of the GRNN network, an appropriate amount of training data is selected according to the running time of the machine and an initial value of the hyperparameter is randomly generated to determine the network structure and parameters of the GRNN, and several pieces of data outside the training set in the data set are selected as Validation set; use the validation set for GRNN network training and dynamically adjust the value of hyperparameters according to the error during the training process; when the mean square error of the training network on the validation set is less than the threshold, save the hyperparameter and training set as Another sub-model of model fusion, denoted as GRNN network prediction sub-model;
步骤2.5:另取M条全新的数据作为预测集分别输入到两个子模型中进行电流预测;Step 2.5: Take another M pieces of new data as prediction sets and input them into two sub-models for current prediction;
利用数理统计中的极值思想,求解使得预测值与实际值之间偏差的方差最小的子模型权值,最后得到力矩-电流回归预测模型如下:Using the extreme value idea in mathematical statistics, the sub-model weights that minimize the variance of the deviation between the predicted value and the actual value are solved, and the torque-current regression prediction model is finally obtained as follows:
k1+k2=1k 1 +k 2 =1
其中和分别是BPNN网络预测子模型和GRNN网络预测子模型所对应的预测值,θ为第二永磁体(203)的N极与直角坐标系中X轴正方向的夹角,t为第二永磁体(203)的力矩数值,k1和k2则对应两个子模型预测结果的权值,为最终强预测模型的预测值。in and are the prediction values corresponding to the BPNN network prediction sub-model and the GRNN network prediction sub-model, respectively, θ is the angle between the N pole of the second permanent magnet (203) and the positive direction of the X-axis in the Cartesian coordinate system, and t is the second permanent magnet The moment value of (203), k 1 and k 2 correspond to the weights of the prediction results of the two sub-models, is the predicted value of the final strong prediction model.
本发明通过分析刚体绕定轴旋转的运动原理提炼出的装置基本运行原则,保证方法的可行性;使用有限元技术分析总结出的最优电流分配策略,保证方法的高效性和简洁性;构建基于神经网络的力矩-电流预测模型,快速精准地计算动态激励电流,保证电磁力反馈方法能实时精确地生成介入手术中的周向旋转力反馈。The invention extracts the basic operation principle of the device by analyzing the motion principle of the rigid body rotating around the fixed axis, so as to ensure the feasibility of the method; uses the optimal current distribution strategy analyzed and summarized by the finite element technology to ensure the high efficiency and simplicity of the method; The torque-current prediction model based on neural network can quickly and accurately calculate the dynamic excitation current, ensuring that the electromagnetic force feedback method can accurately generate circumferential rotational force feedback in interventional surgery in real time.
与现有技术相比,本发明具有如下的创新和优势:Compared with the prior art, the present invention has the following innovations and advantages:
(1)使用基于磁悬浮的电磁式力反馈技术来生成虚拟介入手术中的关键力反馈,能有效降低系统能耗,并能几乎完全消除操作过程中的机械摩擦干扰和动态非线性磁滞等,完成精密的运动控制。(1) The use of magnetic levitation-based electromagnetic force feedback technology to generate key force feedback in virtual interventional surgery can effectively reduce system energy consumption, and can almost completely eliminate mechanical friction interference and dynamic nonlinear hysteresis during operation, etc. Complete precise motion control.
(2)设计面向虚拟介入手术系统的电磁力反馈装置高度还原介入手术的操作环境和操作方式,相较于已有的基于导轨-滑轮的机械式力反馈模块,本装置给予操作者更自由的操作空间而不仅限于在导轨上前后滑动,增加操作者的沉浸感,提高术前训练效果。(2) The electromagnetic force feedback device designed for the virtual interventional operation system highly restores the operation environment and operation mode of the interventional operation. Compared with the existing mechanical force feedback module based on the guide rail and the pulley, the device gives the operator more freedom. The operation space is not limited to sliding back and forth on the guide rail, which increases the operator's immersion and improves the effect of preoperative training.
(3)根据电磁力反馈装置提出的电磁力反馈方法具有较强的普适性,当建立的电磁力反馈装置参数(电磁线圈大小、材质,操作杆长筒形永磁体大小、位置)改变时,这种电磁力反馈方法仍然适用。(3) The electromagnetic force feedback method proposed according to the electromagnetic force feedback device has strong universality. When the parameters of the established electromagnetic force feedback device (the size and material of the electromagnetic coil, the size and position of the long cylindrical permanent magnet of the operating rod) are changed , this electromagnetic force feedback method is still applicable.
