CN112212826A - 一种基于红外测温的智能建筑平衡检测系统及方法 - Google Patents

一种基于红外测温的智能建筑平衡检测系统及方法 Download PDF

Info

Publication number
CN112212826A
CN112212826A CN202010866781.8A CN202010866781A CN112212826A CN 112212826 A CN112212826 A CN 112212826A CN 202010866781 A CN202010866781 A CN 202010866781A CN 112212826 A CN112212826 A CN 112212826A
Authority
CN
China
Prior art keywords
resistor
operational amplifier
temperature
infrared
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010866781.8A
Other languages
English (en)
Inventor
易润忠
刘红明
万健
李凯
陆生礼
刘远明
陈勇
李隽诗
刘华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Qinmao Intelligent Technology Co ltd
Nanjing Yuankong Health Technology Co ltd
Jiangsu Longrui Iot Technology Co ltd
Original Assignee
Nanjing Qinmao Intelligent Technology Co ltd
Nanjing Yuankong Health Technology Co ltd
Jiangsu Longrui Iot Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Qinmao Intelligent Technology Co ltd, Nanjing Yuankong Health Technology Co ltd, Jiangsu Longrui Iot Technology Co ltd filed Critical Nanjing Qinmao Intelligent Technology Co ltd
Priority to CN202010866781.8A priority Critical patent/CN112212826A/zh
Priority to PCT/CN2020/111736 priority patent/WO2022041040A1/zh
Publication of CN112212826A publication Critical patent/CN112212826A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明公开了一种基于红外测温的智能建筑平衡检测系统及方法,包括水平定位单元、温度检测单元、平衡观测单元和网络传输单元;水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;温度检测单元,包括红外接收器,设置在同一水平高度的建筑外墙,检测周围环境温度;平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。本发明在建筑物建成以后通过红外检测环境温度,根据环境是否存在温差判断建筑平衡状态,了解建筑物是否出现沉降,解决了高层建筑难以观测的问题。

Description

一种基于红外测温的智能建筑平衡检测系统及方法
技术领域
本发明涉及基于红外测温的智能建筑平衡检测系统及方法,属于建筑平衡检测领域。
背景技术
建筑物平衡观测是测定建筑物本身的倾斜量,以了解建筑物随时间推移是否因为地基下沉而发生倾斜现象。建筑物在施工阶段可能会因为荷载增加而出现沉降现象,或者在建成之后会因为地壳变动之类的地质环境现象而导致出现沉降,使房屋失去平衡,重心发生偏移,最后会导致建筑物墙体开裂,严重甚至出现坍塌。因此对建筑物进行平衡检测越来越重要。
但现实中对高层建筑物进行平衡观测多处于施工阶段,受施工现场限制严重,传统的经纬仪正交垂直投点标定法很难顺利实施,使用免棱镜全站仪进行建筑物平衡检测也存在检测点位难以确定的问题。同时在建筑物外观测大多需要观测站点高于建筑物,由于现今我国建筑物越来越高的趋势,在建筑物建成之后就不会再对其进行观测,使得建筑物在常年累月下因环境影响造成的平衡偏移又被忽略。特别是在山区或者软土地基区域,在山区因为山体滑坡影响容易使建筑物在建成后出现沉降和倾斜现象,软土地基区域土质松软建筑物沉降速度更快且更容易发生倾斜现象,人的观察难以判断,却存在严重的安全隐患,现有的沉降检测装置价格昂贵,且无法及时报警提醒建筑物的所有人。
发明内容
发明目的:提供一种基于红外测温的智能建筑平衡检测系统及方法,以解决上述问题。
技术方案:一种基于红外测温的智能建筑平衡检测系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
根据本发明的一个方面,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
根据本发明的一个方面,所述温度检测单元,红外传感器根据建筑物层数设置,在建筑物每层均设置统一水平高度的红外传感器。
根据本发明的一个方面,所述水平定位单元,包括水平仪,设置与红外传感器连接,确定红外传感器的水平高度,每个红外传感器定位于统一水平高度,设置在建筑物外墙呈环形包围。
根据本发明的一个方面,所述平衡观测单元,根据上述温度检测单元检测出的环境温差判断建筑物平衡状态,当同水平高度的红外接收器检测出温差,判定建筑物发生倾斜。
根据本发明的一个方面,所述网络传输单元,包括WiFi传输模块,连接网络,每日更新观测数据,定时上传云端记录
一种测温平衡方法,基于红外测温的智能建筑平衡检测方法,其特征在于,具体步骤包括:
步骤1、在建筑物每一层外墙设置红外接收器,确定同层红外接收器处于同一水平高度;
步骤2、总结红外接收器检测该方向的环境温度,判断同水平高度的红外接收器检测的环境温度是否存在温差;
步骤3、每日更新观测数据,将数据上传云端记录;
步骤4、云端对保存记录数据,当出现非平衡数据记录,云端发送信号进行报警。
根据本发明的一个方面,海拔高度影响环境温度,海拔约高,环境温度越低,建筑倾斜时,沉降一侧外墙的红外接收器低于其余方位的红外接收器,检测温度高于其余方位,与周围环境温度检测结果出现温差。
有益效果:本发明在建筑物建成以后通过红外检测环境温度,根据环境是否存在温差判断建筑平衡状态,了解建筑物是否出现沉降,解决了高层建筑难以观测的问题。
附图说明
图1是本发明的基于红外测温的智能建筑平衡检测系统的系统框图。
图2是本发明的红外接收电路的原理图。
具体实施方式
实施例1
传统的建筑检测平衡的方法主要是在建筑施工阶段进行平衡检测,受施工现场限制严重,经纬仪正交垂直投点标定法很难顺利实施,使用免棱镜全站仪进行建筑物平衡检测也存在检测点位难以确定的问题。同时因为这些观测方法需要在比建筑物更高的观测位点实施,而现今我国建筑物越来越高,在施工阶段就难以实施,建成后也不会再进行检测。本发明通过检测周围环境温度来判断建筑平衡,当周围环境温度一致时建筑处于平衡状态,当周围环境出现温差,就说明建筑出现沉降。特别是山地地区,容易因为山体滑坡而造成建筑快速沉降或倾斜,又或者沿海地区多是地质松软的软土地基,建筑物容易受到土地环境影响而发生快速沉降现象。在这些环境中对建筑物沉降或倾斜现象的检测就尤为重要,尤其是建筑物建成以后,需要防范建筑物出现快速沉降或倾斜的现象。
在该实施例中,如图1所示,一种基于红外测温的智能建筑平衡检测系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
在进一步的实施例中,将所述温度检测单元的红外接收器安装在建筑物的外墙上,用来检测建筑物墙外的环境温度,因为需要通过检测同水平高度的环境温度来判断墙体有没有倾斜,所以在安装时需要注意所有红外接收器是否处于同一水平高度。为了解决让所有红外接收器都能在同一水平高度的问题,设计了水平仪组成的水平定位单元,每个红外接收器都与一个水平仪连接,通过这些水平仪确定红外接收器都处于同一水平高度。
在进一步的实施例中,红外接收器安装在建筑物的每一面外墙,确保包围建筑物一圈,检测每个墙面的环境温度,了解建筑物各个方向的环境温度。同一海拔的环境温度相同,且环境温度随海拔高度增加而降低,当建筑物沉降,沉降的墙体海拔高度下降,位于此墙面的红外接收器检测的环境温度比其他墙面的红外接收器检测的环境温度要高,检测结果出现温差则证明建筑物出现沉降现象。
如图2所示,在更进一步的实施例中,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
在此实施例中,因为要检测周围环境温度,所以决定采用非接触式测量,实验中使用红外测温来检测温度。红外测温根据周围环境的红外射线判断周围环境温度,不会干扰温度分布。在电路中使用红外接收管根据接收的红外信号变化而改变的脉冲电流来实现动态测温,由所述运算放大器U1:A与所述红外接收管D1组成测量电路,流过所述红外接收管D1包括电流包括方波电压、参考电源电压流过直流分量,所述运算放大器U1:B、所述运算放大器U1:C组成高输入阻抗型精密二极管全波整流电路。
在实验中动态测温模块检测的温度数据精度不够,不能反映温差变化,为了提高温度检测的精度,所以设计了多级放大模块放大检测信号。所述多级放大模块中的第一级放大电路由所述运算放大器U1:D组成的电压跟随器进行阻抗匹配,通过调整所述可调电阻VR1的电阻值,改变输出电压大小。第二级放大电路由所述运算放大器U2:A组成比例加法器,通过调整所述可调电阻VR2的电阻值,使放大比例与第一级放大电路相对应。第三级放大电路由所述运算放大器U2:B组成放大器,通过调整所述电阻R18的电阻值,确定相应的放大倍数。最后得到的检测数据符合预期。
在进一步的实施例中,每日的平衡观测结果保存本地,同时进行上传,第二天清除本地保存数据更新观测结果再次保存,节约系统内存容量。
在进一步的实施例中,观测结果上传云端,云端接收数据保存,当云端接收到温差数据,发送报警信号到绑定的智能终端。
实施例2
高层建筑观测平衡,仅在一层安装红外接收器,检测结果不够精准,需要在建筑物的每一层都安装红外接收器。
在该实施例中,如图1所示,一种基于红外测温的智能建筑平衡检测系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
在进一步的实施例中,将所述温度检测单元的红外接收器安装在高层建筑物的外墙上,用来检测高层建筑物墙外的环境温度,因为需要通过检测同水平高度的环境温度来判断墙体有没有倾斜,所以在安装时需要注意所有红外接收器是否处于同一水平高度。为了解决让所有红外接收器都能在同一水平高度的问题,设计了水平仪组成的水平定位单元,每个红外接收器都与一个水平仪连接,通过这些水平仪确定红外接收器都处于同一水平高度。
在进一步的实施例中,红外接收器安装在高层建筑物的每一面外墙,确保包围高层建筑物一圈,检测每个墙面的环境温度,了解高层建筑物各个方向的环境温度,并且在高层建筑物的每一层均如此安装红外接收器,收集每一层的环境温度信息。同一海拔的环境温度相同,且环境温度随海拔高度增加而降低,当建筑物沉降,沉降的墙体海拔高度下降,位于此墙面的红外接收器检测的环境温度比其他墙面的红外接收器检测的环境温度要高,检测结果出现温差则证明建筑物出现沉降现象。
如图2所示,在更进一步的实施例中,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
在此实施例中,因为要检测周围环境温度,所以决定采用非接触式测量,实验中使用红外测温来检测温度。红外测温根据周围环境的红外射线判断周围环境温度,不会干扰温度分布。在电路中使用红外接收管根据接收的红外信号变化而改变的脉冲电流来实现动态测温,由所述运算放大器U1:A与所述红外接收管D1组成测量电路,流过所述红外接收管D1包括电流包括方波电压、参考电源电压流过直流分量,所述运算放大器U1:B、所述运算放大器U1:C组成高输入阻抗型精密二极管全波整流电路。
在实验中动态测温模块检测的温度数据精度不够,不能反映温差变化,为了提高温度检测的精度,所以设计了多级放大模块放大检测信号。所述多级放大模块中的第一级放大电路由所述运算放大器U1:D组成的电压跟随器进行阻抗匹配,通过调整所述可调电阻VR1的电阻值,改变输出电压大小。第二级放大电路由所述运算放大器U2:A组成比例加法器,通过调整所述可调电阻VR2的电阻值,使放大比例与第一级放大电路相对应。第三级放大电路由所述运算放大器U2:B组成放大器,通过调整所述电阻R18的电阻值,确定相应的放大倍数。最后得到的检测数据符合预期。
在进一步的实施例中,每日的平衡观测结果保存本地,同时进行上传,第二天清除本地保存数据更新观测结果再次保存,节约系统内存容量。
在进一步的实施例中,观测结果上传云端,云端接收数据保存,当云端接收到温差数据,发送报警信号到绑定的智能终端。多层红外接收器检测的温度结果符合水平面越高,温度越低的结果,当检测到低层环境温度低于高层环境温度,则判断红外接收器可能出现故障,发送提示信号到绑定的智能终端。
实施例3
建筑物地基沉降可能平稳沉降,即建筑物整体沉降不出现倾斜状态,此时现有平衡检测方法无法检测出建筑物沉降,本发明可根据云端的记录数据进行判断。
在该实施例中,如图1所示,一种基于红外测温的智能建筑平衡检测系统,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
在进一步的实施例中,将所述温度检测单元的红外接收器安装在高层建筑物的外墙上,用来检测高层建筑物墙外的环境温度,因为需要通过检测同水平高度的环境温度来判断墙体有没有倾斜,所以在安装时需要注意所有红外接收器是否处于同一水平高度。为了解决让所有红外接收器都能在同一水平高度的问题,设计了水平仪组成的水平定位单元,每个红外接收器都与一个水平仪连接,通过这些水平仪确定红外接收器都处于同一水平高度。
在进一步的实施例中,红外接收器安装在高层建筑物的每一面外墙,确保包围高层建筑物一圈,检测每个墙面的环境温度,了解高层建筑物各个方向的环境温度,并且在高层建筑物的每一层均如此安装红外接收器,收集每一层的环境温度信息。同一海拔的环境温度相同,且环境温度随海拔高度增加而降低,当建筑物沉降,沉降的墙体海拔高度下降,位于此墙面的红外接收器检测的环境温度比其他墙面的红外接收器检测的环境温度要高,检测结果出现温差则证明建筑物出现沉降现象。
如图2所示,在更进一步的实施例中,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
在此实施例中,因为要检测周围环境温度,所以决定采用非接触式测量,实验中使用红外测温来检测温度。红外测温根据周围环境的红外射线判断周围环境温度,不会干扰温度分布。在电路中使用红外接收管根据接收的红外信号变化而改变的脉冲电流来实现动态测温,由所述运算放大器U1:A与所述红外接收管D1组成测量电路,流过所述红外接收管D1包括电流包括方波电压、参考电源电压流过直流分量,所述运算放大器U1:B、所述运算放大器U1:C组成高输入阻抗型精密二极管全波整流电路。
在实验中动态测温模块检测的温度数据精度不够,不能反映温差变化,为了提高温度检测的精度,所以设计了多级放大模块放大检测信号。所述多级放大模块中的第一级放大电路由所述运算放大器U1:D组成的电压跟随器进行阻抗匹配,通过调整所述可调电阻VR1的电阻值,改变输出电压大小。第二级放大电路由所述运算放大器U2:A组成比例加法器,通过调整所述可调电阻VR2的电阻值,使放大比例与第一级放大电路相对应。第三级放大电路由所述运算放大器U2:B组成放大器,通过调整所述电阻R18的电阻值,确定相应的放大倍数。最后得到的检测数据符合预期。
在进一步的实施例中,每日的平衡观测结果保存本地,同时进行上传,第二天清除本地保存数据更新观测结果再次保存,节约系统内存容量。
在进一步的实施例中,观测结果上传云端,云端接收数据保存,当云端接收到温差数据,发送报警信号到绑定的智能终端。多层红外接收器检测的温度结果符合水平面越高,温度越低的结果,当检测到低层环境温度低于高层环境温度,则判断红外接收器可能出现故障,发送提示信号到绑定的智能终端。
在更进一步的实施例中,云端会将近期数据与记录数据进行比对,建筑物没有沉降现象,近期数据应该与记录数据保持在同一个区间变化,当建筑物发生沉降,近期数据变化区间会与记录数据出现偏差,此时云端发送警告信号。
一种基于红外测温的智能建筑平衡检测方法,其特征在于,具体步骤包括:
步骤1、在建筑物每一层外墙设置红外接收器,确定同层红外接收器处于同一水平高度;
步骤2、总结红外接收器检测该方向的环境温度,判断同水平高度的红外接收器检测的环境温度是否存在温差;
步骤3、每日更新观测数据,将数据上传云端记录;
步骤4、云端对保存记录数据,当出现非平衡数据记录,云端发送信号进行报警。
总之,本发明具有以下优点:
1、通过检测环境温度判断建筑物平衡状态,在建筑物建成后观测;
2、观测建筑物平衡状态不受建筑物高度影响;
3、观测建筑物平衡状态的同时自检故障;
4、记录观测结果,即便建筑物整体发生沉降也可观测到。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,用于通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (8)

1.一种基于红外测温的智能建筑平衡检测系统,其特征在于,包括水平定位单元、温度检测单元、平衡观测单元和信号发射单元;
水平定位单元,确定温度检测单元的红外接收器处于同一水平位置;
温度检测单元,包括多个红外接收器,设置在同一水平高度的建筑外墙一圈,检测周围环境温度;
平衡观测单元,通过判断温度检测单元检测的周围环境温度是否存在温差来判断当前建筑平衡状态;
网络传输单元,与网络连接,每天更新平衡观测结果,并发送到云端记录。
2.根据权利要求1所述的一种基于红外测温的智能建筑平衡检测系统,其特征在于,所述温度检测单元,包括红外接收电路,包括动态测温模块、多级放大模块;
所述动态测温模块,包括电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、红外接收管D1、二极管D2、二极管D3、运算放大器U1:A、运算放大器U1:B、运算放大器U1:C和电容C1;
所述电阻R1的一端接方波电压,所述电阻R1的另一端分别与所述电阻R2的一端、所述红外接收管D1的正极和所述运算放大器U1:A的反相输入端连接,所述电阻R2的另一端接参考电源电压,所述运算放大器U1:A的同相输入端与所述电阻R3的一端连接,所述电阻R3的另一端接地,所述红外接收管D1的负极分别与所述运算放大器U1:A的输出端、所述电容C1的一端连接,所述电容C1的另一端分别与所述电阻R4的一端、所述电阻R5的一端和所述电阻R9的一端连接,所述电阻R5的另一端接地,所述电阻R4的另一端与所述运算放大器U1:B的同相输入端连接,所述运算放大器U1:B的反相输入端分别与所述电阻R6的一端、所述电阻R7的一端和所述二极管D2的负极连接,所述电阻R6的另一端接地,所述运算放大器U1:B的输出端分别与所述二极管D2的正极、所述二极管D3的负极连接,所述二极管D3的正极分别与所述电阻R7的另一端、所述电阻R8的一端连接,所述电阻R8的另一端分别与所述电阻R10的一端、所述运算放大器U1:C的反相输入端连接,所述电阻R9的另一端与所述运算放大器U1:C的同相输入端连接,所述电阻R10的另一端与所述运算放大器U1:C的输出端连接;
所述多级放大模块,包括电阻R11、电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、可调电阻VR1、可调电阻VR2、运算放大器U1:D、运算放大器U2:A和运算放大器U2:B;
所述电阻R11的一端分别与所述电阻R10的另一端、所述运算放大器U1:C的输出端和所述运算放大器U1:D的同相输入端连接,所述运算放大器U1:D的反相输入端分别与所述运算放大器U1:D的输出端、所述电阻R12的一端连接,所述电阻R12的另一端分别与所述电阻R14的一端、所述电阻R15的一端和所述运算放大器U2:A的反相输入端连接,所述电阻R14的另一端与所述可调电阻VR1的一端连接,所述可调电阻VR1的另一端接地,所述运算放大器U2:A的同相输入端与所述电阻R13的一端连接,所述电阻R13的另一端与所述电阻R17的一端均接地,所述运算放大器U2:A的输出端分别与所述电阻R15的另一端、所述电阻R16的一端连接,所述电阻R16的另一端分别与所述电阻R18的一端、所述运算放大器U2:B的反相输入端连接,所述运算放大器U2:B的同相输入端与所述电阻R17的另一端连接,所述运算放大器U2:A的输出端与所述电阻R18的另一端均接检测信号。
3.根据权利要求1所述的一种基于红外测温的智能建筑平衡检测系统,其特征在于,所述温度检测单元,红外传感器根据建筑物层数设置,在建筑物每层均设置统一水平高度的红外传感器。
4.根据权利要求1所述的一种基于红外测温的智能建筑平衡检测系统,其特征在于,所述水平定位单元,包括水平仪,设置与红外传感器连接,确定红外传感器的水平高度,每个红外传感器定位于统一水平高度,设置在建筑物外墙呈环形包围。
5.根据权利要求1所述的一种基于红外测温的智能建筑平衡检测系统,其特征在于,所述平衡观测单元,根据上述温度检测单元检测出的环境温差判断建筑物平衡状态,当同水平高度的红外接收器检测出温差,判定建筑物发生倾斜。
6.根据权利要求1所述的一种基于红外测温的智能建筑平衡检测系统,其特征在于,所述网络传输单元,包括WiFi传输模块,连接网络,每日更新观测数据,定时上传云端记录。
7.一种基于红外测温的智能建筑平衡检测方法,其特征在于,具体步骤包括:
步骤1、在建筑物每一层外墙设置红外接收器,确定同层红外接收器处于同一水平高度;
步骤2、总结红外接收器检测该方向的环境温度,判断同水平高度的红外接收器检测的环境温度是否存在温差;
步骤3、每日更新观测数据,将数据上传云端记录;
步骤4、云端对保存记录数据,当出现非平衡数据记录,云端发送信号进行报警。
8.根据权利要求7所述的一种基于红外测温的智能建筑平衡检测方法,其特征在于,海拔高度影响环境温度,海拔约高,环境温度越低,建筑倾斜时,沉降一侧外墙的红外接收器低于其余方位的红外接收器,检测温度高于其余方位,与周围环境温度检测结果出现温差。
CN202010866781.8A 2020-08-26 2020-08-26 一种基于红外测温的智能建筑平衡检测系统及方法 Pending CN112212826A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010866781.8A CN112212826A (zh) 2020-08-26 2020-08-26 一种基于红外测温的智能建筑平衡检测系统及方法
PCT/CN2020/111736 WO2022041040A1 (zh) 2020-08-26 2020-08-27 一种基于红外测温的智能建筑平衡检测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010866781.8A CN112212826A (zh) 2020-08-26 2020-08-26 一种基于红外测温的智能建筑平衡检测系统及方法

Publications (1)

Publication Number Publication Date
CN112212826A true CN112212826A (zh) 2021-01-12

Family

ID=74059470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010866781.8A Pending CN112212826A (zh) 2020-08-26 2020-08-26 一种基于红外测温的智能建筑平衡检测系统及方法

Country Status (2)

Country Link
CN (1) CN112212826A (zh)
WO (1) WO2022041040A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117232475B (zh) * 2023-11-14 2024-04-12 中铁五局集团第一工程有限责任公司 一种模拟高原情况的高填方路基沉降观测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201637401U (zh) * 2010-02-09 2010-11-17 王景青 沉降和温度测量线
CN107167114B (zh) * 2017-07-03 2023-05-16 瑞安市麦田网络科技有限公司 危旧房自动监测系统
KR101939727B1 (ko) * 2018-05-30 2019-01-17 (주)텔코코리아아이에스 Mems 센서를 이용한 구조물의 안전 모니터링 시스템 및 안전 진단방법
CN109655036B (zh) * 2018-12-25 2021-04-20 云南电网有限责任公司迪庆供电局 一种变电站沉降及电杆应力监测系统
CN209961175U (zh) * 2019-06-21 2020-01-17 西安超越智能科技有限公司 一种多方位形变监测仪
CN110631548A (zh) * 2019-10-23 2019-12-31 贾国平 一种用于防护工程建筑沉降与倾斜的实时监控大数据系统

Also Published As

Publication number Publication date
WO2022041040A1 (zh) 2022-03-03

Similar Documents

Publication Publication Date Title
KR100416197B1 (ko) 지반변위검출기 및 이를 사용한 지반감시장치
US20150006100A1 (en) Enhancing geolocation using barometric data to determine floors at a location
KR100609713B1 (ko) 전위경도를 이용한 지대 탐지 및 접지 저항 측정 방법
CN101231175B (zh) 在全球定位系统电子地图上标注兴趣点的方法
CN105004340A (zh) 结合惯性导航技术和指纹定位技术的定位误差修正方法
CN206223097U (zh) 用于大型结构物本体垂直位移和地表沉降的测量装置
CN106706029B (zh) 一种面向地下结构施工的土体性能监测装置及其工作方法
CN108917718A (zh) 一种无线倾角及位移监控装置、系统及方法
CN206772282U (zh) 海上风电基础绝对沉降监测装置
CN112212826A (zh) 一种基于红外测温的智能建筑平衡检测系统及方法
CN206959776U (zh) 基于北斗卫星的高层建筑安全监测系统
CN106404244A (zh) 压力传感器及其信号校准方法
CN110516862A (zh) 一种基于同孔测量的土、岩地层隐患信息评价方法及系统
CN207395717U (zh) 一种高精度钢构车站形变监测系统
CN113155071A (zh) 一种基坑边坡水平位移安全监测系统
US11346567B2 (en) Analyzing pressure data from a stationary mobile device to detect that a state of an air-conditioning system has changed
CN108279007A (zh) 一种基于随机信号的定位方法及装置
CN111382195A (zh) 一种基坑安全监测数据分析方法及系统
Chang et al. Study of real-time slope stability monitoring system using wireless sensor network (WSN)
CN203037247U (zh) 无线气压测高装置
CN103472435B (zh) 海洋平台复杂结构系统声发射源两阶段定位方法
CN116233191A (zh) 一种智能化基坑监测系统
CN216206257U (zh) 一种用于边坡滑移及沉降监测的阵列位移测量装置
CN208704721U (zh) 一种无线倾角及位移监控装置及系统
Laky Test measurements by Eötvös torsion balance and gravimeters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210112

RJ01 Rejection of invention patent application after publication