CN112209839A - Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material - Google Patents

Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material Download PDF

Info

Publication number
CN112209839A
CN112209839A CN202010884140.5A CN202010884140A CN112209839A CN 112209839 A CN112209839 A CN 112209839A CN 202010884140 A CN202010884140 A CN 202010884140A CN 112209839 A CN112209839 A CN 112209839A
Authority
CN
China
Prior art keywords
difluoroethylamine
catalyst
raw material
synthesizing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010884140.5A
Other languages
Chinese (zh)
Inventor
朱辉
李汉生
丁晨
王伟
牛韦
史阿莹
王鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Dongyue Chemical Co ltd
Original Assignee
Shandong Dongyue Chemical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Dongyue Chemical Co ltd filed Critical Shandong Dongyue Chemical Co ltd
Priority to CN202010884140.5A priority Critical patent/CN112209839A/en
Publication of CN112209839A publication Critical patent/CN112209839A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/06Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms
    • C07C209/08Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of halogen atoms with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • B01J2231/4283C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues using N nucleophiles, e.g. Buchwald-Hartwig amination

Abstract

The invention belongs to the technical field of fluorine chemical engineering, and particularly relates to a method for synthesizing 2, 2-difluoroethylamine by using a high-boiling-point substance in R142b as a raw material. The method comprises the following steps: under the catalytic action of the catalyst 1 and the catalyst 2, 2-difluoro-1-chloroethane reacts with an ammonia water solution in a solvent to prepare 2, 2-difluoroethylamine. The invention can avoid using expensive noble metal catalyst, the phase transfer catalyst can be dissolved in the water phase and the organic phase respectively, and can be fully contacted with the reactant, so that the reaction is carried out more thoroughly, the reaction rate is accelerated, the reaction temperature, the reaction pressure and the reaction time are reduced, and the product yield is high; the method has the advantages of low reaction temperature and reaction pressure, low required intensity on equipment, simple operation steps, and capability of continuously recycling the rectified solvent and the ammonia water solution, thereby reducing the discharge of three wastes, reducing the pollution to the environment, and reducing the production cost and the post-treatment cost.

Description

Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material
Technical Field
The invention belongs to the technical field of fluorine chemical engineering, and particularly relates to a method for synthesizing 2, 2-difluoroethylamine by using a high-boiling-point substance in R142b as a raw material.
Background
The 2, 2-difluoroethylamine is an important fluorine-containing aliphatic compound, has wide application, can be used as a synthetic raw material or an intermediate of a plurality of products such as medicines, pesticides and the like, and has important industrial value.
At present, there are several methods for synthesizing 2, 2-difluoroethylamine, and from the viewpoint of required raw materials, the methods are mainly divided into 4 types: 1. a process using difluoroethanol as a raw material; 2. a process using 2, 2-difluoro-1-haloethane as a raw material; 3. 1, 1-difluoro-2-nitroethane is taken as a raw material; 4. a process using difluoroacetonitrile as a raw material.
The earliest synthesis of 2, 2-difluoroethylamine was proposed in 1904 by Swarts et al using 1-bromo-2, 2-difluoroethane mixed with ammonium acetate heated at 125 ℃ -145 ℃ for 3 days, with the final complete conversion of the reactants to difluoroethylamine and tetrafluoroethylamine. The two products are separated by either a split stream method or by converting them to the hydrochloride or oxalate salt. The disadvantage of this synthesis method is the long reaction time and the inability to selectively synthesize 2, 2-difluoroethylamine.
Dickey et al mixed 2, 2-difluoro-1-chloroethane with a 28% aqueous ammonia solution and reacted in a rocking autoclave at 135 deg.C-140 deg.C for 31h to give 2, 2-difluoroethylamine. The reaction mixture was filtered and the amine was isolated by distillation in 65% yield. The preparation method has the advantages of long reaction time and low yield. Meanwhile, the reaction mixture can corrode the reaction kettle at high temperature, and the service life of the reaction kettle is shortened.
In chinese patent CN104030928, it is reported that in hydrogen atmosphere, the mixture of 2, 2-difluoroethanol and liquid ammonia is introduced into a tubular fixed bed reactor for reaction, and the supported catalyst using alumina as carrier catalyzes the reaction, and the yield of 2, 2-difluoroethylamine is greater than 80%. Although the yield of the reaction is high, the preparation of the catalyst is complex, and the raw material 2, 2-difluoroethanol used in the experiment is expensive and is not suitable for large-scale industrial production.
Chinese patent CN102741218 reports a process for synthesizing 2, 2-difluoroethylamine by using difluoroacetonitrile. First, difluoroacetonitrile is converted to an N- (2, 2-difluoroethyl) amide using an organic acid, acid chloride, acid anhydride, or mixture thereof. Then purifying the N- (2, 2-difluoroethyl) amide, and reacting with acid to obtain the 2, 2-difluoroethylamine, wherein the product yield can reach 90%. However, noble metal catalysts are used in the reaction process, the price is high, acidification treatment is adopted in the process, the three wastes are large, and the subsequent treatment is difficult.
Compared with the synthesis route, the preparation method has the advantages that the high-boiling-point substance in the R142b (1, 1-difluoro-1-chloroethane) is 2, 2-difluoro-1-chloroethane (R142) which is a byproduct of R142b, and the preparation method takes the byproduct 2, 2-difluoro-1-chloroethane in the R142b as a raw material to prepare the 2, 2-difluoroethylamine, so the preparation method has great cost advantages. In order to avoid the use of expensive noble metal catalysts, reduce the three wastes and reduce the reaction time, a new process for preparing 2, 2-difluoroethylamine has been developed.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: the method for synthesizing 2, 2-difluoroethylamine by using the high-boiling-point substance in R142b as the raw material has the advantages of mild reaction conditions, short reaction time, high product yield, simple process and less three wastes by using the 2, 2-difluoro-1-chloroethane (R142) as the raw material and adopting a phase shift catalyst, and can avoid using expensive noble metal catalysts and meet industrial requirements.
The method for synthesizing 2, 2-difluoroethylamine by using the high-boiling-point substance in R142b as the raw material comprises the following steps: adding 2, 2-difluoro-1-chloroethane, an ammonia water solution and a solvent into a high-pressure reaction kettle, reacting under the catalytic action of a catalyst 1 and a catalyst 2 at the reaction temperature of 50-180 ℃, the reaction time of 20-240min and the reaction pressure of 0.1-0.5MPa, and separating a product after the reaction is finished to obtain the 2, 2-difluoroethylamine.
Wherein:
the reaction temperature is preferably 80-100 ℃, the reaction time is preferably 30-100min, the reaction pressure is preferably 0.2-0.3MPa, and the separation operation is preferably rectification.
The concentration of the aqueous ammonia solution is 15 to 35 wt%, preferably 18 to 25 wt%.
The solvent is one or more of gamma-butyrolactone, dimethyl sulfoxide, N-dimethylformamide, N-dimethylacetamide, N-dibutylformamide or acetonitrile.
The molar ratio of the solvent to 2, 2-difluoro-1-chloroethane is 2-8:1, preferably 2-6: 1.
NH in the 2, 2-difluoro-1-chloroethane and ammonia water solution3In a molar ratio of 1:2 to 5, preferably 1:2 to 3.
The catalyst 1 is one or more of alkali metal bromide, alkali metal iodide, ammonium bromide, ammonium iodide, tetraalkylammonium bromide, tetraalkylammonium iodide, tetraalkyl phosphine halide or tetraaryl phosphine halide, and potassium bromide or potassium iodide is preferred.
The catalyst 2 is a phase transfer catalyst, preferably one or more of chain polyethylene glycol, chain polyethylene glycol dialkyl ether, 18-crown ether-6, 15-crown ether-5, cyclodextrin, benzyltriethylammonium chloride (TEBA), tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium hydrogen sulfate (TBAB), trioctylmethylammonium chloride, dodecyltrimethylammonium chloride or tetradecyltrimethylammonium chloride. Particular preference is given to 18-crown-6 or benzyltriethylammonium chloride (TEBA).
The mass ratio of the catalyst 1 to the 2, 2-difluoro-1-chloroethane is 0.01-0.2:1, preferably 0.05-0.1:1, and the mass ratio of the catalyst 2 to the 2, 2-difluoro-1-chloroethane is 0.01-0.1:1, preferably 0.02-0.05: 1.
Compared with the prior art, the invention has the following beneficial effects:
1. the invention can avoid using expensive noble metal catalyst, the phase transfer catalyst can be dissolved in water phase and organic phase, and can fully contact with reactant, so that the reaction is carried out completely, the reaction rate is accelerated, the reaction temperature, reaction pressure and reaction time are reduced, and the product yield is high.
2. The method has the advantages of low reaction temperature and reaction pressure, low required intensity on equipment, simple operation steps, and capability of continuously recycling the rectified solvent and the ammonia water solution, thereby reducing the discharge of three wastes, reducing the pollution to the environment, and reducing the production cost and the post-treatment cost.
Detailed Description
The present invention will be further described with reference to the following examples.
The raw materials used in the examples are all conventional raw materials unless otherwise specified, and are commercially available; the methods used in the examples are prior art unless otherwise specified.
Example 1
50g of dimethyl sulfoxide was weighed into an autoclave, then 0.5g of potassium iodide and 0.3g of 18-crown-6 were added, 10g R142 g and 23g of a 15 wt% aqueous ammonia solution were added to the autoclave respectively with a metering pump, the reaction mixture was pressurized to 0.20MPa, and stirred at 60 ℃ for 50 min. After the reaction is finished, the pressure is released, and the product is rectified to obtain 2, 2-difluoroethylamine with the yield of 79 percent and the purity of the 2, 2-difluoroethylamine is 99 percent.
Example 2
80g of dimethyl sulfoxide was weighed into an autoclave, then 0.3g of potassium bromide and 0.5g of 18-crown-6 were added, 10g R142 g and 40g of 20 wt% aqueous ammonia solution were added to the autoclave respectively with a metering pump, the reaction mixture was pressurized to 0.25MPa, and stirred at 80 ℃ for 30 min. After the reaction is finished, the pressure is released, and the product is rectified to obtain the 2, 2-difluoroethylamine with the yield of 85 percent and the purity of the 2, 2-difluoroethylamine of 99 percent.
Example 3
65g of dimethyl sulfoxide was weighed into an autoclave, then 0.8g of potassium iodide and 0.1g of benzyltriethylammonium chloride (TEBA) were added, 10g R142 g and 15g of 25 wt% aqueous ammonia solution were added to the autoclave respectively with a metering pump, the reaction mixture was pressurized to 0.15MPa, and stirred at 50 ℃ for 100 min. After the reaction was completed, the pressure was released and the product was rectified to give 2, 2-difluoroethylamine in 87% yield with a purity of 99% for 2, 2-difluoroethylamine.
Example 4
45g of dimethyl sulfoxide was weighed into an autoclave, then 0.2g of potassium iodide and 0.5g of tetrabutylammonium bromide were added, 10g R142 g and 50g of an 18 wt% aqueous ammonia solution were added to the autoclave respectively with a metering pump, the reaction mixture was pressurized to 0.18MPa, and stirred at 70 ℃ for 40 min. After the reaction is finished, the pressure is released, and the product is rectified to obtain the 2, 2-difluoroethylamine with the yield of 75 percent and the purity of the 2, 2-difluoroethylamine of 99 percent.
Comparative example 1
80g of dimethyl sulfoxide was weighed into an autoclave, then 10g R142 g and 40g of a 20 wt% aqueous ammonia solution were added to the autoclave by a metering pump, respectively, and the reaction mixture was pressurized to 0.25MPa and stirred at 80 ℃ for 30 min. After the reaction is finished, the pressure is released, and the product is rectified to obtain the 2, 2-difluoroethylamine with the yield of 20 percent and the purity of the 2, 2-difluoroethylamine of 99 percent.
Of course, the foregoing is only a preferred embodiment of the invention and should not be taken as limiting the scope of the embodiments of the invention. The present invention is not limited to the above examples, and equivalent changes and modifications made by those skilled in the art within the spirit and scope of the present invention should be construed as being included in the scope of the present invention.

Claims (10)

1. A method for synthesizing 2, 2-difluoroethylamine by using a high-boiling residue in R142b as a raw material is characterized by comprising the following steps: under the catalytic action of the catalyst 1 and the catalyst 2, 2-difluoro-1-chloroethane reacts with an ammonia water solution in a solvent to prepare 2, 2-difluoroethylamine.
2. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: the concentration of the ammonia water solution is 15-35 wt%.
3. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: the solvent is one or more of gamma-butyrolactone, dimethyl sulfoxide, N-dimethylformamide, N-dimethylacetamide, N-dibutylformamide or acetonitrile.
4. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: the molar ratio of the solvent to the 2, 2-difluoro-1-chloroethane is 2-8: 1.
5. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: NH in the 2, 2-difluoro-1-chloroethane and ammonia water solution3The molar ratio of (A) to (B) is 1: 2-5.
6. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: the catalyst 1 is one or more of alkali metal bromide, alkali metal iodide, ammonium bromide, ammonium iodide, tetraalkylammonium bromide, tetraalkylammonium iodide, tetraalkyl phosphine halide or tetraaryl phosphine halide.
7. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: the catalyst 2 is a phase transfer catalyst.
8. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1 or 7, wherein: the catalyst 2 is one or more than one of chain polyethylene glycol, chain polyethylene glycol dialkyl ether, 18-crown ether-6, 15-crown ether-5, cyclodextrin, benzyltriethylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium hydrogen sulfate, trioctylmethylammonium chloride, dodecyltrimethylammonium chloride or tetradecyltrimethylammonium chloride.
9. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: the mass ratio of the catalyst 1 to the 2, 2-difluoro-1-chloroethane is 0.01-0.2:1, and the mass ratio of the catalyst 2 to the 2, 2-difluoro-1-chloroethane is 0.01-0.1: 1.
10. The method for synthesizing 2, 2-difluoroethylamine by using a high-boiling substance in R142b as a raw material as claimed in claim 1, wherein: adding 2, 2-difluoro-1-chloroethane, an ammonia water solution and a solvent into a high-pressure reaction kettle, reacting under the catalytic action of a catalyst 1 and a catalyst 2 at the reaction temperature of 50-180 ℃, the reaction time of 20-240min and the reaction pressure of 0.1-0.5MPa, and separating a product after the reaction is finished to obtain the 2, 2-difluoroethylamine.
CN202010884140.5A 2020-08-28 2020-08-28 Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material Pending CN112209839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010884140.5A CN112209839A (en) 2020-08-28 2020-08-28 Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010884140.5A CN112209839A (en) 2020-08-28 2020-08-28 Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material

Publications (1)

Publication Number Publication Date
CN112209839A true CN112209839A (en) 2021-01-12

Family

ID=74058972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010884140.5A Pending CN112209839A (en) 2020-08-28 2020-08-28 Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material

Country Status (1)

Country Link
CN (1) CN112209839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394975A (en) * 2022-01-27 2022-04-26 黎常宏 Preparation method of allylamine salt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471229A (en) * 2009-07-28 2012-05-23 拜耳作物科学公司 Method for producing 2.2-difluoroethylamine
CN103370290A (en) * 2011-01-13 2013-10-23 拜耳知识产权股份有限公司 Method for producing 2,2-difluorethylamine from 2,2-difluor-l-chlorethane and ammonia
CN105801424A (en) * 2016-04-26 2016-07-27 南通宝凯化工有限公司 Synthesis process of difluoroethylamine
CN111039751A (en) * 2019-12-23 2020-04-21 山东东岳化工有限公司 Method for synthesizing 2, 2-difluoroethanol by taking R142 as raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471229A (en) * 2009-07-28 2012-05-23 拜耳作物科学公司 Method for producing 2.2-difluoroethylamine
CN103370290A (en) * 2011-01-13 2013-10-23 拜耳知识产权股份有限公司 Method for producing 2,2-difluorethylamine from 2,2-difluor-l-chlorethane and ammonia
CN105801424A (en) * 2016-04-26 2016-07-27 南通宝凯化工有限公司 Synthesis process of difluoroethylamine
CN111039751A (en) * 2019-12-23 2020-04-21 山东东岳化工有限公司 Method for synthesizing 2, 2-difluoroethanol by taking R142 as raw material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘鹰翔: "《药物合成反应》", 中国中医药出版社, pages: 324 - 325 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394975A (en) * 2022-01-27 2022-04-26 黎常宏 Preparation method of allylamine salt

Similar Documents

Publication Publication Date Title
CN110498730B (en) Synthetic method of 1,2, 4-trifluorobenzene
CN114105825A (en) Preparation method of 1, 5-pentamethylene diisocyanate
CN107879912B (en) Continuous production process of perfluoro-2-methyl-3-pentanone
CN102209703B (en) Adiabatic process for making mononitrobenzene
SK283209B6 (en) Preparation method for 4-aminodiphenylamine
CN112209839A (en) Method for synthesizing 2, 2-difluoroethylamine by using high-boiling-point substance in R142b as raw material
CN111253274A (en) Preparation method of dialkyl formamide
CN102020543B (en) Method for producing 9-fluorenone
US20170001941A1 (en) Method for preparing polyoxymethylene dimethyl ether carbonyl compound and methyl methoxyacetate
CN108299259B (en) Preparation method of 2-amino-5-thiophenyl- (2-methoxy) acetanilide
CN108530301B (en) Synthetic method of 2,4, 6-trifluorobenzylamine
CN113880730B (en) Industrial method for continuously preparing hexamethylene diisocyanate
CN112794787B (en) Method for continuously preparing 3,3, 3-trifluoro-2- (trifluoromethyl) -1-propylene in gas phase
CN113563225B (en) Method for synthesizing benzonitrile by recycling benzomelamine byproduct
CN116239496A (en) Method for continuously preparing heptafluoroisobutyronitrile
CN114702391A (en) Method for preparing cyclopropylamine by performing Hofmann rearrangement by using hydrogen peroxide
CN113264841A (en) Method for continuously preparing (3S) -3-aminomethyl-5-methylhexanoic acid
CN109096057B (en) Process for producing p-chlorophenol by tower-type continuous chlorination method
CN103739522B (en) A kind of Wyler's process prepares the cleaning procedure of diphenyl urea
CN112521265B (en) Method for continuously producing glycollic acid
CN114634397B (en) Method for preparing hexafluoropropylene dimer by gas phase method
JP2811065B2 (en) Method for producing benzylamine
CN114751887B (en) Synthesis method of ethylene carbonate
CN108276290B (en) Method for preparing chloroarylamine and co-producing ethyl acetate by hydrogen transfer method
CN102173993A (en) Method for synthesizing 4,6-diamino resorcinol dihydrochloride (DAR)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination