CN112209375A - Purification method of graphitized carbon - Google Patents

Purification method of graphitized carbon Download PDF

Info

Publication number
CN112209375A
CN112209375A CN202011190158.1A CN202011190158A CN112209375A CN 112209375 A CN112209375 A CN 112209375A CN 202011190158 A CN202011190158 A CN 202011190158A CN 112209375 A CN112209375 A CN 112209375A
Authority
CN
China
Prior art keywords
carbon
graphitized carbon
acid
acid solution
graphitized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011190158.1A
Other languages
Chinese (zh)
Other versions
CN112209375B (en
Inventor
李小燕
陈育明
陈庆华
钱庆荣
肖荔人
李轩
王曼茜
李川平
李瑞玲
何佳波
邱敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN202011190158.1A priority Critical patent/CN112209375B/en
Publication of CN112209375A publication Critical patent/CN112209375A/en
Application granted granted Critical
Publication of CN112209375B publication Critical patent/CN112209375B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/215Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a method for purifying graphitized carbon. The method comprises the following steps: 1) preparing an acid solution with the concentration of 0.5-10 mol/L; 2) soaking the composite carbon in an acid solution to obtain a composite carbon/acid solution, wherein the composite carbon accounts for 1-80% of the weight of the acid solution; 3) reacting the obtained composite carbon/acid solution at high temperature and high pressure, and selectively etching the composite carbon by using acid to remove amorphous carbon remained in the composite carbon to obtain graphitized carbon; 4) and cleaning and heat treating the obtained graphitized carbon sequentially to obtain the pure graphitized carbon material. The invention has the following beneficial effects: the purification technology has the advantages of high efficiency, rapidness, high selectivity and the like, and is not restricted by the morphology of the purification material; the graphitized carbon material prepared by the method has wide application.

Description

Purification method of graphitized carbon
Technical Field
The invention relates to a method for purifying graphitized carbon, in particular to a method for purifying the graphitized carbon material by selectively etching amorphous carbon with acid.
Background
Graphitized carbon materials have attracted attention in the fields of electronic devices, sensors, energy storage, and the like due to their unique structures and physicochemical properties. The template method, the electrostatic spinning technology and other technologies can make materials into nano-scale, and are widely used for preparing functional materials such as ordered mesoporous carbon, carbon nanofiber, carbon nanotube and the like. For example, high temperature calcination of electrospun polyacrylonitrile at 700 degrees may yield carbon nanofibers, but the resulting carbon is an amorphous carbon material. The catalyst (nickel, cobalt, iron, etc.) can catalyze the conversion of amorphous carbon into graphitized carbon to obtain the graphitized carbon. However, the effective catalytic range of the catalysts is amorphous carbon around 5 nanometers, the catalytic range is limited, the catalytic capability is fixed, and only the composite material of the amorphous carbon and the graphitized carbon can be finally obtained. Due to the existence of amorphous carbon, the conductivity and the like of the carbon material are reduced, and the application of the carbon material is influenced. Therefore, the development of a simple and low-cost graphitized carbon purification method is a difficult problem which is overcome by the efforts of numerous scientific researchers.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a low-cost purification method of graphitized carbon and application thereof, aiming at the problem that the existing amorphous carbon left in the graphitized carbon is difficult to separate.
The technical scheme adopted for realizing the purpose of the invention is as follows: the invention provides a method for purifying graphitized carbon, which sequentially comprises the following steps:
(1) preparing an acid solution: preparing an acid solution with the concentration of 0.5-10 mol/L;
(2) compounding a carbon material and an acid: soaking the composite carbon in the acid solution prepared in the step (1) to obtain a composite carbon/acid solution, wherein the composite carbon accounts for 1-80% of the weight of the acid solution;
(3) high-temperature high-pressure treatment: reacting the composite carbon/acid solution obtained in the step (2) at high temperature and high pressure, and selectively etching the composite carbon by using acid to remove the amorphous carbon remained in the composite carbon to obtain graphitized carbon;
(4) cleaning and heat treatment: and (4) cleaning and heat treating the graphitized carbon obtained in the step (3) successively to remove oxidation functional groups on the surface of the graphitized carbon, thereby obtaining the pure graphitized carbon material.
Obtaining a graphitized carbon material, wherein 1) the graphitized carbon material can be directly used as a lithium ion battery cathode, a sodium ion battery cathode, a potassium ion battery cathode or a super capacitor electrode, and the reversible capacity of the battery electrode is 100-1500 mAh/g; the reversible capacity of the super capacitor is 50-200F/g; 2) a functional additive, which enhances the electrical function of plastics and obtains excellent electromagnetic shielding performance; 3) the prepared graphitized carbon material has a good adsorption effect on heavy metal ions in wastewater, wherein the adsorption capacity on lead ions can reach 50 mg/g, and the adsorption capacity on Hg (2+) can reach 600 mg/g.
The acid solution in the step (1) is mixed acid of nitric acid, hydrochloric acid or sulfuric acid, wherein the molar ratio of the nitric acid to the hydrochloric acid to the sulfuric acid is as follows: 9-10: 0-0.5: 0 to 0.5.
The composite carbon in the step (2) refers to any carbon material consisting of amorphous carbon and graphitized carbon with no specific morphology and size.
The composite carbon in step (2) may also contain other acid-soluble metals or oxides, and a porous structure may be introduced into the purified graphitized carbon material by the purification process.
And (4) performing high-temperature high-pressure treatment in the step (3), wherein the temperature is 120-300 ℃, the pressure is 1-100 MPa, and the treatment time is 1-20 h.
The cleaning in the step (4) is to sequentially clean the glass substrate by using distilled water and 95% alcohol until the pH value is 6.5-7.0.
And (4) performing heat treatment in the step (4), wherein the heat treatment temperature is 500-1000 ℃, the heat treatment time is 0.5-1 h, and the vacuum degree is pumped to-100-1000 torr while introducing hydrogen/argon or hydrogen/nitrogen reducing gas in the heat treatment process.
The invention has the following beneficial effects:
(1) the purification technology has the advantages of high efficiency, rapidness, high selectivity and the like, and the obtained carbon material has high graphitization purity, high conductivity, recycling, stable structure and strong external damage resistance.
(2) The method for purifying graphitized carbon reported by the invention is not limited by the morphology of the purification material and is not influenced by the size of the dimension of the purification material, and the finally obtained graphitized carbon material can be zero-dimensional particles, one-dimensional fibers or two-dimensional films and the like, and has high graphitization purity. If the purified material contains a material that is soluble in an acid, a porous structure can be introduced into the material by the purification process.
(3) The graphitized carbon material prepared by the method of the invention has wide application,
Figure DEST_PATH_IMAGE001
the lithium ion battery, the sodium ion battery, the potassium ion battery or the super capacitor and the like are assembled by being directly used as electrodes, and the lithium ion battery, the sodium ion battery, the potassium ion battery or the super capacitor and the like have the advantages of high energy density, good stability, long service life and the like;
Figure 451351DEST_PATH_IMAGE002
can be used as a filler to enhance the electrical function of plastics and obtain excellent electromagnetic shielding performance;
Figure DEST_PATH_IMAGE003
the adsorbent can be directly used as an adsorbent, and has good adsorption effect on heavy metal ions in the wastewater.
(4) The method for purifying the graphite carbon has the advantages of simple technology, easy operation and large-scale preparation.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments.
While the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Example 1
1. Diluting concentrated nitric acid to prepare a 4 mol/L nitric acid solution;
2. soaking 10 mg of one-dimensional composite carbon fiber in 25 mL of 4 mol/L nitric acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 15 h at the temperature of 170 ℃, and cooling and filtering the reaction kettle to obtain one-dimensional graphite carbon fibers;
4. sequentially cleaning the obtained one-dimensional graphite carbon fiber with distilled water and 95% alcohol for 3 times, and drying the cleaned one-dimensional graphite carbon fiber with the pH value of 6.5;
5. carrying out heat treatment on the dried one-dimensional graphite carbon fiber for 30 min at 500 ℃ under the condition of introducing a hydrogen/argon mixed gas and vacuumizing to-100 torr of vacuum degree, and removing an oxidation functional group;
6. preparing a lithium ion electrode according to a conventional method: the prepared graphite carbon fiber is used as a working electrode, a lithium sheet is used as a counter electrode, Celgard 2400 is used as a diaphragm, and 1mol/L LiPF6in EC, DMC, EMC (1:1:1 volume ratio) as electrolyte, and preparing the button cell. The test voltage range is 0-3V. When the current density is 50 mA/g, the mass specific capacity is 900 mAh/g when the charge-discharge performance test is carried out.
Example 2
1. Diluting concentrated nitric acid to prepare 6 mol/L nitric acid solution;
2. soaking 10 mg of composite carbon nanofiber embedded with nickel particles in 20 mL of 6 mol/L nitric acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 12 h at the temperature of 150 ℃, and cooling and filtering the reaction kettle to obtain a hollow carbon nano material;
4. sequentially cleaning the obtained hollow carbon nano material with distilled water and 95% alcohol for 3 times, wherein the pH value is 6.8 after cleaning, and drying;
5. vacuumizing the dried hollow graphitized carbon nano material while introducing hydrogen/nitrogen mixed gas to 600 ℃ under the condition of vacuum degree of-200 torr, and carrying out heat treatment for 30 min to remove oxidation functional groups;
6. preparing a capacitor electrode according to a conventional method: the prepared hollow graphitized carbon nano material is used as a working electrode, Pt is used as a counter electrode, and an Hg/HgO electrode is used as a reference electrode to form a three-electrode system, and the three-electrode system is soaked in 2 mol/L N solution2SO4Or KOH, and assembled into a capacitor unit. The test voltage range is 0-0.9V. When sufficient electrical performance was tested at a current density of 500 mA/g, the specific capacitance was 85F/g.
Example 3
1. Diluting concentrated nitric acid to prepare 7 mol/L mixed acid, wherein the molar ratio of the nitric acid to the hydrochloric acid is 9.5: 0.5;
2. soaking a 10 mg two-dimensional composite carbon film in 25 mL of 7 mol/L mixed acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 10 h at 180 ℃, and cooling and filtering the reaction kettle to obtain a two-dimensional ultrathin graphitized carbon film;
4. sequentially cleaning the obtained two-dimensional ultrathin graphitized carbon film for 3 times by using distilled water and 95% alcohol, and drying the two-dimensional ultrathin graphitized carbon film with the pH value of 6.5 after cleaning;
5. performing heat treatment on the dried two-dimensional ultrathin graphitized carbon film at 700 ℃ for 30 min under the condition of introducing hydrogen/argon mixed gas and vacuumizing to the vacuum degree of-300 torr to remove impurity functional groups;
6. the prepared material is put into wastewater containing heavy metal ions, and the prepared two-dimensional ultrathin graphitized carbon film has a good adsorption effect on the heavy metal ions in the wastewater, wherein the adsorption capacity on lead ions can reach 50 mg/g, and the adsorption capacity on Hg (2+) can reach 500 mg/g.
Example 4
1. Diluting concentrated nitric acid to prepare 5 mol/L mixed acid, wherein the molar ratio of the nitric acid to the hydrochloric acid to the sulfuric acid is 9:0.5: 0.5;
2. 20 mg of composite carbon particles are soaked in 20 mL of 5 mol/L mixed acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 10 h at 160 ℃, and cooling and filtering the reaction kettle to obtain graphitized carbon particles;
4. sequentially cleaning the obtained graphitized carbon material for 3 times by using distilled water and 95% alcohol, and drying;
5. carrying out heat treatment on the dried graphitized carbon particles for 1h at 1000 ℃ under the condition of introducing hydrogen/argon mixed gas and vacuumizing to the vacuum degree of-500 torr to remove impurity functional groups;
6. the prepared graphitized carbon particle material is used as a potassium ion battery cathode material, and a potassium ion electrode is prepared according to a conventional method: the prepared graphitized carbon is used as a working electrode, a potassium sheet is used as a counter electrode, glass fiber is used as a diaphragm, and 1M KPF is used6in DME =100 Vol% as electrolyte, assembling the button cell. The test voltage range is 0-3V. When the current density is 0.1C and sufficient electrical property test is carried out, the specific mass capacity is 250 mAh/g.
Example 5
1. Diluting concentrated nitric acid to prepare 6 mol/L nitric acid solution;
2. soaking a 10 mg two-dimensional composite carbon film in 20 mL of 6 mol/L nitric acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 8 hours at the temperature of 200 ℃, and cooling and filtering the reaction kettle to obtain a two-dimensional graphitized carbon film;
4. sequentially cleaning the obtained two-dimensional graphitized carbon film for 3 times by using distilled water and 95% alcohol, and drying;
5. carrying out heat treatment on the dried two-dimensional graphitized carbon film for 1h at 1000 ℃ under the condition of introducing hydrogen/argon mixed gas and vacuumizing to the vacuum degree of-300 torr to remove impurity functional groups;
6. the prepared two-dimensional graphitized carbon is used as an additive, 10-15% of graphitized carbon is added and blended with plastic, and the electromagnetic shielding performance of the obtained plastic is 20-50 dB.

Claims (7)

1.一种石墨化碳提纯方法,其特征在于:1. a graphitized carbon purification method, is characterized in that: (1)配置浓度为0.5~10 mol/L的酸溶液;(1) Prepare an acid solution with a concentration of 0.5-10 mol/L; (2)将复合碳浸泡在步骤(1)配置的酸溶液中得复合碳/酸溶液,其中复合碳占酸溶液重量的1~80%;(2) soaking the composite carbon in the acid solution prepared in step (1) to obtain a composite carbon/acid solution, wherein the composite carbon accounts for 1-80% of the weight of the acid solution; (3)高温高压处理:将步骤(2)所得复合碳/酸溶液在高温高压下进行反应,通过酸选择性刻蚀复合碳进而去除留在复合碳中的无定型碳,得到石墨化碳;(3) high temperature and high pressure treatment: react the composite carbon/acid solution obtained in step (2) under high temperature and high pressure, and selectively etch the composite carbon by acid to remove the amorphous carbon left in the composite carbon to obtain graphitized carbon; (4)清洗和热处理:将步骤(3)获得的石墨化碳先后进行清洗和热处理除去石墨化碳表面的氧化功能基团,从而获得纯石墨化碳材料。(4) Cleaning and heat treatment: The graphitized carbon obtained in step (3) is cleaned and heat treated successively to remove the oxidized functional groups on the surface of the graphitized carbon, thereby obtaining a pure graphitized carbon material. 2.如权利要求1所述的一种石墨化碳提纯方法,其特征在于步骤(1)中所述酸溶液是指硝酸、盐酸或硫酸的混合酸,其中硝酸、盐酸和硫酸的摩尔比为:9~10:0~0.5:0~0.5。2. A method for purifying graphitized carbon as claimed in claim 1, characterized in that the acid solution described in step (1) refers to a mixed acid of nitric acid, hydrochloric acid or sulfuric acid, wherein the mol ratio of nitric acid, hydrochloric acid and sulfuric acid is : 9 to 10: 0 to 0.5: 0 to 0.5. 3.如权利要求1所述的一种石墨化碳提纯方法,其特征在于步骤(1)中所述的复合碳是指由无特定形貌,无特定大小尺寸的无定型碳和石墨化碳组成的任何碳材料。3. A method for purifying graphitized carbon as claimed in claim 1, characterized in that the composite carbon described in step (1) refers to amorphous carbon and graphitized carbon without specific morphology and size. composed of any carbon material. 4.如权利要求1所述的一种石墨化碳提纯方法,其特征在于步骤(2)中所述的复合碳中也可含有其它可溶于酸的金属或氧化物材料。4 . The method for purifying graphitized carbon according to claim 1 , wherein the composite carbon described in step (2) may also contain other acid-soluble metals or oxide materials. 5 . 5.如权利要求1所述的一种石墨化碳提纯方法,其特征在于步骤(2)中所述的高温高压处理,温度为120~300℃,压力为1~100 MPa,处理时间为1~20h。5 . The method for purifying graphitized carbon according to claim 1 , wherein the high temperature and high pressure treatment in step (2), the temperature is 120-300° C., the pressure is 1-100 MPa, and the treatment time is 1 ~20h. 6.如权利要求1所述的一种石墨化碳提纯方法,其特征在于步骤(4)中所述的清洗是指用蒸馏水和95%酒精顺序清洗,清洗至pH值在6.5~7.0之间。6 . The method for purifying graphitized carbon according to claim 1 , wherein the cleaning described in step (4) refers to sequentially cleaning with distilled water and 95% alcohol until the pH value is between 6.5 and 7.0. 7 . . 7.如权利要求1所述的一种石墨化碳提纯方法,其特征在于步骤(4)中所述的热处理,热处理热温度在500~1000℃之间,热处理时间为0.5~1h,热处理过程边通氢气/氩气,或氢气/氮气还原气体,边抽真空至真空度在-100~-1000 torr。7 . The method for purifying graphitized carbon according to claim 1 , wherein in the heat treatment described in step (4), the heat treatment temperature is between 500 and 1000° C., and the heat treatment time is 0.5 to 1 h. While passing hydrogen/argon, or hydrogen/nitrogen reducing gas, evacuate to -100 to -1000 torr.
CN202011190158.1A 2020-10-30 2020-10-30 Purification method of graphitized carbon Expired - Fee Related CN112209375B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011190158.1A CN112209375B (en) 2020-10-30 2020-10-30 Purification method of graphitized carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011190158.1A CN112209375B (en) 2020-10-30 2020-10-30 Purification method of graphitized carbon

Publications (2)

Publication Number Publication Date
CN112209375A true CN112209375A (en) 2021-01-12
CN112209375B CN112209375B (en) 2022-08-02

Family

ID=74057738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011190158.1A Expired - Fee Related CN112209375B (en) 2020-10-30 2020-10-30 Purification method of graphitized carbon

Country Status (1)

Country Link
CN (1) CN112209375B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779110A (en) * 2014-01-27 2014-05-07 华南理工大学 Preparation method of linear flexible full-carbon supercapacitor electrode and application thereof
CN105883748A (en) * 2016-04-12 2016-08-24 湘潭大学 Highly-graphitized carbon nanowire ball material and preparation method thereof
CN108091888A (en) * 2017-12-13 2018-05-29 湖南省银峰新能源有限公司 A kind of method of modifying of carbon felt for vanadium redox battery electrode
CN108565131A (en) * 2018-05-23 2018-09-21 中南大学 A method of preparing N doping graphitized carbon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779110A (en) * 2014-01-27 2014-05-07 华南理工大学 Preparation method of linear flexible full-carbon supercapacitor electrode and application thereof
CN105883748A (en) * 2016-04-12 2016-08-24 湘潭大学 Highly-graphitized carbon nanowire ball material and preparation method thereof
CN108091888A (en) * 2017-12-13 2018-05-29 湖南省银峰新能源有限公司 A kind of method of modifying of carbon felt for vanadium redox battery electrode
CN108565131A (en) * 2018-05-23 2018-09-21 中南大学 A method of preparing N doping graphitized carbon

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
倪晶等: "基于共聚物热解P掺杂多孔碳材料的超级电容器", 《功能材料》 *
舒庆 等: "《现代生物质能源技术丛书 生物柴油科学与技术》", 31 December 2012, 冶金工业出版社 *

Also Published As

Publication number Publication date
CN112209375B (en) 2022-08-02

Similar Documents

Publication Publication Date Title
KR100760530B1 (en) Methods for Manufacturing manganese oxide nanotube or nanorod by anodic aluminum oxide template
CN106602012B (en) Flexible thin film electrode and preparation method and application thereof
CN105845918B (en) A kind of porous silica material of high power capacity and its preparation method and application
CN106848199A (en) A kind of lithium ion cell nano silicon/porous carbon compound cathode materials and its preparation method and application
CN108069427B (en) Two-dimensional metal carbide-based three-dimensional porous MX-alkene network material and preparation method thereof
WO2015043359A1 (en) Lithium ion battery anode composite material and preparing method thereof
CN112499617B (en) A kind of preparation method of N and S co-doped hollow carbon nanocube and potassium ion battery
CN111777058A (en) Preparation of a kind of carbon nanotube and its application in lithium ion battery
CN104538209B (en) A kind of porous graphene MnO2Laminated film, Its Preparation Method And Use
CN110065934A (en) A kind of Specific surface area Carbon Materials and its preparation method and application for kalium ion battery
CN108550824A (en) A kind of high-capacity battery cathode material preparation method
CN118367155B (en) Foamed aluminum positive electrode current collector and preparation method and application thereof
CN113764198B (en) Reduced graphene oxide/MXene porous flexible membrane electrode and preparation method and application thereof
CN113277516B (en) Porous spherical graphene-coated silicon negative electrode composite material and preparation method and application thereof
CN112877715B (en) Preparation method and application of porous carbon-supported ruthenium phosphide catalyst
CN113072061B (en) Preparation method of carbon nanotube array of positive electrode conductive additive for lithium ion battery
CN106340615A (en) Negative electrode material, negative electrode, and battery with negative electrode
CN117117089B (en) Positive electrode of sodium ion battery, preparation method of positive electrode and sodium ion battery
CN112209375B (en) Purification method of graphitized carbon
CN112863893A (en) Composite biochar-based material, and preparation method and application thereof
CN109354014B (en) A kind of graphitized carbon quantum dot and preparation method thereof
CN108565441B (en) Preparation method of silicon dioxide composite gel and three-dimensional porous silicon anode material prepared by using gel
CN115121289B (en) Barium titanate nanoparticle composite covalent organic framework heterojunction and preparation method thereof
CN112174131B (en) Method for preparing graphitized hollow carbon composite material by dynamic catalytic wide-area graphitization
WO2024007199A1 (en) Barium titanate nanoparticle-compounded covalent organic framework heterojunction, and preparation method therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220802

CF01 Termination of patent right due to non-payment of annual fee