(4)提出的力矩-电流回归预测模型相较于已有的三维解析计算方法更加简洁高效,省去了中间大量推导计算过程,直接建立力矩和电流两个关键物理量之间的联系,使得产生实时精确的周向旋转力反馈成为可能。(4) Compared with the existing three-dimensional analytical calculation methods, the proposed torque-current regression prediction model is more concise and efficient, saves a lot of intermediate deduction and calculation processes, and directly establishes the relationship between the two key physical quantities of torque and current, so that the generation of Real-time accurate circumferential rotational force feedback is possible.
附图说明Description of drawings
图1为本发明实施例的电磁线圈阵列示意图;1 is a schematic diagram of an electromagnetic coil array according to an embodiment of the present invention;
图2为本发明实施例的电磁线圈剖面图;2 is a cross-sectional view of an electromagnetic coil according to an embodiment of the present invention;
图3为本发明实施例的手术器械示意图;3 is a schematic diagram of a surgical instrument according to an embodiment of the present invention;
图4为本发明实施例的工作流程图;Fig. 4 is the working flow chart of the embodiment of the present invention;
图5为本发明实施例的周向旋转力反馈示意图;FIG. 5 is a schematic diagram of a circumferential rotational force feedback according to an embodiment of the present invention;
图6为本发明实施例的验证装置基本运行原则的实验数据图;6 is an experimental data diagram of the basic operating principle of the verification device according to the embodiment of the present invention;
图7、8为本发明实施例的确定最优电流分配策略的实验数据图;7 and 8 are experimental data diagrams for determining an optimal current distribution strategy according to an embodiment of the present invention;
图9为本发明实施例的力矩-电流回归预测模型结构示意图。FIG. 9 is a schematic structural diagram of a torque-current regression prediction model according to an embodiment of the present invention.
具体实施方式Detailed ways
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。In order to facilitate the understanding and implementation of the present invention by those of ordinary skill in the art, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the embodiments described herein are only used to illustrate and explain the present invention, but not to limit it. this invention.
请见图1、图2和图3,本发明提供的一种面向虚拟介入手术系统的电磁力反馈装置,包括电磁线圈阵列1和手术器械2;电磁线圈阵列包括四个完全相同的电磁线圈101、四个保护基座102、底盘滑轨103;四个完全相同的电磁线圈101摆放在同一平面上,各个电磁线圈101中距离较近的底面的圆心依次相连会组成一个正方形,正方形中心为两对互为对角线线圈的底面圆心连线交点;四个完全相同的电磁线圈101均分别固定设置在保护基座102上;四个保护基座102均设置在底盘滑轨103上,可在底盘滑轨103上移动;手术器械2为多自由度的手术操作杆。Please refer to FIGS. 1 , 2 and 3 , an electromagnetic force feedback device for a virtual interventional surgical system provided by the present invention includes an
本实施例的电磁线圈阵列1包括四个完全相同的电磁线圈101及其配套可调基座102,以及可供电磁线圈沿对角线方向滑动的底盘滑轨103。其中电磁线圈骨架、可调节线圈基座、带有滑轨的底盘均由铝合金材料制成。电磁线圈绕组材料为Copper,互为对角线的线圈对之间距离为74mm,单个线圈的线圈匝数为1024,其剖面图如图2所示。本实施例的保护基座102角度可调。角度为电磁线圈底面与水平面的夹角,角度调整范围为0°至90°。当电磁线圈阵列以特定的原则通电时,就能产生相应的磁场与手术器械交互产生虚拟介入手术中的力反馈。The
请见图3,本实施例的手术器械2包括刚性操作杆201、第一永磁体202、第二永磁体203;第一永磁体202设置刚性操作杆201上端顶,第二永磁体203固定设置在第一永磁体202中上部,与第一永磁体202呈十字交叉状。第一永磁体202和第二永磁体203均为长筒形永磁体。Please refer to FIG. 3 , the
本实施例的手术器械2被整合为一根刚性竹蜻蜓状操作杆,虽然真实导丝导管由非刚性材料制作,但相对于血管等体内环境的强度,可认为导丝导管在手术进行过程中与血管接触部分不会发生明显形变,因此将刚性操作杆201的材料设置为聚乙烯,底面半径为9mm,高度为200mm。操作杆尖端第一永磁体202的材料牌号为NdFe35,底面半径为8mm,高度为15mm,其在与单线圈或三线圈激发的磁场交互时,能生成手术器械2轴向上的反馈力;磁化面为两个底面(矩形永磁体由于制作工艺的限制无法在细窄面形成两磁极)的第二永磁体203的材料牌号为NdFe35,底面半径为6mm,高度为35mm,其能提供手术器械2周向上的自由度,与本发明的电磁线圈阵列1激发的特定磁场交互,生成周向旋转反馈力。The
本实例中整个虚拟介入手术系统的工作流程请见图4,其中电磁力反馈装置的工作流程为:The workflow of the entire virtual interventional surgery system in this example is shown in Figure 4, where the workflow of the electromagnetic force feedback device is:
(1)用户操作手术器械2行进至图5所示位置,即手术器械上第二永磁体203的体中心与电磁线圈阵列1的中心重合,假设此时手术器械2与虚拟场景产生交互发生形变,导致产生绕Z轴逆时针方向的旋转反馈力。(1) The user operates the
(2)PC机端根据形变程度计算出手术器械2绕Z轴旋转的力矩大小和方向,具有双目视觉定位功能的边缘嵌入式端则获得此时手术器械中第二永磁体203的N极与直角坐标系X轴正方向的夹角θ,并将该参数传入PC机端。(2) The PC side calculates the magnitude and direction of the rotational moment of the
(3)在PC机端中将力矩数值T和经过最优电流策略映射后的角度y作为输入传入提前构建好的力矩-电流回归预测模型中,快速精确获得电磁线圈阵列1中各个电磁线圈101的激励电流并以三元组的形式传输至底层嵌入式。(3) In the PC terminal, the torque value T and the angle y mapped by the optimal current strategy are used as input to the torque-current regression prediction model constructed in advance, and each electromagnetic coil in the
(4)底层嵌入式端根据收到的电流数据控制电磁线圈101的驱动电路产生相应的电磁线圈激励电流,使得电磁线圈阵列1产生对应的磁场从而让手术器械上第二永磁体203产生周向旋转反馈力。(4) The bottom embedded terminal controls the drive circuit of the
为满足简洁、高效、实时、精确地产生虚拟介入手术中产生周向旋转力反馈的要求,提出了适用于该装置的电磁力反馈方法。该电磁力反馈方法分别从装置的基本运行原则、最优电流分配策略和力矩-电流计算模型上来保证装置的可行性、高效性、简洁性和实时精确性。总的来说,该电磁力反馈方法可作为一个算法,能根据PC机端的两个输入数据:力矩数值T和第二永磁体203的N极与直角坐标系X轴正方向夹角θ,得到整个电磁线圈阵列1中激励电流的最佳分配方法,从而满足周向旋转力反馈的要求。In order to meet the requirement of simple, efficient, real-time and accurate generation of circumferential rotational force feedback in virtual interventional surgery, an electromagnetic force feedback method suitable for the device was proposed. The electromagnetic force feedback method guarantees the feasibility, efficiency, simplicity and real-time accuracy of the device from the basic operating principles of the device, the optimal current distribution strategy and the torque-current calculation model. In general, the electromagnetic force feedback method can be used as an algorithm, which can be obtained according to the two input data on the PC side: the torque value T and the angle θ between the N pole of the second
本发明针对提出的电磁力反馈装置,设计了相应的电磁力反馈生成方法,用于简洁、高效、实时、精确地产生虚拟介入手术中的周向旋转力反馈,包括以下步骤:Aiming at the proposed electromagnetic force feedback device, the present invention designs a corresponding electromagnetic force feedback generation method, which is used for concise, efficient, real-time and accurate generation of circumferential rotational force feedback in virtual interventional operations, including the following steps:
步骤1:对电磁力反馈装置中的电磁线圈101和第二永磁体203进行等比例大小等材质的建模仿真,获得电磁力反馈模型;Step 1: Perform modeling and simulation of the
本实施例首先,使用有限元分析软件对电磁力反馈装置中的电磁线圈101和第二永磁体203进行建模操作(装置中其他部分不导磁故可以忽略),建立电磁线圈101和第二永磁体203的几何模型并分别设置其材料为Copper和NdFe35。随后设置整个模型的气域空间为x和y方向偏置50%,z方向偏置100%,并采用零切向量边界条件,设置电磁线圈101横截面为激励电流导通面,把第二永磁体203的电磁力和其绕Z轴正方向旋转的力矩作为求解参数。In this embodiment, first, finite element analysis software is used to model the
确定电磁力反馈装置的基本运行原则:互为对角线位置的电磁线圈101给予大小方向相同的激励电流;Determine the basic operating principle of the electromagnetic force feedback device: the
当装置按照以上原则运行时,能满足周向旋转反馈力产生的两个条件:When the device operates according to the above principles, it can meet the two conditions for the generation of circumferential rotation feedback force:
(1)第二永磁体203整体受电磁力合力为0,确保其不会产生除绕轴周向旋转以外的运动,从而保证周向旋转力触觉的纯粹性。(1) The resultant force of the second
(2)第二永磁体203绕定轴Z轴旋转力矩不为0且数值较为可观,从而保证周向旋转力触觉的有效性。(2) The rotational moment of the second
确定电磁力反馈装置的最优电流分配策略;Determine the optimal current distribution strategy of the electromagnetic force feedback device;
在确定电磁力反馈装置的基本运行原则的基础上进一步细化电磁线圈阵列1中电流的分配策略,使得策略同时具备高效性和简洁性:On the basis of determining the basic operating principles of the electromagnetic force feedback device, the current distribution strategy in the
(1)高效性:通过同样大小激励电流时,选择产生力矩较大的电磁线圈对作为场源。(1) High efficiency: When the excitation current is passed through the same size, the electromagnetic coil pair that generates a larger torque is selected as the field source.
(2)简洁性:分析电磁线圈阵列1的拓扑结构,利用相对位置与绝对位置的特性将装置的整个工作区域映射到最小对称区间中。(2) Simplicity: The topology of the
基于上述对最优电流分配策略两个特性的描述,提出以下最优电流分配策略的数学表达:对第二永磁体203的N极与以互为对角线的线圈底面中心所连成的直角坐标系中X轴正方向夹角θ,提出一个三维元组(x,y,z),来决定电磁线圈阵列1中电流的最优分配策略,三个元素的计算方法如下:Based on the above description of the two characteristics of the optimal current distribution strategy, the following mathematical expression of the optimal current distribution strategy is proposed: For the right angle formed by the N pole of the second
x=[θ/90]mod2x=[θ/90]mod2
y=|(45·[θ/45])mod2-θmod45|y=|(45·[θ/45])mod2-θmod45|
z=[θ/180]z=[θ/180]
其中,该三维元组中,x决定施加电流的电磁线圈对,y为等价映射在最小对称区间内的夹角,z用来指示线圈对中电流方向。每一个θ对应唯一一个三元组,即唯一一个最优电流分配策略。Among them, in this three-dimensional tuple, x determines the electromagnetic coil pair to which the current is applied, y is the included angle of the equivalent mapping in the minimum symmetric interval, and z is used to indicate the current direction in the coil pair. Each θ corresponds to a unique triple, that is, a unique optimal current distribution strategy.
本实施例中进一步验证了基本运行原则的正确性;In this embodiment, the correctness of the basic operating principle is further verified;
使用步骤1中建立起的电磁力反馈模型,并依据电磁力反馈装置的基本运行原则向互为对角线的电磁线圈101中分配大小方向均相同的激励电流,求解后分析第二永磁体203所受电磁力合力数值和绕转轴的力矩数值,进而验证基本运行原则的正确性。Using the electromagnetic force feedback model established in
在本实施例中,当手术器械2上第二永磁体203的N极与直角坐标系X轴正方向夹角为0时,根据装置基本运行原则分别向1、3线圈对中通往起始数值为0,截止数值为2048A,步长为204.8A的激励电流,并使用有限元计算软件求解后得到图6结果。可以看到仿真得到的结果在误差范围内满足刚体绕定轴旋转的两个条件:第二永磁体203所受电磁力合力为0,且其绕轴旋转力矩数值可观。进而验证了基本运行原则的可行性。In this embodiment, when the included angle between the N pole of the second
本实施例中进一步确定了最优电流分配策略;In this embodiment, the optimal current distribution strategy is further determined;
继续使用步骤1中建立的电磁力反馈模型,此处将确定各对线圈满足高效性的角度范围并验证最优电流分配策略的简洁性。Continue to use the electromagnetic force feedback model established in
高效性的确定:在任意一个最小对称区间的所有范围内分别给互为对角线的两对电磁线圈(1、3和2、4线圈对)通往大小相同的激励电流,仿真求解后对比不同的线圈对工作时第二永磁体203绕转轴的力矩数值,在最小对称区间内确定两对线圈工作的角度范围,保证该策略的高效性。Determination of high efficiency: In all ranges of any minimum symmetry interval, two pairs of electromagnetic coils (1, 3 and 2, 4 coil pairs) that are diagonal to each other are respectively led to the excitation current of the same size, and the simulation solution is compared. When different coil pairs work, the torque value of the second
简洁性的验证:当第二永磁体203旋转至θ位置时,分别求解按照电磁力反馈装置基本运行原则产生的力矩数值T和经过最优电流分配策略确定的三元组指导下产生的力矩数值T,将两数据对比从而验证该策略简洁性。Verification of simplicity: when the second
在本实施例中,首先确定满足最优电流分配策略的高效性的角度范围,依据电流与其产生的电磁场的线性关系,只需求解在某特定数值电流下,两个线圈对中激励电流对力矩的贡献大小即可。当两组线圈对都按照装置基本运行原则通往2048A大小的激励电流后进行仿真求解,结果如图7所示。可知本实施例中,θ在0°-45°范围内,离第二永磁体203较远的1、3线圈对中激励电流产生的力矩数值比2、4线圈对中激励电流产生的力矩数值大。因此在后续的电流设置中就选择离第二永磁体203较远的线圈对作为场源进行电流分配。In this embodiment, the angle range that satisfies the high efficiency of the optimal current distribution strategy is first determined. According to the linear relationship between the current and the electromagnetic field generated by it, it is only necessary to solve the effect of the excitation current on the torque in the two coil pairs under a certain value of current. contribution size. When the two sets of coil pairs are connected to the excitation current of 2048A according to the basic operating principle of the device, the simulation solution is carried out, and the result is shown in Figure 7. It can be seen that in this embodiment, when θ is in the range of 0°-45°, the torque values generated by the excitation currents in the coil pairs 1 and 3 far from the second
在简洁性验证的过程中,根据θ及由其计算得出的三元组(x,y,z),使用步骤1中建立的模型分别求解得出映射前按照装置基本运行原则和映射后按照最优电流分配策略得出的力矩数值T,并且进行比较,具体结果见图8。从图中数据可知,θ在0°-360°取任意值,并通过最优电流分配策略求出三元组(x,y,z),在大小随机的激励电流驱动下映射前力矩数值Tθ与映射后按照三元组(x,y,z)设置工作线圈对和电流方向所求出的力矩数值Ty基本相同,说明第二永磁体203在整个工作范围内,利用线圈阵列的对称性可以将力矩、电流等数值等价映射在最小对称区间0°-45°内。因此最优电流分配策略的简洁性得到验证。In the process of simplicity verification, according to θ and the triplet (x, y, z) calculated from it, use the model established in
使用步骤1中的有限元软件进行计算验证时间花费较高,无法在线进行计算,因此需要构建小规模的计算模型进行相对较为实时精确的在线计算。因此选择基于神经网络的回归预测模型进行预测。Using the finite element software in
步骤2:构建力矩-电流回归预测模型;Step 2: Build a torque-current regression prediction model;
调整步骤1中建立的电磁力反馈模型中第二永磁体203的N极与直角坐标系X轴正方向夹角θ和电磁线圈激励电流数值I,计算第二永磁体203绕轴旋转的力矩数值T;从而获得若干组离线数据,组成离线数据集;Adjust the angle θ between the N pole of the second
利用离线数据集训练用于回归预测的BPNN网络和GRNN网络,将表现最优的神经网络作为子模型,通过模型融合方法构建强力矩-电流预测模型,从而能根据第二永磁体203的N极与直角坐标系正方向夹角θ和力矩数值T快速精确地计算线圈阵列的激励电流数值I;The BPNN network and GRNN network for regression prediction are trained using offline data sets, and the neural network with the best performance is used as a sub-model, and a strong torque-current prediction model is constructed by the model fusion method, so that the N pole of the second
包括以下子步骤:Includes the following sub-steps:
步骤2.1:不断调整第二永磁体203的旋转角度θ和电磁线圈101激励电流数值I,求解得到相应的力矩数据T从而获得若干组离线数据,组成离线数据集;此实施例离线数据集中的数据条数为966。Step 2.1: Continuously adjust the rotation angle θ of the second
步骤2.2:搭建包括输入层、两层隐含层、输出层的BPNN网络。其中,网络的输入值为第二永磁体203应该受到的力矩数值T和手术器械2上第二永磁体203的N极与直角坐标系X轴正方向夹角θ,两层隐含层前后节点数分别为7和8,激活函数分别为Sigmoid和Relu,输出值为电磁线圈激励电流数值I。Step 2.2: Build a BPNN network including an input layer, two hidden layers, and an output layer. Among them, the input value of the network is the torque value T that the second
步骤2.3:搭建包含输入层、模式层、求和层、输出曾的GRNN网络。其中输入和输出与步骤2.2中参数相同,经过大量前置实验,设置模式层节点数为322,求和层节点数为输出维度+1为2。Step 2.3: Build a GRNN network including an input layer, a pattern layer, a summation layer, and an output layer. The input and output parameters are the same as those in step 2.2. After a lot of pre-experiments, the number of nodes in the mode layer is set to 322, and the number of nodes in the summation layer is the output dimension + 1, which is 2.
步骤2.4:训练BPNN网络和GRNN网络;Step 2.4: Train BPNN network and GRNN network;
在BPNN网络的离线训练过程中,在将离线数据集归一化处理后,使用k-折训练法将离线数据集划分为训练集和验证集并进行网络训练;随后以电磁线圈激励电流的均方误差作为损失函数,当训练至网络在验证集上的误差小于阈值时,停止训练并将BPNN网络保存,当做模型融合的子模型之一,记为BPNN网络预测子模型;In the offline training process of the BPNN network, after normalizing the offline dataset, the k-fold training method is used to divide the offline dataset into a training set and a validation set and conduct network training; The square error is used as a loss function. When the error of the training network on the validation set is less than the threshold, the training is stopped and the BPNN network is saved as one of the sub-models of the model fusion, which is recorded as the BPNN network prediction sub-model;
本实施例中取k为4。随后以电磁线圈激励电流的均方误差作为损失函数,当训练至模型在验证集上的误差小于42A时,停止训练并将模型保存。In this embodiment, k is taken as 4. Then the mean square error of the excitation current of the electromagnetic coil is used as the loss function. When the training error of the model on the validation set is less than 42A, the training is stopped and the model is saved.
在GRNN网络的离线训练过程中,根据机器运行时间选择适量的训练数据并随机生成一个超参数初始值,以此确定GRNN的网络结构和参数,同时选取数据集中训练集之外的若干条数据作为验证集;使用验证集进行GRNN网络训练并在训练过程中根据误差来动态调整超参数的值;当训练至网络在验证集上的均方误差小于阈值时,保存该超参数和训练集,作为另一个模型融合的子模型,记为GRNN网络预测子模型;In the offline training process of the GRNN network, an appropriate amount of training data is selected according to the running time of the machine and an initial value of the hyperparameter is randomly generated to determine the network structure and parameters of the GRNN, and several pieces of data outside the training set in the data set are selected as Validation set; use the validation set for GRNN network training and dynamically adjust the value of hyperparameters according to the error during the training process; when the mean square error of the training network on the validation set is less than the threshold, save the hyperparameter and training set as Another sub-model of model fusion, denoted as GRNN network prediction sub-model;
因为GRNN网络的特殊性,该网络不需要进行节点之间权重的训练,换句话说,当训练集和超参数数值确定后,整个网络结构就固定。每次进行预测时都需要将测试数据与训练集中的数据进行运算。本实施例中从数据集中均匀取出322条数据作为GRNN网络的训练集,另取100条数据集中的数据作为验证集,不断调整超参数的取值,使得均方误差小于42A。经过实验此处将超参数δ设置为0.5。Because of the particularity of the GRNN network, the network does not need to train the weights between nodes. In other words, when the training set and hyperparameter values are determined, the entire network structure is fixed. Every time a prediction is made, the test data needs to be operated on with the data in the training set. In this embodiment, 322 pieces of data are evenly taken from the data set as the training set of the GRNN network, and another 100 pieces of data in the data set are taken as the verification set, and the values of the hyperparameters are continuously adjusted so that the mean square error is less than 42A. After experiments, the hyperparameter δ is set to 0.5.
步骤2.5:另取15条全新的数据作为预测集分别输入到两个子模型中进行电流预测。利用数理统计中的极值思想,求解使得预测值与实际值之间偏差的方差最小的子模型权值,最后力矩-电流回归预测模型如下:Step 2.5: Take another 15 new pieces of data as prediction sets and input them into the two sub-models for current prediction. Using the extreme value idea in mathematical statistics, the sub-model weights that minimize the variance of the deviation between the predicted value and the actual value are solved. The final torque-current regression prediction model is as follows:
其中和分别是BPNN网络预测子模型和GRNN网络预测子模型所对应的预测值,θ为第二永磁体203的N极与直角坐标系中X轴正方向的夹角,t为第二永磁体(203)的力矩数值,为最终强预测模型的预测值,整个强力矩-电流回归预测模型结构如图9所示。in and are respectively the prediction values corresponding to the BPNN network prediction sub-model and the GRNN network prediction sub-model, θ is the angle between the N pole of the second
步骤3:生成电磁线圈阵列的电流分配模式;Step 3: Generate the current distribution pattern of the electromagnetic coil array;
本电磁力反馈方法在获得手术器械2的位置参数θ和力矩参数T后,通过使用最优电流分配策略代入θ计算出三元组(x,y,z),再通过力矩-电流回归预测模型输入三元组中的y和力矩数值T求解激励电流数值I,最终组成新的三元组(x,I,z),并将该三元组传入底层嵌入式处理器中指导电磁线圈阵列1中各个电磁线圈101电流的分配,从而生成对应的周向旋转力反馈。In this electromagnetic force feedback method, after obtaining the position parameter θ and torque parameter T of the
本实施例从虚拟介入手术系统中关键力反馈的实时性和精确性出发,依据电磁力反馈装置的结构特点实现了一套电磁线圈阵列拓扑结构和手术器械,并基于该装置提出了相对应的简洁高效实时精确的电磁力反馈方法,且利用AnsoftMaxwell仿真软件进行验证。随后通过有限元计算方法在离线状态下获取大量仿真数据进行多个回归预测模型训练,最后使用模型融合方法构建强力矩-电流预测模型来快速精确地预测电流。本实施例的实验结果表明该预测模型能以3%误差、高于40Hz频率预测出电流,再结合电磁力反馈方法可对介入手术中的关键力反馈进行实时、精确还原。Starting from the real-time and accuracy of the key force feedback in the virtual interventional surgery system, this embodiment realizes a set of electromagnetic coil array topology and surgical instruments according to the structural characteristics of the electromagnetic force feedback device, and proposes a corresponding device based on the device. The simple, efficient, real-time and accurate electromagnetic force feedback method is verified by AnsoftMaxwell simulation software. Then, a large amount of simulation data is obtained offline through the finite element calculation method to train multiple regression prediction models, and finally the model fusion method is used to build a strong torque-current prediction model to quickly and accurately predict the current. The experimental results of this embodiment show that the prediction model can predict the current with a 3% error and a frequency higher than 40 Hz, and combined with the electromagnetic force feedback method, the key force feedback in the interventional operation can be restored in real time and accurately.
本发明设计出的面向虚拟介入手术系统的电磁力反馈方法及装置不仅能实时精确地产生介入手术中的周向旋转反馈力,还能规避导轨-滑轮式力反馈模块中的缺点例如机械摩擦导致的误差、设备规模过大、高耗能。尤其在操作沉浸感上本发明取得了较大的提升,无论是在操作空间还是操作手法都基本完整地复现了介入手术的进行流程,再配合上虚拟场景的视觉效果和电磁力反馈的触觉效果,极大地提高了该虚拟介入手术系统术前训练效果。The electromagnetic force feedback method and device for the virtual interventional operation system designed by the present invention can not only generate the circumferential rotation feedback force in the interventional operation accurately in real time, but also avoid the shortcomings in the guide rail-pulley type force feedback module, such as mechanical friction caused by errors, excessive equipment scale, and high energy consumption. In particular, the present invention has achieved a great improvement in the sense of immersion in operation. Both in the operation space and the operation method, the procedure of the interventional operation is basically and completely reproduced, and combined with the visual effect of the virtual scene and the tactile sense of electromagnetic force feedback. The preoperative training effect of the virtual interventional surgery system is greatly improved.
值得一提的是,本发明电磁力反馈方法中提出了一种较为新颖的物理量计算方法,区别于以往的基于三维解析的计算方法,本方法省略了中间复杂的推导步骤,通过对不同特点的神经网络进行模型融合,直接建立了关键物理量力矩与电流之间的联系,且在计算精确度上也有很大的可信度,大大降低了计算时间和内存消耗。It is worth mentioning that a relatively novel calculation method of physical quantities is proposed in the electromagnetic force feedback method of the present invention, which is different from the previous calculation method based on three-dimensional analysis. This method omits the intermediate complex derivation steps. The neural network performs model fusion, which directly establishes the connection between the key physical quantity torque and current, and also has great credibility in the calculation accuracy, which greatly reduces the calculation time and memory consumption.
应当理解的是,本说明书未详细阐述的部分均属于现有技术;上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。It should be understood that the parts not described in detail in this specification belong to the prior art; the above description of the preferred embodiments is relatively detailed, and therefore should not be considered as a limitation on the protection scope of the patent of the present invention. Under the inspiration of the present invention, without departing from the scope of protection of the claims of the present invention, substitutions or modifications can also be made, which all fall within the scope of protection of the present invention. Requirements shall prevail.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011067266.XA CN112214931B (en) | 2020-10-05 | 2020-10-05 | Electromagnetic force feedback device and method for virtual interventional operation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011067266.XA CN112214931B (en) | 2020-10-05 | 2020-10-05 | Electromagnetic force feedback device and method for virtual interventional operation system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112214931A CN112214931A (en) | 2021-01-12 |
CN112214931B true CN112214931B (en) | 2022-09-02 |
Family
ID=74052817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011067266.XA Active CN112214931B (en) | 2020-10-05 | 2020-10-05 | Electromagnetic force feedback device and method for virtual interventional operation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112214931B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113081275B (en) * | 2021-03-29 | 2022-04-15 | 深圳高性能医疗器械国家研究院有限公司 | Force feedback device and application thereof |
WO2022204869A1 (en) * | 2021-03-29 | 2022-10-06 | 深圳高性能医疗器械国家研究院有限公司 | Force feedback apparatus, and application thereof |
CN114191098B (en) * | 2021-12-17 | 2024-03-19 | 武汉大学 | Electromagnetic control interventional operation system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101404039A (en) * | 2008-03-28 | 2009-04-08 | 华南师范大学 | Virtual operation method and its apparatus |
CN103984411A (en) * | 2014-04-25 | 2014-08-13 | 深圳超多维光电子有限公司 | Touch sense force feedback system and realization method of touch sense force feedback system |
-
2020
- 2020-10-05 CN CN202011067266.XA patent/CN112214931B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101404039A (en) * | 2008-03-28 | 2009-04-08 | 华南师范大学 | Virtual operation method and its apparatus |
CN103984411A (en) * | 2014-04-25 | 2014-08-13 | 深圳超多维光电子有限公司 | Touch sense force feedback system and realization method of touch sense force feedback system |
Non-Patent Citations (3)
Title |
---|
Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception;Zhiyong Yuan等;《IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS》;20181115;第24卷(第12期);正文3-8页 * |
基于导管机器人的变论域模糊PID控制研究;陈果等;《计算机应用研究》;20170315(第02期);正文1-2页 * |
电磁力反馈中磁场特性分析与线圈姿态计算;袁志勇;《电子测量与仪器学报》;20160430;第30卷(第4期);正文2-5页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112214931A (en) | 2021-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112214931B (en) | Electromagnetic force feedback device and method for virtual interventional operation system | |
CN104598033B (en) | Multi-coil electromagnetic type haptic feedback device and method | |
Niu et al. | Development of an enhanced electromagnetic actuation system with enlarged workspace | |
CN106227346B (en) | Force sense and touch sense fusion reproduction device and method based on electromagnetic field control | |
Su et al. | Neural network enhanced robot tool identification and calibration for bilateral teleoperation | |
CN108324373A (en) | A kind of puncturing operation robot based on electromagnetic positioning system is accurately positioned implementation method | |
Zhang et al. | Motion control of magnetic microrobot using uniform magnetic field | |
Ning et al. | Inverse-reinforcement-learning-based robotic ultrasound active compliance control in uncertain environments | |
Mouret et al. | Crossing the reality gap: a short introduction to the transferability approach | |
CN103745058A (en) | Method for simulating tension/deformation on soft tissue epidermis of any shape | |
Wang et al. | Measurement error analysis of binocular stereo vision: effective guidelines for bionic eyes | |
Jin et al. | Robot skill generalization: Feature-selected adaptation transfer for peg-in-hole assembly | |
CN109145513B (en) | Non-contact force tactile reproduction system and method based on electromagnetic field combined excitation control | |
Lu et al. | Contactless haptic display through magnetic field control | |
CN206115389U (en) | Power is felt and reproducer is fused in sense of touch based on electricity field control | |
Luo et al. | Multi-modal autonomous ultrasound scanning for efficient human–machine fusion interaction | |
Raufelder | Modeling analysis of attitude perception of engineering manipulator supporting wireless communication and Internet of Things | |
Shan et al. | Magnetic-Actuated cyber-physical system for interventional surgery | |
Guo et al. | Force feedback-based robotic catheter training system for the vascular interventional surgery | |
Liu et al. | Force modeling for tooth preparation in a dental training system | |
CN208861247U (en) | Non-contact force touch reproduction system based on electromagnetic field combined excitation control | |
CN110826701A (en) | A Method for System Identification of Two Degrees of Freedom Flexible Legs Based on BP Neural Network Algorithm | |
Zhao et al. | Virtual force feedback in teleoperation for enhanced manipulator performance | |
CN115237252A (en) | Non-contact type force touch reappearance system and method based on three-dimensional orthogonal background electromagnet | |
CN110289706A (en) | Torque Calculation Method of Permanent Magnet Spherical Motor Based on Virtual Work Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |