CN112210613A - SNP molecular marker related to serum insulin concentration of Chinese Holstein cow - Google Patents
SNP molecular marker related to serum insulin concentration of Chinese Holstein cow Download PDFInfo
- Publication number
- CN112210613A CN112210613A CN202011289913.1A CN202011289913A CN112210613A CN 112210613 A CN112210613 A CN 112210613A CN 202011289913 A CN202011289913 A CN 202011289913A CN 112210613 A CN112210613 A CN 112210613A
- Authority
- CN
- China
- Prior art keywords
- cow
- cows
- chinese holstein
- chinese
- molecular marker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 102000004877 Insulin Human genes 0.000 title claims abstract description 16
- 108090001061 Insulin Proteins 0.000 title claims abstract description 16
- 229940125396 insulin Drugs 0.000 title claims abstract description 16
- 210000002966 serum Anatomy 0.000 title claims abstract description 14
- 239000003147 molecular marker Substances 0.000 title claims abstract description 7
- 241000283690 Bos taurus Species 0.000 claims abstract description 57
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 12
- 230000001488 breeding effect Effects 0.000 claims abstract description 8
- 238000009395 breeding Methods 0.000 claims abstract description 7
- 230000035772 mutation Effects 0.000 claims abstract description 5
- 235000013365 dairy product Nutrition 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000012098 association analyses Methods 0.000 abstract description 2
- 210000000349 chromosome Anatomy 0.000 abstract description 2
- 230000008303 genetic mechanism Effects 0.000 abstract description 2
- 238000012165 high-throughput sequencing Methods 0.000 abstract description 2
- 230000003914 insulin secretion Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 238000001514 detection method Methods 0.000 description 11
- 230000002068 genetic effect Effects 0.000 description 8
- 235000013336 milk Nutrition 0.000 description 7
- 239000008267 milk Substances 0.000 description 7
- 210000004080 milk Anatomy 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 244000309464 bull Species 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 206010022489 Insulin Resistance Diseases 0.000 description 2
- 230000010100 anticoagulation Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000006651 lactation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 2
- 238000001353 Chip-sequencing Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 235000020247 cow milk Nutrition 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/124—Animal traits, i.e. production traits, including athletic performance or the like
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention provides an SNP molecular marker related to the serum insulin concentration of Chinese Holstein cows, belonging to the technical field of molecular breeding. After the Chinese Holstein cow is scanned in the whole genome, an unpublished SP locus is found in the obviously associated SNP loci and is positioned on the No. 20 chromosome of the cowDOCK2In the gene, the A/G mutation occurred at 14406bp of its sequence. By utilizing genome-wide association analysis (GWAS) and a high-throughput sequencing technology, the genetic mechanism of the insulin secretion of the dairy cows can be disclosed more efficiently.
Description
Technical Field
The invention belongs to the technical field of molecular breeding, and particularly relates to an SNP molecular marker related to the serum insulin concentration of Chinese Holstein cows.
Background
The Holstein cow is the cow variety with the highest milk yield and the most feeding amount in the world at present. The variety originates from the northern Netherlands province and the Sifleilan province, and is also called black and white cow because the appearance fur is color blocks distributed in black and white alternately. After the last 50 th century, the Chinese cattle are hybridized with Chinese local yellow cattle and introduced into partial areas of China, and are gradually distributed all over the country in continuous domestication and breeding to become a dairy cow variety which is bred in large scale in China, and the Chinese Holstein cow is formally named as the Chinese Holstein cow in 1992 by the Chinese black and white cow. The bred Chinese Holstein cows have strong and uniform physique, clear color and good development of a lactation system. Due to the difference of the introduced bull varieties and the difference of the feeding environment, the Chinese Holstein cows are roughly divided into three body types: the blood system of the American Holstein cow is mostly introduced into large Holstein cows, the height of an adult cow is about 1.35m, and the weight of the adult cow can reach 600 Kg; the father blood system of the medium-sized cow is mainly the medium-sized Holstein bull in European countries, and the height of the adult cow is more than 1.33 m; the small-sized cow is bred by hybridization of introduced Holstein bull and local small-sized cow, and the height of adult cow is about 1.30 m.
China Holstein cows are dairy in most areas, and are biased to meat and milk dual-purpose in parts of south China. The average annual milk yield of the whole group of the specially bred cows can reach over 9000Kg, the milk yield in a lactation period can reach over 1 ten thousand Kg, and the cow milk is rich in nutritional ingredients such as protein, lipid and the like. However, the occupied amount of the milk in per capita in China is small, and the milk quality is low, which is still a problem to be solved urgently in the whole industry. Only by improving the overall genetic level of the dairy cow population in China, the health condition and the production level of the dairy cows can be fundamentally improved.
Research shows that the function of insulin can reduce blood sugar and influence the secretion of other hormones and the proliferation of cells, and in vivo experiments of cows, the insulin can actually improve the synthesis efficiency of milk protein and the milk yield. By utilizing genome-wide association analysis (GWAS) and a high-throughput sequencing technology, the genetic mechanism of the insulin secretion of the dairy cows can be disclosed more efficiently.
Disclosure of Invention
The invention aims to provide an SNP marker related to the concentration of insulin in serum of Chinese Holstein cows and application thereof.
In order to realize the purpose, the following technical scheme is adopted:
the SNP locus related to the serum insulin concentration of the Chinese Holstein cow is positioned in the Chinese Holstein cowDOCK2The A/G mutation occurred at 14406bp of the sequence of the Gene (as indicated by Bos taurus UMD 3.1.1, Gene ID: 510083).
The invention adopts a whole genome high-throughput chip sequencing technology to carry out whole genome scanning on the Chinese Holstein cows.
The total amount of the research sample of the invention is 1217 Chinese Holstein cows, which comprises 48 half-sib-series, and a combined detection method of 50K chips (BovineSNP; Illumina, San Diego, CA, USA) and 26K chips (GeneSeek, Neogen Corporation, Lincoln, NE, USA) is adopted.
The invention detects the mononucleotide mutation site related to the concentration of insulin in the serum of Chinese Holstein cow.
The whole genome scanning result in the invention adopts R software, and utilizes a farmCPU (fixed and random model cloning Probability unification) algorithm to carry out linear regression analysis, thereby determining the single nucleotide mutation site which is obviously related to the target character.
The invention has the advantages that:
the whole gene scanning scheme adopted by the invention for Chinese Holstein cows is more economic and effective, the detection speed is high, and the cost is low. The detection of the SNP locus having relevance to the insulin concentration character in the serum can provide scientific basis for the marker assistance of biochemical components in blood of Chinese Holstein cows.
Drawings
FIG. 1 is a genome-wide analytical Manhattan chart of Chinese Holstein cows with respect to the serum insulin concentration profile.
FIG. 2 is a Q-Q diagram of genome wide analysis of Chinese Holstein cows on the character of insulin concentration in serum.
Detailed Description
The following embodiments further illustrate the present invention, but should not be construed as limiting the invention, and modifications or substitutions to the method and steps of the present invention may be made without departing from the spirit and substance of the invention.
Unless otherwise specified, the technical means used in the examples are conventional means well known to those skilled in the art.
Example 1
1. Test animal
1226 cows are the total number in a large Holstein cow breeding base in Fujian, China. The father lines of the cows are all from high-yielding breeding bulls, and the number of the father lines is 48, and each half-sib line comprises 5-50 individuals.
2. Phenotypic data
And (3) collecting blood of tail bone blood vessels of all dairy cows to be detected by 5ml, putting the blood into an anticoagulation test tube containing 20% EDTA, storing all samples in an environment at 4 ℃, and sending the samples to a hospital in the city of Fuzhou within 24 hours for routine detection of ion and hormone content and blood. And (5) sorting and summarizing the data by using Excel software and storing the data for later use.
3. Genotype data
After all cows were bled, 5ml of blood from each cow was placed in an anticoagulation tube containing 20% EDTA and frozen at-80 ℃ for 24 hours. After all blood samples are collected, the blood samples are sent to a biological detection company for genotyping detection.
4. Statistical analysis
In the invention, a more economic and effective method is adopted for carrying out the scanning scheme of the genotype data. Two cows were randomly selected from each half-sib and genotyped using a 50K chip (BovineSNP; Illumina, San Diego, Calif., USA), with the remaining cows all being genotyped using a 26K chip (GeneSeek, Neogen Corporation, Lincoln, NE, USA). The versions of Beagle3.3.1[75] were used to determine the agile error rates that occurred when 26K chips and 50K chips caused allele errors when genotyping was performed. Screening of data was performed using quality control of genotype data using PLINK1.07[76], removing SNP sites with detection rate <95%, removing sites with Minor Allele Frequency (MAF) below 0.05, and removing individuals with SNP site detection deletion rate >10%, P <10-6 at Hardy-Weinberg test. Finally, we obtained a total of 1216 effective individuals, and 47396 SNP sites.
In the invention, a loose FDR correction multiple test is adopted to determine the significance threshold, and firstly, the P-value corresponding to the SNP locus is determined according to P1≤≤P2≤P3≤P4≤....≤.PkWherein K is the number of effective SNPs, finding a sequence satisfying the conditionWhere i is the ith sample number of the comparison, and the finally obtained maximum P-value is the significance threshold after FDR correction.
5. Analytical model
The invention adopts the farm CPU to carry out the correlation analysis of the SNP sites, 2016, Liu XiaoLei et al combine a plurality of algorithms to provide a new model, a Fixed Effect Model (FEM) and a Random Effect Model (REM) are used in an iteration way, the model is called as farm CPU (fixed and random model cloning Probability university) and the correlation sites with possibility are added into the fixed effect model as covariates, the model is as follows,
in the model, the model is divided into a plurality of models,representing an observed value for an ith individual;,……genotypes of possible association sites as t added models, and zero in the initial part of iterative operation;,……adding corresponding effect values representing possible relevance sites into the model;representing the genotype of the jth genetic marker in the ith individual;is that(ii) an effect value corresponding to the locus genotype;is a residual vector and obeys~N(0,) Is normally distributed.
And after one-time statistical detection is carried out on all the mark points by using a fixed effect model, all the covariate sites are removed, and all the remaining points to be observed can obtain a P value. And if the P value as the covariate is null, the highest statistical power is selected for replacement through simulation test. After the whole process is finished. All genetic markers will have a corresponding P value.
The random effect model predicts the associated sites by the SUPER algorithm and optimizes different combination results by using the P values and the position information of all genetic markers. The model of the random effect is as follows,
in the model of the random effect,andthe meaning of (c) is the same in the fixed effect model;is the total genetic effect of the ith individual; when the total genetic effect of an individual is 0, the variance-covariance matrix,As the genetic variance of an unknown locus, K is used as the affinity matrix. The random matrix will produce the possible association sites that are added as covariates to the fixed effect model. The fixed effect and the random effect are operated in an iteration mode, and when the position point generated by the random effect is the same as the result in the previous iteration, the iteration is stopped.
6. Analysis of results
After statistical analysis, 308 effective SNP sites related to the serum insulin concentration of Chinese Holstein cows are obtained, wherein 15 SNP sites reach the FDR significant level, nearby genes are positioned through an Ensemble website (http:// asia. ensemblel.org/index. html) according to the positions of the sites, and an SNP site which is not related to public publication is preliminarily determined through annotation of the genes in the Ensemble website and the NCBI websitePoint, located on chromosome 20DOCK2At 14405bp in the gene, rs109881742 is coded.
TABLE 1
There is a literature that shows that,DOCK2the gene participates in the physiological activities of mouse pancreatic cells and fat cells, has certain influence on Insulin Resistance (IR), and can be preliminarily guessed to be positioned inDOCK2SNP loci in the genes have relevance to the concentration of insulin in the serum of the dairy cows.
The molecular genetic marker provided by the invention is not limited by the age and sex of the Chinese Holstein cow, and can be applied to various age stages and early breeding activities of the Chinese Holstein cow to accelerate variety breeding and early disease diagnosis.
The whole gene scanning scheme adopted by the invention for Chinese Holstein cows is more economic and effective, the detection speed is high, and the cost is low.
In the invention, the detection of the SNP locus having relevance to the concentration character of the insulin in the serum can provide scientific basis for the marking assistance of biochemical components in blood of Chinese Holstein cows.
The above description of the embodiments and results of the present invention is provided for the purpose of improving the corresponding conditions of the present invention without departing from the technical principle of the present invention, and the modifications should be construed as the scope of the present invention.
Claims (2)
1. An SNP molecular marker related to the serum insulin concentration of Chinese Holstein cows is characterized in that: the molecular marker is from Chinese Holstein cowDOCK2At 14406bp of the gene sequence, A/G mutation occurred.
2. The use of the SNP molecular marker of claim 1, for breeding cows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011289913.1A CN112210613A (en) | 2020-11-18 | 2020-11-18 | SNP molecular marker related to serum insulin concentration of Chinese Holstein cow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011289913.1A CN112210613A (en) | 2020-11-18 | 2020-11-18 | SNP molecular marker related to serum insulin concentration of Chinese Holstein cow |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112210613A true CN112210613A (en) | 2021-01-12 |
Family
ID=74058490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011289913.1A Pending CN112210613A (en) | 2020-11-18 | 2020-11-18 | SNP molecular marker related to serum insulin concentration of Chinese Holstein cow |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112210613A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003056913A1 (en) * | 2002-01-07 | 2003-07-17 | Japan Science And Technology Agency | Nonhuman model animal lacking the ability to control lymphocyte migration |
CN105392491A (en) * | 2013-03-12 | 2016-03-09 | Hmi医疗创新有限公司 | Plant extracts with anti-diabetic and other useful activities |
CN107267605A (en) * | 2017-06-13 | 2017-10-20 | 甘肃民族师范学院 | The SNP marker related to china holstein cowses reproductive trait and its application |
-
2020
- 2020-11-18 CN CN202011289913.1A patent/CN112210613A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003056913A1 (en) * | 2002-01-07 | 2003-07-17 | Japan Science And Technology Agency | Nonhuman model animal lacking the ability to control lymphocyte migration |
CN105392491A (en) * | 2013-03-12 | 2016-03-09 | Hmi医疗创新有限公司 | Plant extracts with anti-diabetic and other useful activities |
CN107267605A (en) * | 2017-06-13 | 2017-10-20 | 甘肃民族师范学院 | The SNP marker related to china holstein cowses reproductive trait and its application |
Non-Patent Citations (3)
Title |
---|
QIANFU GAN等: "Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle", 《TROPICAL ANIMAL HEALTH AND PRODUCTION》 * |
宋军营 等: "DOCK2介导神经炎症与阿尔茨海默病", 《现代免疫学》 * |
杨建等: "SHIP2基因与2型糖尿病", 《国际内科学杂志》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Teng et al. | A compendium of genetic regulatory effects across pig tissues | |
Li et al. | A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo | |
CN110218798B (en) | SNP molecular marker located on pig chromosome 7 and related to eye muscle area and eye muscle thickness and application | |
CN110734983B (en) | SNP marker related to intramuscular fat character of Suhuai pig, detection method and application | |
CN108998541B (en) | SNP (Single nucleotide polymorphism) marker primer pair related to hip circumference traits of Suhuai pig legs and application thereof | |
CN110643716A (en) | Molecular marker related to sheep tail fat weight and application thereof | |
CN114921568B (en) | SNP molecular marker related to Qinchuan cattle body ruler and meat quality traits and application thereof | |
CN106755371B (en) | Method for detecting sheep PCNP gene single nucleotide polymorphism by PCR-RFLP and application thereof | |
CN113699246B (en) | SNP molecular marker affecting pig feed conversion efficiency character and application thereof | |
CN118028492A (en) | Application of SNP locus combination of litopenaeus vannamei in family mixed culture trait evaluation of litopenaeus vannamei, probe and kit | |
CN117778588A (en) | Preparation method and application of sheep 1K liquid phase chip based on targeted capturing sequencing | |
CN115927667B (en) | Molecular marker and primer related to intramuscular fat traits of pigs and application of molecular marker and primer | |
CN112941198A (en) | SNP marker for detecting pig eye muscle area and application thereof | |
CN113817841B (en) | SNP (Single nucleotide polymorphism) marker primer pair related to swine nipple number traits and application thereof | |
CN113699247B (en) | SNP molecular marker related to pig residual feed intake on pig chromosome 1 and application thereof | |
CN106701930B (en) | Method for detecting sheep FTH-1 gene insertion deletion polymorphism by using PCR-SSCP (polymerase chain reaction-single strand conformation polymorphism) and application thereof | |
CN112210613A (en) | SNP molecular marker related to serum insulin concentration of Chinese Holstein cow | |
CN110438237B (en) | SNP (single nucleotide polymorphism) site related to posttendinosus and fashion head weight on chromosome 6 of meat Simmental cattle and application | |
CN115261486A (en) | Huaxi cattle whole genome selective breeding chip and application thereof | |
CN115478111A (en) | Molecular marker related to sheep immune traits, detection method and application thereof | |
CN112280872A (en) | SNP molecular marker related to magnesium ion concentration of serum of Chinese Holstein cow | |
CN106755370B (en) | Method for detecting sheep FTH-1 gene single nucleotide polymorphism by using PCR-RFLP and application thereof | |
CN102660540B (en) | The mononucleotide polymorphism site and its detection method of ox I mfa genes | |
CN114350820B (en) | Molecular marker related to pig carcass traits and application thereof | |
CN111850139B (en) | Molecular marker located on pig chromosome 12 and related to formation of pig monocrchidism and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210112 |