CN112214668A - A device and method for recommending personalized financial services based on big data - Google Patents
A device and method for recommending personalized financial services based on big data Download PDFInfo
- Publication number
- CN112214668A CN112214668A CN202011040637.5A CN202011040637A CN112214668A CN 112214668 A CN112214668 A CN 112214668A CN 202011040637 A CN202011040637 A CN 202011040637A CN 112214668 A CN112214668 A CN 112214668A
- Authority
- CN
- China
- Prior art keywords
- service
- user
- matrix
- data
- behavior
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000011159 matrix material Substances 0.000 claims abstract description 148
- 238000012549 training Methods 0.000 claims description 51
- 239000013598 vector Substances 0.000 claims description 48
- 230000001133 acceleration Effects 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 13
- 238000013500 data storage Methods 0.000 claims description 11
- 238000013179 statistical model Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims 1
- 230000006399 behavior Effects 0.000 description 85
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000007405 data analysis Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2462—Approximate or statistical queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/958—Organisation or management of web site content, e.g. publishing, maintaining pages or automatic linking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/06—Asset management; Financial planning or analysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Finance (AREA)
- Development Economics (AREA)
- Accounting & Taxation (AREA)
- Computational Linguistics (AREA)
- Operations Research (AREA)
- Mathematical Physics (AREA)
- Entrepreneurship & Innovation (AREA)
- Fuzzy Systems (AREA)
- Game Theory and Decision Science (AREA)
- Human Resources & Organizations (AREA)
- Software Systems (AREA)
- Economics (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- Technology Law (AREA)
- General Business, Economics & Management (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开一种基于大数据的个性化金融服务推荐装置和方法,包括S1:获取用户‑服务行为统计数据,并建立用户‑服务行为统计矩阵T;S2:接收指令并设置初始化参数;S3:构造统一损失函数Φ,并对统一损失函数进行非负约束;S4:采用Nesterov加速梯度方法构造Nesterov加速用户‑服务行为推荐模型并进行训练;S5:输出用户隐特征矩阵和服务隐特征矩阵,对用户‑服务行为统计矩阵中未知行为数据进行还原。通过采用Nesterov加速梯度方法,以较小的计算复杂度,对已知用户‑服务行为统计数据的内在统计规律进行分析,从而准确还原了基于大数据的个性化金融服务未知行为数据,为用户提供个性化、精确的金融服务。
The present invention discloses a big data-based personalized financial service recommendation device and method, comprising S1: acquiring user-service behavior statistical data, and establishing a user-service behavior statistical matrix T; S2: receiving an instruction and setting initialization parameters; S3: Construct a unified loss function Φ, and apply non-negative constraints to the unified loss function; S4: Use Nesterov accelerated gradient method to construct Nesterov accelerated user-service behavior recommendation model and train it; S5: Output user latent feature matrix and service latent feature matrix, for Restore the unknown behavior data in the user-service behavior statistics matrix. By adopting the Nesterov accelerated gradient method, the inherent statistical law of known user-service behavior statistical data is analyzed with a small computational complexity, thereby accurately restoring the unknown behavior data of personalized financial services based on big data, providing users with Personalized, precise financial services.
Description
技术领域technical field
本发明涉及数据处理技术领域,特别涉及一种基于大数据的个性化金融服务推荐装置和方法。The present invention relates to the technical field of data processing, in particular to a device and method for recommending personalized financial services based on big data.
背景技术Background technique
随着大数据和人工智能等技术的不断发展,具有工业时代结构的传统金融服务也逐渐走向了场景化、个性化、智能化的个性化金融服务,如“活期宝”、“盈利宝”、“余额宝”、“余额理财”等大量金融服务涌现,全面满足用户的消费体验。但是随着金融服务的不断扩展,用户难以在海量的服务中挑选出自己需要的服务,因此金融服务行业希望通过大数据技术和机器学习,主动捕捉用户的消费需求,为用户提供更加精准的服务。With the continuous development of technologies such as big data and artificial intelligence, the traditional financial services with the structure of the industrial age are gradually moving towards scenario-based, personalized and intelligent personalized financial services, such as "Fixing Money", "Yiyibao", A large number of financial services such as "Yuebao" and "Yuebao Wealth Management" have emerged to fully satisfy users' consumption experience. However, with the continuous expansion of financial services, it is difficult for users to select the services they need from a large number of services. Therefore, the financial services industry hopes to actively capture users' consumption needs through big data technology and machine learning, and provide users with more accurate services .
根据金融服务系统的历史记录,用户-服务行为统计矩阵是一种常用的数据描述结构,其中的每一行对用了一个用户,每一列对应了一个服务,每一个矩阵的一个元素对应着一个用户对一个服务的历史行为数据。而在金融服务中,用户面对海量的服务,不能操作所有服务,同样,一个服务也不能被所有用户操作,所以用户-服务行为统计矩阵往往是极度稀疏,并且用户对服务的未知行为远多于已知行为。According to the historical records of the financial service system, the user-service behavior statistical matrix is a commonly used data description structure, in which each row pair uses a user, each column corresponds to a service, and an element of each matrix corresponds to a user Historical behavioral data for a service. In financial services, users face a large number of services and cannot operate all services. Similarly, a service cannot be operated by all users, so the user-service behavior statistical matrix is often extremely sparse, and users have far more unknown behaviors about services. on known behavior.
在金融服务系统中,用户服务的行为数据往往具有正数的自然规律,所以金融服务系统采用现有的非负矩阵隐特征分析方法对用户推荐服务,但是非负矩阵隐特征分析方法收敛速度较慢,数据还原准确度低导致不能快速有效地给用户推荐所需服务,因此,如何针对金融服务系统中的极度稀疏的用户-服务行为统计矩阵,进行高效的非负隐特征分析,从而快速准确的为用户推荐所需服务,提高用户体验,是达到个性化金融的一个关键问题。In the financial service system, the behavior data of user services often have a natural law of positive numbers, so the financial service system adopts the existing non-negative matrix implicit feature analysis method to recommend services to users, but the non-negative matrix implicit feature analysis method has a faster convergence speed. It is slow and the data restoration accuracy is low, which makes it impossible to recommend the required services to users quickly and effectively. Therefore, how to perform efficient non-negative latent feature analysis for the extremely sparse user-service behavior statistical matrix in the financial service system, so as to be fast and accurate. Recommending required services for users and improving user experience is a key issue to achieve personalized finance.
发明内容SUMMARY OF THE INVENTION
针对现有技术中用户和服务匹配度较低的问题,本发明提出一种基于大数据的个性化金融服务推荐装置和方法,通过对用户-服务行为统计矩阵进行了非负限制和加速,从而提高了推荐精度和速度,提高了用户和服务的匹配度。Aiming at the problem of low matching degree between users and services in the prior art, the present invention proposes an apparatus and method for recommending personalized financial services based on big data. The recommendation accuracy and speed are improved, and the matching degree between users and services is improved.
为了实现上述目的,本发明提供以下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
一种基于大数据的个性化金融服务推荐装置,包括数据接收模块、数据存储模块、初始化模块、Nesterov训练模块和服务推荐模块;其中,A personalized financial service recommendation device based on big data, comprising a data receiving module, a data storage module, an initialization module, a Nesterov training module and a service recommendation module; wherein,
所述数据接收模块,用于从金融服务系统中获取用户-服务行为统计数据并建立用户-服务行为统计矩阵,存入数据存储模块;The data receiving module is used to obtain user-service behavior statistical data from the financial service system and establish a user-service behavior statistical matrix, and store it in the data storage module;
所述初始化模块,用于预处理用户-服务行为统计矩阵并对参数进行初始化;The initialization module is used to preprocess the user-service behavior statistics matrix and initialize the parameters;
所述Nesterov训练模块,用于根据用户-服务行为统计数据和初始化后的参数构造Nesterov加速梯度用户-服务行为统计模型,以便加速推荐用户-服务行为统计数据;The Nesterov training module is used to construct a Nesterov accelerated gradient user-service behavior statistical model according to the user-service behavior statistics and the initialized parameters, so as to accelerate the recommendation user-service behavior statistics;
所述服务推荐模块,用于通过构造的Nesterov加速梯度用户-服务行为统计模型还原用户-服务未知行为数据,根据未知行为数据给用户推荐对应服务。The service recommendation module is used to restore the user-service unknown behavior data through the constructed Nesterov accelerated gradient user-service behavior statistical model, and recommend corresponding services to the user according to the unknown behavior data.
优选的,所述用户-服务行为统计矩阵为|U|行、|S|列的矩阵,U表示用户集合,S表示服务集合。Preferably, the user-service behavior statistics matrix is a matrix of |U| rows and |S| columns, where U represents a user set, and S represents a service set.
优选的,所述Nesterov训练模块包括Nesterov更新单元和训练单元;其中,Preferably, the Nesterov training module includes a Nesterov update unit and a training unit; wherein,
Nesterov更新单元,采用Nesterov加速梯度方法对用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C进行参数更新;The Nesterov update unit uses the Nesterov accelerated gradient method to update the parameters of the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C;
训练单元,采用非负矩阵隐特征分析训练用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C。The training unit adopts the non-negative matrix latent feature analysis to train the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C.
优选的,所述服务推荐模块包括输出隐特征单元和推荐未知兴趣度单元;其中,Preferably, the service recommendation module includes an output hidden feature unit and a recommendation unknown interest degree unit; wherein,
输出隐特征单元,输出用户-服务行为统计数据中用户隐特征矩阵X和服务隐特征矩阵Y;Output latent feature unit, output user latent feature matrix X and service latent feature matrix Y in user-service behavior statistical data;
推荐未知兴趣度单元,根据输出用户-服务行为统计数据中用户隐特征矩阵X和服务隐特征矩阵Y的得到预测的用户-服务行为统计矩阵T,还原用户-服务未知行为数据。The unknown interest degree unit is recommended, and the user-service behavior data is restored according to the predicted user-service behavior statistical matrix T obtained from the user latent feature matrix X and the service latent feature matrix Y in the output user-service behavior statistical data.
本发明还提供一种基于大数据的个性化金融服务推荐方法,具体包括以下步骤:The present invention also provides a method for recommending personalized financial services based on big data, which specifically includes the following steps:
S1:获取用户-服务行为统计数据,并建立用户-服务行为统计矩阵T;S1: obtain user-service behavior statistical data, and establish a user-service behavior statistical matrix T;
S2:接收指令并设置初始化参数;S2: Receive commands and set initialization parameters;
S3:构造统一损失函数,并对统一损失函数进行非负约束;S3: Construct a unified loss function and apply non-negative constraints to the unified loss function;
S4:采用Nesterov加速梯度方法构造Nesterov加速用户-服务行为推荐模型并进行训练;S4: The Nesterov accelerated user-service behavior recommendation model is constructed and trained using the Nesterov accelerated gradient method;
S5:输出用户隐特征矩阵和服务隐特征矩阵,对用户-服务行为统计矩阵中未知行为数据进行预测得分,并将前top k的未知行为数据对应的服务推荐给用户。S5: Output the user latent feature matrix and the service latent feature matrix, predict and score the unknown behavior data in the user-service behavior statistical matrix, and recommend the service corresponding to the unknown behavior data of the top k to the user.
优选的,所述S1包括:Preferably, the S1 includes:
用户集合为U,服务集合为S,建立|U|行、|S|列的矩阵作为用户-服务行为统计矩阵T,再使用规约矩阵因式分解对T进行分解,分别得到用户隐特征矩阵X和服务隐特征矩阵Y,X是一个|U|行、f列的矩阵,X中的每一个行向量对应一个用户,是该用户的隐特征向量;Y是一个|S|行、f列的矩阵,Y中的每一个行向量对应于一个服务,是该服务的隐特征向量;f为用户隐含特征空间和服务隐含特征空间的维数。The user set is U and the service set is S, and a matrix of |U| rows and |S| columns is established as the user-service behavior statistical matrix T, and then the reduction matrix factorization is used to decompose T to obtain the user latent feature matrix X respectively. and service latent feature matrix Y, where X is a matrix of |U| rows and f columns, each row vector in X corresponds to a user and is the hidden feature vector of the user; Y is a |S| row and f columns matrix, each row vector in Y corresponds to a service and is the hidden feature vector of the service; f is the dimension of the user implicit feature space and the service implicit feature space.
优选的,所述初始化参数包括隐特征矩阵X和Y;隐特征空间维数f;Nesterov动量控制参数μ,正则化因子λ;最大迭代轮数R;训练过程中迭代轮数控制变量r;线性偏差隐特征向量B和C。Preferably, the initialization parameters include latent feature matrices X and Y; latent feature space dimension f; Nesterov momentum control parameter μ, regularization factor λ; maximum number of iteration rounds R; Bias hidden eigenvectors B and C.
优选的,所述S3中,所述统一损失函数Φ(X,Y,B,C)表达式为:Preferably, in the S3, the expression of the unified loss function Φ(X, Y, B, C) is:
公式(1)中,tu,s表示用户u和服务s之间的实体关系即用户u对服务s的历史行为数据;Λ表示用户-服务行为统计矩阵T中用户对金融服务的已知行为数据集合;表示用户-服务行为统计矩阵中未知行为的还原值;bu表示用户集合U的线性偏差第u行特征值;cs表示服务集合S的线性偏差第s行特征值;xu,k表示用户隐特征矩阵X的第u行第k列特征值;ys,k表示服务隐特征矩阵Y的第s行第k列特征值;λ代表正则控制参数,f表示隐含特征空间的维数。In formula (1), t u, s represents the entity relationship between user u and service s, that is, the historical behavior data of user u to service s; Λ represents the known behavior of users to financial services in the user-service behavior statistical matrix T data collection; Represents the restored value of the unknown behavior in the user-service behavior statistical matrix; b u represents the eigenvalue of the u-th row of the linear deviation of the user set U; c s represents the s-th row eigenvalue of the linear deviation of the service set S; x u, k represent the user The eigenvalue of the uth row and the kth column of the latent feature matrix X; y s,k represents the eigenvalue of the sth row and the kth column of the service latent feature matrix Y; λ represents the regular control parameter, and f represents the dimension of the hidden feature space.
优选的,所述S4包括以下步骤:Preferably, the S4 includes the following steps:
S4-1:在第一次迭代时,采用非负矩阵隐特征分析方法对用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C进行训练,其训练公式为:S4-1: In the first iteration, the non-negative matrix latent feature analysis method is used to train the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C. The training formula is: :
公式(2)中,|Λ(u)|表示和用户u有关的用户-服务已知行为数据中的服务集合,|Λ(s)|表示和服务s有关的用户-服务已知行为数据中的用户集合;In formula (2), |Λ(u)| represents the service set in the user-service known behavior data related to the user u, and |Λ(s)| represents the user-service known behavior data related to the service s. set of users;
S4-2:采用Nesterov加速梯度方法对用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C进行更新,其更新公式为:S4-2: Use the Nesterov accelerated gradient method to update the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C. The update formula is:
公式(3)中,表示bu在t时刻的状态,表示经过更新后的在t+1时刻bu (t+1)的中间状态值,μ为Nesterov控制参数,控制加速效果,Nesterov加速梯度方法只在训练过程中第二次加入,即t≥2,表示迭代次数;In formula (3), represents the state of b u at time t, Represents the updated intermediate state value of b u (t+1) at time t+1, μ is the Nesterov control parameter, which controls the acceleration effect. The Nesterov acceleration gradient method is only added for the second time during the training process, that is, t≥2 , indicating the number of iterations;
S4-3:按照非负矩阵隐特征分析方法对更新过后的进行训练,其训练公式为:S4-3: According to the non-negative matrix latent feature analysis method, the updated For training, the training formula is:
训练过后的参数表示使用中间状态更新后在t+1时刻的状态值;parameters after training Indicates the use of an intermediate state The state value at time t+1 after the update;
S4-4:判断训练是否达到迭代终止条件,若是则迭代训练结束,若不是则继续训练和更新,直到达到迭代终止条件。S4-4: Determine whether the training reaches the iteration termination condition, if so, the iterative training ends, if not, continue training and updating until the iteration termination condition is reached.
优选的,所述S5包括以下步骤:Preferably, the S5 includes the following steps:
S5-1:从输出隐特征单元获取用户u、服务s、用户线性偏差b和服务线性偏差c对应的隐特征;S5-1: Obtain hidden features corresponding to user u, service s, user linear deviation b and service linear deviation c from the output hidden feature unit;
S5-2:用户u对用户隐特征矩阵X中的向量和服务s对应的服务隐特征矩阵Y中的向量和用户线性偏差b和服务线性偏差c的内积作为用户u对服务s的未知行为数据值即 S5-2: User u takes the inner product of the vector in the user latent feature matrix X and the service latent feature matrix Y corresponding to the service s and the user linear deviation b and the service linear deviation c as the unknown behavior of the user u to the service s data value which is
综上所述,由于采用了上述技术方案,与现有技术相比,本发明至少具有以下有益效果:To sum up, due to the adoption of the above technical solutions, compared with the prior art, the present invention has at least the following beneficial effects:
本发明通过采用Nesterov加速梯度方法,以较小的计算复杂度,对已知用户-服务行为统计数据的内在统计规律进行分析,从而准确还原了基于大数据的个性化金融服务未知行为数据,从而为用户提供对应的个性化、精确的金融服务;本发明还实现了:(1)通过非负矩阵隐特征分析方法对用户-服务行为统计矩阵进行了非负限制,提高了推荐的准确性,更好的保证了用户特征;(2)通过Nesterov加速梯度方法,提高了推荐精度;(3)通过Nesterov加速梯度方法,加快了推荐速度,节省了时间成本,提高了用户和服务的匹配度。By adopting the Nesterov accelerated gradient method, the present invention analyzes the inherent statistical law of known user-service behavior statistical data with less computational complexity, thereby accurately restoring the unknown behavior data of personalized financial services based on big data, thereby Corresponding personalized and accurate financial services are provided for users; the present invention also realizes: (1) non-negative restriction is carried out on the user-service behavior statistical matrix through the non-negative matrix implicit feature analysis method, which improves the accuracy of recommendation, The user characteristics are better guaranteed; (2) the Nesterov accelerated gradient method is used to improve the recommendation accuracy; (3) the Nesterov accelerated gradient method is used to speed up the recommendation, save time and cost, and improve the matching degree between users and services.
附图说明:Description of drawings:
图1为根据本发明示例性实施例的一种基于大数据的个性化金融服务推荐装置示意图。FIG. 1 is a schematic diagram of an apparatus for recommending personalized financial services based on big data according to an exemplary embodiment of the present invention.
图2为根据本发明示例性实施例的一种基于大数据的个性化金融服务推荐方法示意图。FIG. 2 is a schematic diagram of a method for recommending personalized financial services based on big data according to an exemplary embodiment of the present invention.
图3为根据本发明示例性实施例的用户-服务行为统计数据分析时间对比图示意图。FIG. 3 is a schematic diagram of a time comparison diagram of user-service behavior statistical data analysis according to an exemplary embodiment of the present invention.
图4为根据本发明示例性实施例的RMSE对比示意图。FIG. 4 is a schematic diagram of RMSE comparison according to an exemplary embodiment of the present invention.
具体实施方式Detailed ways
下面结合实施例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。The present invention will be further described in detail below with reference to the examples and specific implementation manners. However, it should not be construed that the scope of the above-mentioned subject matter of the present invention is limited to the following embodiments, and all technologies realized based on the content of the present invention belong to the scope of the present invention.
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "portrait", "horizontal", "upper", "lower", "front", "rear", "left", "right", "vertical", The orientations or positional relationships indicated by "horizontal", "top", "bottom", "inside", "outside", etc. are based on the orientations or positional relationships shown in the accompanying drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than An indication or implication that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, is not to be construed as a limitation of the invention.
如图1所示,本发明提出一种基于大数据的个性化金融服务推荐装置,包括数据接收模块10、数据存储模块20、初始化模块30、Nesterov训练模块40和服务推荐模块50。数据接收模块10的输出端和数据存储模块20的输入端连接,数据存储模块20的输出端与初始化模块30的输入端连接,初始化模块30的输出端与Nesterov训练模块40的输入端连接,Nesterov训练模块40的输出端与服务推荐模块50的输入端连接。其中,As shown in FIG. 1 , the present invention proposes a big data-based personalized financial service recommendation device, including a data receiving module 10 , a data storage module 20 , an initialization module 30 , a
数据接收模块10,用于从金融服务系统中获取用户-服务行为统计数据并建立用户-服务行为统计矩阵,存入数据存储模块20。The data receiving module 10 is used for acquiring user-service behavior statistical data from the financial service system and establishing a user-service behavior statistical matrix, which is stored in the data storage module 20 .
在获取的用户-服务行为统计数据中,用户集合记为U,服务集合记为S,建立一个|U|行、|S|列的矩阵作为用户-服务行为统计矩阵T,将用户-服务行为统计矩阵T存入数据存储模块20。再使用规约矩阵因式分解对T进行分解,分别得到用户隐特征矩阵X和服务隐特征矩阵Y,X是一个|U|行、f列的矩阵,X中的每一个行向量对应一个用户,是该用户的隐特征向量;Y是一个|S|行、f列的矩阵,Y中的每一个行向量对应于一个服务,是该服务的隐特征向量;f为用户隐含特征空间和服务隐含特征空间的维数;同时将用户隐特征矩阵X和服务隐特征矩阵Y存入数据存储模块20。In the obtained user-service behavior statistics, the user set is denoted as U, and the service set is denoted as S, and a matrix with |U| rows and |S| columns is established as the user-service behavior statistical matrix T, and the user-service behavior The statistical matrix T is stored in the data storage module 20 . Then use the reduction matrix factorization to decompose T to obtain the user latent feature matrix X and the service latent feature matrix Y respectively. X is a matrix with |U| rows and f columns, and each row vector in X corresponds to a user, is the hidden feature vector of the user; Y is a matrix of |S| rows and f columns, each row vector in Y corresponds to a service and is the hidden feature vector of the service; f is the user’s hidden feature space and service The dimension of the hidden feature space; the user latent feature matrix X and the service latent feature matrix Y are stored in the data storage module 20 at the same time.
初始化模块30,用于对用户-服务行为特征推荐过程中的参数进行初始化。The initialization module 30 is used to initialize the parameters in the user-service behavior feature recommendation process.
初始化的参数包括用户和服务的隐特征矩阵X和Y;隐特征空间维数f;Nesterov动量控制参数μ,正则化因子λ;最大迭代轮数R;训练过程中迭代轮数控制变量r;线性偏差隐特征向量B和C。其中f决定了每个隐特征矩阵的特征空间维数,初始化为正整数;隐特征矩阵X和Y中:X为|U|行f列的隐特征矩阵、Y为|S|行f列的隐特征矩阵,分别使用随机较小的正数进行初始化;线性偏差隐特征向量B和C中:B为|U|行的向量、C为|S|行的向量,分别使用随机较小的正数进行初始化;最大训练迭代轮数R是控制训练次数上限的变量,初始化为较大的正整数;迭代轮数控制变量r初始化为0;正则化因子λ是衡量L2正则化项对推荐模型的限制效果,初始化为较小的正数;Nesterov动量控制参数μ,为了控制Nesterov动量对模型的加速效果,使得推荐模型对未知行为数据的数据还原准确度达到最高,初始化为接近1的正数。The initialization parameters include the latent feature matrices X and Y of users and services; the hidden feature space dimension f; the Nesterov momentum control parameter μ, the regularization factor λ; the maximum number of iteration rounds R; the iteration round number control variable r in the training process; linear Bias hidden eigenvectors B and C. Among them, f determines the feature space dimension of each latent feature matrix, which is initialized as a positive integer; in the latent feature matrices X and Y: X is the latent feature matrix of |U| row and column f, and Y is the hidden feature matrix of |S| row and column f. The latent feature matrix is initialized with random small positive numbers respectively; in the linear deviation latent feature vectors B and C: B is the vector of |U| rows, C is the vector of |S| rows, and random small positive numbers are used respectively. The maximum number of training iterations R is a variable that controls the upper limit of the training number, and is initialized to a larger positive integer; the iteration number control variable r is initialized to 0; the regularization factor λ is a measure of the L 2 regularization item to the recommended model The limiting effect of , initialized to a small positive number; Nesterov momentum control parameter μ, in order to control the acceleration effect of Nesterov momentum on the model, so that the recommended model can achieve the highest accuracy of data restoration of unknown behavior data, initialized to a positive number close to 1 .
Nesterov训练模块40,用于根据用户-服务行为统计数据和初始化后的参数构造Nesterov加速梯度用户-服务行为统计模型,以便加速推荐用户-服务行为统计数据。The
本实施例中,Nesterov训练模块40包括Nesterov更新单元和训练单元。In this embodiment, the
Nesterov更新单元,采用Nesterov加速梯度方法对用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C进行参数更新,以单元素的形式进行更新相应的隐特征。The Nesterov update unit uses the Nesterov accelerated gradient method to update the parameters of the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C, and update the corresponding hidden features in the form of a single element.
训练单元,采用非负矩阵隐特征分析训练用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C,以单元素的形式进行更新相应的隐特征。The training unit uses non-negative matrix latent feature analysis to train the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C, and update the corresponding latent features in the form of a single element.
服务推荐模块50,用于通过构造的Nesterov加速梯度用户-服务行为统计模型还原用户-服务未知行为数据,并输出用户-服务未知行为还原数据、用户和服务的隐特征矩阵。The service recommendation module 50 is configured to restore the user-service unknown behavior data through the constructed Nesterov accelerated gradient user-service behavior statistical model, and output the user-service unknown behavior restoration data, and the hidden feature matrix of the user and the service.
本实施例中,服务推荐模块50包括输出隐特征单元和推荐未知兴趣度单元。In this embodiment, the service recommendation module 50 includes an output latent feature unit and a recommendation unknown interest degree unit.
输出隐特征单元,输出用户-服务行为统计数据中用户隐特征矩阵X和服务隐特征矩阵Y。Output latent feature unit, output user latent feature matrix X and service latent feature matrix Y in user-service behavior statistical data.
推荐未知兴趣度单元,根据输出用户-服务行为统计数据中用户隐特征矩阵X和服务隐特征矩阵Y的得到预测的用户-服务行为统计矩阵T^,还原用户-服务未知行为数据。The unknown interest degree unit is recommended, and the user-service behavior data is restored according to the predicted user-service behavior statistical matrix T^ obtained from the user latent feature matrix X and the service latent feature matrix Y in the output user-service behavior statistical data.
基于上述装置,如图2所示,本发明还提出一种基于大数据的个性化金融服务推荐方法,具体包括以下步骤:Based on the above device, as shown in FIG. 2 , the present invention also proposes a method for recommending personalized financial services based on big data, which specifically includes the following steps:
S1:获取用户-服务行为统计数据,并建立用户-服务行为统计矩阵T,对于矩阵中每个元素,行代表对应用户,列代表对应服务;S1: Obtain user-service behavior statistical data, and establish a user-service behavior statistical matrix T, for each element in the matrix, the row represents the corresponding user, and the column represents the corresponding service;
在获取的用户-服务行为统计数据中,用户集合记为U,服务集合记为S,建立一个|U|行、|S|列的矩阵作为用户-服务行为统计矩阵T,将用户-服务行为统计矩阵T存入数据存储模块20。再使用规约矩阵因式分解对T进行分解,分别得到用户隐特征矩阵X和服务隐特征矩阵Y,X是一个|U|行、f列的矩阵,X中的每一个行向量对应一个用户,是该用户的隐特征向量;Y是一个|S|行、f列的矩阵,Y中的每一个行向量对应于一个服务,是该服务的隐特征向量;f为用户隐含特征空间和服务隐含特征空间的维数。In the obtained user-service behavior statistics, the user set is denoted as U, and the service set is denoted as S, and a matrix with |U| rows and |S| columns is established as the user-service behavior statistical matrix T, and the user-service behavior The statistical matrix T is stored in the data storage module 20 . Then use the reduction matrix factorization to decompose T to obtain the user latent feature matrix X and the service latent feature matrix Y respectively. X is a matrix with |U| rows and f columns, and each row vector in X corresponds to a user, is the hidden feature vector of the user; Y is a matrix of |S| rows and f columns, each row vector in Y corresponds to a service and is the hidden feature vector of the service; f is the user’s hidden feature space and service The dimension of the implicit feature space.
S2:接收指令并设置初始化参数;S2: Receive commands and set initialization parameters;
本实施例中,初始化的参数包括:In this embodiment, the initialized parameters include:
用户-服务已知行为数据tu,s,表示用户u和服务s之间的实体关系即为用户u对服务s的历史行为数据;User-service known behavior data t u,s , indicating that the entity relationship between user u and service s is the historical behavior data of user u to service s;
线性偏差隐特征向量B,表示用户集合U的线性偏差特征向量;Linear deviation latent eigenvector B, representing the linear deviation eigenvector of user set U;
线性偏差隐特征向量C,表示服务集合S的线性偏差特征向量;Linear deviation latent eigenvector C, representing the linear deviation eigenvector of service set S;
隐特征矩阵X,表示采用规约矩阵因式分解用户-服务行为统计数据矩阵后的用户隐特征矩阵;The latent feature matrix X represents the user latent feature matrix after factoring the user-service behavior statistical data matrix by the reduction matrix;
隐特征矩阵Y,表示采用规约矩阵因式分解用户-服务行为统计数据矩阵后的服务隐特征矩阵;The latent feature matrix Y represents the service latent feature matrix after factoring the user-service behavior statistical data matrix by the reduction matrix;
正则控制参数λ,衡量正则项对模型的限制效果,增强模型的鲁棒性;The regular control parameter λ measures the limiting effect of the regular term on the model and enhances the robustness of the model;
Nesterov动量控制参数μ,为了控制Nesterov动量对模型的加速效果,使得推荐模型对未知行为数据的数据还原准确度达到最高。Nesterov momentum control parameter μ, in order to control the acceleration effect of Nesterov momentum on the model, so that the data restoration accuracy of the recommended model for unknown behavior data can reach the highest level.
S3:构造统一损失函数Φ(X,Y,B,C),并对统一损失函数进行非负约束,保证用户和服务隐特征矩阵在训练过程中的非负性;S3: Construct a unified loss function Φ(X, Y, B, C), and impose non-negative constraints on the unified loss function to ensure the non-negativity of the user and service latent feature matrices during the training process;
公式(1)中,tu,s表示用户u和服务s之间的实体关系即用户u对服务s的历史行为数据;Λ表示用户-服务行为统计矩阵T中用户对金融服务的已知行为数据集合;表示用户-服务行为统计矩阵中未知行为的还原值;bu表示用户集合U的线性偏差第u行特征值;cs表示服务集合S的线性偏差第s行特征值;xu,k表示用户隐特征矩阵X的第u行第k列特征值;ys,k表示服务隐特征矩阵Y的第s行第k列特征值;λ代表正则控制参数,f表示隐含特征空间的维数。In formula (1), t u, s represents the entity relationship between user u and service s, that is, the historical behavior data of user u to service s; Λ represents the known behavior of users to financial services in the user-service behavior statistical matrix T data collection; Represents the restored value of the unknown behavior in the user-service behavior statistical matrix; b u represents the eigenvalue of the u-th row of the linear deviation of the user set U; c s represents the s-th row eigenvalue of the linear deviation of the service set S; x u, k represent the user The eigenvalue of the uth row and the kth column of the latent feature matrix X; y s,k represents the eigenvalue of the sth row and the kth column of the service latent feature matrix Y; λ represents the regular control parameter, and f represents the dimension of the hidden feature space.
S4:采用Nesterov加速梯度方法构造Nesterov加速用户-服务行为推荐模型并进行训练。S4: The Nesterov accelerated user-service behavior recommendation model is constructed and trained using the Nesterov accelerated gradient method.
本实施例中,Nesterov加速用户-服务行为推荐模型的构建表达式采用统一损失函数Φ(X,Y,B,C)进行表示。In this embodiment, the construction expression of the Nesterov accelerated user-service behavior recommendation model is represented by a unified loss function Φ(X, Y, B, C).
S4-1:在第一次迭代时,即t=1,采用非负矩阵隐特征分析方法对用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C进行训练,其训练公式为:S4-1: In the first iteration, that is, t=1, use the non-negative matrix latent feature analysis method to train the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C , and its training formula is:
公式(2)中,|Λ(u)|表示和用户u有关的用户-服务已知行为数据中的服务集合,|Λ(s)|表示和服务s有关的用户-服务已知行为数据中的用户集合。In formula (2), |Λ(u)| represents the service set in the user-service known behavior data related to the user u, and |Λ(s)| represents the user-service known behavior data related to the service s. collection of users.
S4-2:加入Nesterov加速梯度方法对Nesterov加速用户-服务行为推荐模型进行加速,首先采用Nesterov加速梯度方法对用户隐特征矩阵X、服务隐特征矩阵Y、用户线性偏差向量B和服务线性偏差向量C进行更新,其更新公式为:S4-2: Add the Nesterov accelerated gradient method to accelerate the Nesterov accelerated user-service behavior recommendation model. First, use the Nesterov accelerated gradient method to calculate the user latent feature matrix X, the service latent feature matrix Y, the user linear deviation vector B and the service linear deviation vector C is updated, and its update formula is:
公式(3)中,表示表示bu在t时刻的状态,表示表示经过更新后的在t+1时刻bu (t+1)的中间状态值,μ为Nesterov控制参数,控制加速效果。Nesterov加速梯度方法只在训练过程中第二次加入,即t≥2,表示迭代次数。In formula (3), represents the state of b u at time t, represents the updated intermediate state value of b u (t+1) at time t+1, μ is the Nesterov control parameter, which controls the acceleration effect. The Nesterov accelerated gradient method is only added for the second time during the training process, that is, t≥2, which represents the number of iterations.
S4-3:按照非负矩阵隐特征分析方法对更新过后的进行训练,其训练公式为:S4-3: According to the non-negative matrix latent feature analysis method, the updated For training, the training formula is:
训练过后的参数表示使用中间状态更新后在t+1时刻的状态值。parameters after training Indicates the use of an intermediate state The state value at time t+1 after the update.
S4-4:判断训练是否达到迭代终止条件,若是则迭代训练结束,若不是则继续训练和更新,直到达到迭代终止条件。S4-4: Determine whether the training reaches the iteration termination condition, if so, the iterative training ends, if not, continue training and updating until the iteration termination condition is reached.
迭代终止条件:若迭代轮数控制变量r超过训练迭代轮数上限R,迭代训练结束;若迭代轮数控制变量r小于训练迭代轮数上限R(R可取值1000),则继续训练和更新,直到达到迭代终止条件。Iteration termination condition: if the iteration number control variable r exceeds the upper limit R of the training iteration number, the iterative training ends; if the iteration number control variable r is less than the upper limit R of the training iteration number (R can be 1000), continue training and updating , until the iteration termination condition is reached.
S5:输出用户隐特征矩阵和服务隐特征矩阵,对用户-服务行为统计矩阵中未知行为数据进行预测,根据预测未知行为数据推荐服务,即未知行为数据的值越大则表示用户使用该服务的几率也越大,由此将服务(取决于未知行为数据的值)推荐给感兴趣的用户。S5: Output the user latent feature matrix and the service latent feature matrix, predict the unknown behavior data in the user-service behavior statistical matrix, and predict the unknown behavior data according to the predicted unknown behavior data. Recommendation service, i.e. unknown behavioral data The larger the value of , the higher the probability that the user will use the service, thus the service (depending on the unknown behavior data value) are recommended to interested users.
S5-1:从输出隐特征单元获取用户u、服务s、用户线性偏差b和服务线性偏差c对应的隐特征。S5-1: Obtain hidden features corresponding to user u, service s, user linear deviation b and service linear deviation c from the output hidden feature unit.
S5-2:用户u对用户隐特征矩阵X中的向量和服务s对应的服务隐特征矩阵Y中的向量和用户线性偏差b和服务线性偏差c的内积作为用户u对服务s的未知行为数据值即bu表示用户集合U的线性偏差第u行特征值;cs表示服务集合S的线性偏差第s行特征值;xu,k表示用户隐特征矩阵X的第u行第k列特征值;ys,k表示服务隐特征矩阵Y的第s行第k列特征值。S5-2: User u takes the inner product of the vector in the user latent feature matrix X and the service latent feature matrix Y corresponding to the service s and the user linear deviation b and the service linear deviation c as the unknown behavior of the user u to the service s data value which is b u represents the eigenvalue of the u -th row of the linear deviation of the user set U; c s represents the s-th row of the eigenvalue of the linear deviation of the service set S; y s,k represents the eigenvalue of the sth row and the kth column of the service latent feature matrix Y.
本实施例中,图3为应用本发明的推荐装置和方法前后,推荐模型的数据分析时间对比图。由图3可以得出,应用了本发明的推荐装置和方法后,针对用户-服务行为统计数据,执行时间远少于不应用本发明的推荐装置和方法的情况。具体地,由图3可以得到,运用了本发明的推荐装置和方法后,未使用本发明的推荐装置和方法的模型的执行时间约为本发明的推荐装置和方法的7倍。即运用本发明的推荐装置和方法后,模型的执行时间比原来提高了7倍之多,大大提高了模型的运行效率。In this embodiment, FIG. 3 is a comparison diagram of the data analysis time of the recommendation model before and after applying the recommendation device and method of the present invention. As can be seen from FIG. 3 , after applying the recommending device and method of the present invention, the execution time for user-service behavior statistical data is much shorter than the case where the recommending device and method of the present invention are not applied. Specifically, it can be seen from FIG. 3 that after using the recommended device and method of the present invention, the execution time of the model without the recommended device and method of the present invention is about 7 times that of the recommended device and method of the present invention. That is, after using the recommending device and method of the present invention, the execution time of the model is increased by as much as 7 times, and the running efficiency of the model is greatly improved.
图4为应用本发明的推荐装置和方法前后数据分析过程中的RMSE对比图,RMSE(root mean square error,均方根误差)是推荐误差的衡量尺度,RMSE越小精度越高。由图4可以得出,应用本发明的推荐装置和方法后大大提高了在金融服务中用户个性化选用服务的精度。在实际应用中,可以更好的为用户提高个性化需求的服务。4 is a comparison diagram of RMSE in the data analysis process before and after applying the recommending device and method of the present invention. RMSE (root mean square error, root mean square error) is a measure of the recommending error, and the smaller the RMSE, the higher the accuracy. As can be seen from FIG. 4 , the application of the recommending device and method of the present invention greatly improves the precision of the user's personalized service selection in financial services. In practical applications, it can better serve users with personalized needs.
本发明所述的一种基于大数据的个性化金融服务推荐装置和方法,采用Nesterov加速梯度方法,以较小的计算复杂度,对已知用户-服务行为统计数据的内在统计规律进行分析,从而准确还原了基于大数据的个性化金融服务未知行为数据,为用户提供个性化、精确的金融服务;本发明还实现了:(1)通过非负矩阵隐特征分析方法对用户-服务行为统计矩阵进行了非负限制,确保了推荐的准确性,更好的保证了用户特征;(2)通过Nesterov加速梯度方法,提高了推荐模型的推荐精度;(3)通过Nesterov加速梯度方法,加快了推荐模型的计算速度。The big data-based personalized financial service recommendation device and method of the present invention adopts the Nesterov accelerated gradient method to analyze the inherent statistical law of the known user-service behavior statistical data with less computational complexity, Thus, the unknown behavior data of personalized financial services based on big data is accurately restored, and personalized and accurate financial services are provided for users; The matrix is non-negatively restricted to ensure the accuracy of the recommendation and better guarantee the user characteristics; (2) the Nesterov accelerated gradient method improves the recommendation accuracy of the recommendation model; (3) the Nesterov accelerated gradient method is used to speed up the The computation speed of the recommended model.
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。Those skilled in the art can understand that the above-mentioned embodiments are specific examples for realizing the present invention, and in practical applications, various changes in form and details can be made without departing from the spirit and the spirit of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011040637.5A CN112214668B (en) | 2020-09-28 | 2020-09-28 | Personalized financial service recommendation device and method based on big data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011040637.5A CN112214668B (en) | 2020-09-28 | 2020-09-28 | Personalized financial service recommendation device and method based on big data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112214668A true CN112214668A (en) | 2021-01-12 |
CN112214668B CN112214668B (en) | 2023-06-02 |
Family
ID=74051477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011040637.5A Active CN112214668B (en) | 2020-09-28 | 2020-09-28 | Personalized financial service recommendation device and method based on big data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112214668B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115599598A (en) * | 2022-10-08 | 2023-01-13 | 国网江苏省电力有限公司南通供电分公司(Cn) | Power load sensing data recovery method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170228433A1 (en) * | 2016-02-04 | 2017-08-10 | Microsoft Technology Licensing, Llc | Method and system for diverse set recommendations |
CN110008404A (en) * | 2019-03-22 | 2019-07-12 | 成都理工大学 | A latent semantic model optimization method based on NAG momentum optimization |
CN111563203A (en) * | 2020-05-08 | 2020-08-21 | 深圳市万佳安人工智能数据技术有限公司 | Intelligent household user-service interest degree personalized prediction device and method based on rapid non-negative implicit characteristic analysis |
-
2020
- 2020-09-28 CN CN202011040637.5A patent/CN112214668B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170228433A1 (en) * | 2016-02-04 | 2017-08-10 | Microsoft Technology Licensing, Llc | Method and system for diverse set recommendations |
CN110008404A (en) * | 2019-03-22 | 2019-07-12 | 成都理工大学 | A latent semantic model optimization method based on NAG momentum optimization |
CN111563203A (en) * | 2020-05-08 | 2020-08-21 | 深圳市万佳安人工智能数据技术有限公司 | Intelligent household user-service interest degree personalized prediction device and method based on rapid non-negative implicit characteristic analysis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115599598A (en) * | 2022-10-08 | 2023-01-13 | 国网江苏省电力有限公司南通供电分公司(Cn) | Power load sensing data recovery method and device |
CN115599598B (en) * | 2022-10-08 | 2023-08-15 | 国网江苏省电力有限公司南通供电分公司 | A method and device for recovering electric load sensing data |
Also Published As
Publication number | Publication date |
---|---|
CN112214668B (en) | 2023-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | Pruning filters with L1-norm and capped L1-norm for CNN compression | |
Tripathy et al. | Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification | |
CN110809772B (en) | System and method for improving optimization of machine learning models | |
Alain et al. | Variance reduction in sgd by distributed importance sampling | |
US10304008B2 (en) | Fast distributed nonnegative matrix factorization and completion for big data analytics | |
US20210256375A1 (en) | Reduced computation real time recurrent learning | |
CN114186084B (en) | Online multi-mode Hash retrieval method, system, storage medium and equipment | |
Xu et al. | Physics guided wavelet convolutional neural network for wind-induced vibration modeling with application to structural dynamic reliability analysis | |
CN115082147A (en) | Sequence recommendation method and device based on hypergraph neural network | |
CN113641907B (en) | A hyperparameter adaptive depth recommendation method and device based on evolutionary algorithm | |
US20200293888A1 (en) | System and Method For Implementing Modular Universal Reparameterization For Deep Multi-Task Learning Across Diverse Domains | |
WO2022105108A1 (en) | Network data classification method, apparatus, and device, and readable storage medium | |
US11521254B2 (en) | Automatic tuning of machine learning parameters for non-stationary e-commerce data | |
CN112256971A (en) | Sequence recommendation method and computer-readable storage medium | |
CN113312925A (en) | Remote sensing image text generation and optimization method based on self-reinforcement learning | |
Tahmassebi | ideeple: Deep learning in a flash | |
CN111178986A (en) | User-commodity preference prediction method and system | |
Shi et al. | A distributed data-parallel pytorch implementation of the distributed shampoo optimizer for training neural networks at-scale | |
Li et al. | Using feature entropy to guide filter pruning for efficient convolutional networks | |
Vogel et al. | Weighted empirical risk minimization: Sample selection bias correction based on importance sampling | |
CN114861671B (en) | Model training method, device, computer equipment and storage medium | |
CN112214668B (en) | Personalized financial service recommendation device and method based on big data | |
Li et al. | Filter pruning via probabilistic model-based optimization for accelerating deep convolutional neural networks | |
Paassen et al. | Gaussian process prediction for time series of structured data. | |
Zhang et al. | Probabilistic matrix factorization recommendation of self-attention mechanism convolutional neural networks with item auxiliary information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PP01 | Preservation of patent right | ||
PP01 | Preservation of patent right |
Effective date of registration: 20241223 Granted publication date: 20230602 |