CN112209375A - Purification method of graphitized carbon - Google Patents
Purification method of graphitized carbon Download PDFInfo
- Publication number
- CN112209375A CN112209375A CN202011190158.1A CN202011190158A CN112209375A CN 112209375 A CN112209375 A CN 112209375A CN 202011190158 A CN202011190158 A CN 202011190158A CN 112209375 A CN112209375 A CN 112209375A
- Authority
- CN
- China
- Prior art keywords
- carbon
- graphitized carbon
- acid
- acid solution
- graphitized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000000746 purification Methods 0.000 title claims abstract description 17
- 239000002253 acid Substances 0.000 claims abstract description 30
- 239000002131 composite material Substances 0.000 claims abstract description 28
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 19
- 238000004140 cleaning Methods 0.000 claims abstract description 13
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000002791 soaking Methods 0.000 claims abstract description 7
- 238000005530 etching Methods 0.000 claims abstract description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 17
- 229910017604 nitric acid Inorganic materials 0.000 claims description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 7
- 125000000524 functional group Chemical group 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000007865 diluting Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000001027 hydrothermal synthesis Methods 0.000 description 5
- 229910001414 potassium ion Inorganic materials 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010041 electrostatic spinning Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
- C01B32/215—Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
The invention relates to a method for purifying graphitized carbon. The method comprises the following steps: 1) preparing an acid solution with the concentration of 0.5-10 mol/L; 2) soaking the composite carbon in an acid solution to obtain a composite carbon/acid solution, wherein the composite carbon accounts for 1-80% of the weight of the acid solution; 3) reacting the obtained composite carbon/acid solution at high temperature and high pressure, and selectively etching the composite carbon by using acid to remove amorphous carbon remained in the composite carbon to obtain graphitized carbon; 4) and cleaning and heat treating the obtained graphitized carbon sequentially to obtain the pure graphitized carbon material. The invention has the following beneficial effects: the purification technology has the advantages of high efficiency, rapidness, high selectivity and the like, and is not restricted by the morphology of the purification material; the graphitized carbon material prepared by the method has wide application.
Description
Technical Field
The invention relates to a method for purifying graphitized carbon, in particular to a method for purifying the graphitized carbon material by selectively etching amorphous carbon with acid.
Background
Graphitized carbon materials have attracted attention in the fields of electronic devices, sensors, energy storage, and the like due to their unique structures and physicochemical properties. The template method, the electrostatic spinning technology and other technologies can make materials into nano-scale, and are widely used for preparing functional materials such as ordered mesoporous carbon, carbon nanofiber, carbon nanotube and the like. For example, high temperature calcination of electrospun polyacrylonitrile at 700 degrees may yield carbon nanofibers, but the resulting carbon is an amorphous carbon material. The catalyst (nickel, cobalt, iron, etc.) can catalyze the conversion of amorphous carbon into graphitized carbon to obtain the graphitized carbon. However, the effective catalytic range of the catalysts is amorphous carbon around 5 nanometers, the catalytic range is limited, the catalytic capability is fixed, and only the composite material of the amorphous carbon and the graphitized carbon can be finally obtained. Due to the existence of amorphous carbon, the conductivity and the like of the carbon material are reduced, and the application of the carbon material is influenced. Therefore, the development of a simple and low-cost graphitized carbon purification method is a difficult problem which is overcome by the efforts of numerous scientific researchers.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a low-cost purification method of graphitized carbon and application thereof, aiming at the problem that the existing amorphous carbon left in the graphitized carbon is difficult to separate.
The technical scheme adopted for realizing the purpose of the invention is as follows: the invention provides a method for purifying graphitized carbon, which sequentially comprises the following steps:
(1) preparing an acid solution: preparing an acid solution with the concentration of 0.5-10 mol/L;
(2) compounding a carbon material and an acid: soaking the composite carbon in the acid solution prepared in the step (1) to obtain a composite carbon/acid solution, wherein the composite carbon accounts for 1-80% of the weight of the acid solution;
(3) high-temperature high-pressure treatment: reacting the composite carbon/acid solution obtained in the step (2) at high temperature and high pressure, and selectively etching the composite carbon by using acid to remove the amorphous carbon remained in the composite carbon to obtain graphitized carbon;
(4) cleaning and heat treatment: and (4) cleaning and heat treating the graphitized carbon obtained in the step (3) successively to remove oxidation functional groups on the surface of the graphitized carbon, thereby obtaining the pure graphitized carbon material.
Obtaining a graphitized carbon material, wherein 1) the graphitized carbon material can be directly used as a lithium ion battery cathode, a sodium ion battery cathode, a potassium ion battery cathode or a super capacitor electrode, and the reversible capacity of the battery electrode is 100-1500 mAh/g; the reversible capacity of the super capacitor is 50-200F/g; 2) a functional additive, which enhances the electrical function of plastics and obtains excellent electromagnetic shielding performance; 3) the prepared graphitized carbon material has a good adsorption effect on heavy metal ions in wastewater, wherein the adsorption capacity on lead ions can reach 50 mg/g, and the adsorption capacity on Hg (2+) can reach 600 mg/g.
The acid solution in the step (1) is mixed acid of nitric acid, hydrochloric acid or sulfuric acid, wherein the molar ratio of the nitric acid to the hydrochloric acid to the sulfuric acid is as follows: 9-10: 0-0.5: 0 to 0.5.
The composite carbon in the step (2) refers to any carbon material consisting of amorphous carbon and graphitized carbon with no specific morphology and size.
The composite carbon in step (2) may also contain other acid-soluble metals or oxides, and a porous structure may be introduced into the purified graphitized carbon material by the purification process.
And (4) performing high-temperature high-pressure treatment in the step (3), wherein the temperature is 120-300 ℃, the pressure is 1-100 MPa, and the treatment time is 1-20 h.
The cleaning in the step (4) is to sequentially clean the glass substrate by using distilled water and 95% alcohol until the pH value is 6.5-7.0.
And (4) performing heat treatment in the step (4), wherein the heat treatment temperature is 500-1000 ℃, the heat treatment time is 0.5-1 h, and the vacuum degree is pumped to-100-1000 torr while introducing hydrogen/argon or hydrogen/nitrogen reducing gas in the heat treatment process.
The invention has the following beneficial effects:
(1) the purification technology has the advantages of high efficiency, rapidness, high selectivity and the like, and the obtained carbon material has high graphitization purity, high conductivity, recycling, stable structure and strong external damage resistance.
(2) The method for purifying graphitized carbon reported by the invention is not limited by the morphology of the purification material and is not influenced by the size of the dimension of the purification material, and the finally obtained graphitized carbon material can be zero-dimensional particles, one-dimensional fibers or two-dimensional films and the like, and has high graphitization purity. If the purified material contains a material that is soluble in an acid, a porous structure can be introduced into the material by the purification process.
(3) The graphitized carbon material prepared by the method of the invention has wide application,the lithium ion battery, the sodium ion battery, the potassium ion battery or the super capacitor and the like are assembled by being directly used as electrodes, and the lithium ion battery, the sodium ion battery, the potassium ion battery or the super capacitor and the like have the advantages of high energy density, good stability, long service life and the like;can be used as a filler to enhance the electrical function of plastics and obtain excellent electromagnetic shielding performance;the adsorbent can be directly used as an adsorbent, and has good adsorption effect on heavy metal ions in the wastewater.
(4) The method for purifying the graphite carbon has the advantages of simple technology, easy operation and large-scale preparation.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments.
While the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Example 1
1. Diluting concentrated nitric acid to prepare a 4 mol/L nitric acid solution;
2. soaking 10 mg of one-dimensional composite carbon fiber in 25 mL of 4 mol/L nitric acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 15 h at the temperature of 170 ℃, and cooling and filtering the reaction kettle to obtain one-dimensional graphite carbon fibers;
4. sequentially cleaning the obtained one-dimensional graphite carbon fiber with distilled water and 95% alcohol for 3 times, and drying the cleaned one-dimensional graphite carbon fiber with the pH value of 6.5;
5. carrying out heat treatment on the dried one-dimensional graphite carbon fiber for 30 min at 500 ℃ under the condition of introducing a hydrogen/argon mixed gas and vacuumizing to-100 torr of vacuum degree, and removing an oxidation functional group;
6. preparing a lithium ion electrode according to a conventional method: the prepared graphite carbon fiber is used as a working electrode, a lithium sheet is used as a counter electrode, Celgard 2400 is used as a diaphragm, and 1mol/L LiPF6in EC, DMC, EMC (1:1:1 volume ratio) as electrolyte, and preparing the button cell. The test voltage range is 0-3V. When the current density is 50 mA/g, the mass specific capacity is 900 mAh/g when the charge-discharge performance test is carried out.
Example 2
1. Diluting concentrated nitric acid to prepare 6 mol/L nitric acid solution;
2. soaking 10 mg of composite carbon nanofiber embedded with nickel particles in 20 mL of 6 mol/L nitric acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 12 h at the temperature of 150 ℃, and cooling and filtering the reaction kettle to obtain a hollow carbon nano material;
4. sequentially cleaning the obtained hollow carbon nano material with distilled water and 95% alcohol for 3 times, wherein the pH value is 6.8 after cleaning, and drying;
5. vacuumizing the dried hollow graphitized carbon nano material while introducing hydrogen/nitrogen mixed gas to 600 ℃ under the condition of vacuum degree of-200 torr, and carrying out heat treatment for 30 min to remove oxidation functional groups;
6. preparing a capacitor electrode according to a conventional method: the prepared hollow graphitized carbon nano material is used as a working electrode, Pt is used as a counter electrode, and an Hg/HgO electrode is used as a reference electrode to form a three-electrode system, and the three-electrode system is soaked in 2 mol/L N solution2SO4Or KOH, and assembled into a capacitor unit. The test voltage range is 0-0.9V. When sufficient electrical performance was tested at a current density of 500 mA/g, the specific capacitance was 85F/g.
Example 3
1. Diluting concentrated nitric acid to prepare 7 mol/L mixed acid, wherein the molar ratio of the nitric acid to the hydrochloric acid is 9.5: 0.5;
2. soaking a 10 mg two-dimensional composite carbon film in 25 mL of 7 mol/L mixed acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 10 h at 180 ℃, and cooling and filtering the reaction kettle to obtain a two-dimensional ultrathin graphitized carbon film;
4. sequentially cleaning the obtained two-dimensional ultrathin graphitized carbon film for 3 times by using distilled water and 95% alcohol, and drying the two-dimensional ultrathin graphitized carbon film with the pH value of 6.5 after cleaning;
5. performing heat treatment on the dried two-dimensional ultrathin graphitized carbon film at 700 ℃ for 30 min under the condition of introducing hydrogen/argon mixed gas and vacuumizing to the vacuum degree of-300 torr to remove impurity functional groups;
6. the prepared material is put into wastewater containing heavy metal ions, and the prepared two-dimensional ultrathin graphitized carbon film has a good adsorption effect on the heavy metal ions in the wastewater, wherein the adsorption capacity on lead ions can reach 50 mg/g, and the adsorption capacity on Hg (2+) can reach 500 mg/g.
Example 4
1. Diluting concentrated nitric acid to prepare 5 mol/L mixed acid, wherein the molar ratio of the nitric acid to the hydrochloric acid to the sulfuric acid is 9:0.5: 0.5;
2. 20 mg of composite carbon particles are soaked in 20 mL of 5 mol/L mixed acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 10 h at 160 ℃, and cooling and filtering the reaction kettle to obtain graphitized carbon particles;
4. sequentially cleaning the obtained graphitized carbon material for 3 times by using distilled water and 95% alcohol, and drying;
5. carrying out heat treatment on the dried graphitized carbon particles for 1h at 1000 ℃ under the condition of introducing hydrogen/argon mixed gas and vacuumizing to the vacuum degree of-500 torr to remove impurity functional groups;
6. the prepared graphitized carbon particle material is used as a potassium ion battery cathode material, and a potassium ion electrode is prepared according to a conventional method: the prepared graphitized carbon is used as a working electrode, a potassium sheet is used as a counter electrode, glass fiber is used as a diaphragm, and 1M KPF is used6in DME =100 Vol% as electrolyte, assembling the button cell. The test voltage range is 0-3V. When the current density is 0.1C and sufficient electrical property test is carried out, the specific mass capacity is 250 mAh/g.
Example 5
1. Diluting concentrated nitric acid to prepare 6 mol/L nitric acid solution;
2. soaking a 10 mg two-dimensional composite carbon film in 20 mL of 6 mol/L nitric acid solution;
3. transferring the solution obtained in the step 2 to a 50 mL hydrothermal reaction kettle, reacting for 8 hours at the temperature of 200 ℃, and cooling and filtering the reaction kettle to obtain a two-dimensional graphitized carbon film;
4. sequentially cleaning the obtained two-dimensional graphitized carbon film for 3 times by using distilled water and 95% alcohol, and drying;
5. carrying out heat treatment on the dried two-dimensional graphitized carbon film for 1h at 1000 ℃ under the condition of introducing hydrogen/argon mixed gas and vacuumizing to the vacuum degree of-300 torr to remove impurity functional groups;
6. the prepared two-dimensional graphitized carbon is used as an additive, 10-15% of graphitized carbon is added and blended with plastic, and the electromagnetic shielding performance of the obtained plastic is 20-50 dB.
Claims (7)
1. A purification method of graphitized carbon is characterized in that:
(1) preparing an acid solution with the concentration of 0.5-10 mol/L;
(2) soaking the composite carbon in the acid solution prepared in the step (1) to obtain a composite carbon/acid solution, wherein the composite carbon accounts for 1-80% of the weight of the acid solution;
(3) high-temperature high-pressure treatment: reacting the composite carbon/acid solution obtained in the step (2) at high temperature and high pressure, and selectively etching the composite carbon by using acid to remove the amorphous carbon remained in the composite carbon to obtain graphitized carbon;
(4) cleaning and heat treatment: and (4) cleaning and heat treating the graphitized carbon obtained in the step (3) successively to remove oxidation functional groups on the surface of the graphitized carbon, thereby obtaining the pure graphitized carbon material.
2. The purification method of graphitized carbon according to claim 1, wherein the acid solution in the step (1) is a mixed acid of nitric acid, hydrochloric acid or sulfuric acid, wherein the molar ratio of nitric acid, hydrochloric acid and sulfuric acid is: 9-10: 0-0.5: 0 to 0.5.
3. The purification method of graphitized carbon as claimed in claim 1, wherein the composite carbon in the step (1) is any carbon material consisting of amorphous carbon and graphitized carbon with no specific morphology and size.
4. The purification method of graphitized carbon as claimed in claim 1, wherein the composite carbon in the step (2) may contain other acid-soluble metal or oxide materials.
5. The purification method of graphitized carbon according to claim 1, wherein the high temperature and high pressure treatment in step (2) is performed at 120 to 300 ℃ and under 1 to 100 MPa for 1 to 20 hours.
6. The method for purifying graphitized carbon according to claim 1, wherein the washing in the step (4) is performed by sequentially washing with distilled water and 95% ethanol until the pH value is 6.5 to 7.0.
7. The graphitized carbon purification method according to claim 1, wherein the heat treatment in step (4) is performed at a temperature of 500-1000 ℃ for 0.5-1 h, and the vacuum is applied to a vacuum of-100-1000 torr while introducing a hydrogen/argon or hydrogen/nitrogen reducing gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011190158.1A CN112209375B (en) | 2020-10-30 | 2020-10-30 | Purification method of graphitized carbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011190158.1A CN112209375B (en) | 2020-10-30 | 2020-10-30 | Purification method of graphitized carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112209375A true CN112209375A (en) | 2021-01-12 |
CN112209375B CN112209375B (en) | 2022-08-02 |
Family
ID=74057738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011190158.1A Expired - Fee Related CN112209375B (en) | 2020-10-30 | 2020-10-30 | Purification method of graphitized carbon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112209375B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103779110A (en) * | 2014-01-27 | 2014-05-07 | 华南理工大学 | Preparation method of linear flexible full-carbon supercapacitor electrode and application thereof |
CN105883748A (en) * | 2016-04-12 | 2016-08-24 | 湘潭大学 | Highly-graphitized carbon nanowire ball material and preparation method thereof |
CN108091888A (en) * | 2017-12-13 | 2018-05-29 | 湖南省银峰新能源有限公司 | A kind of method of modifying of carbon felt for vanadium redox battery electrode |
CN108565131A (en) * | 2018-05-23 | 2018-09-21 | 中南大学 | A method of preparing N doping graphitized carbon |
-
2020
- 2020-10-30 CN CN202011190158.1A patent/CN112209375B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103779110A (en) * | 2014-01-27 | 2014-05-07 | 华南理工大学 | Preparation method of linear flexible full-carbon supercapacitor electrode and application thereof |
CN105883748A (en) * | 2016-04-12 | 2016-08-24 | 湘潭大学 | Highly-graphitized carbon nanowire ball material and preparation method thereof |
CN108091888A (en) * | 2017-12-13 | 2018-05-29 | 湖南省银峰新能源有限公司 | A kind of method of modifying of carbon felt for vanadium redox battery electrode |
CN108565131A (en) * | 2018-05-23 | 2018-09-21 | 中南大学 | A method of preparing N doping graphitized carbon |
Non-Patent Citations (2)
Title |
---|
倪晶等: "基于共聚物热解P掺杂多孔碳材料的超级电容器", 《功能材料》 * |
舒庆 等: "《现代生物质能源技术丛书 生物柴油科学与技术》", 31 December 2012, 冶金工业出版社 * |
Also Published As
Publication number | Publication date |
---|---|
CN112209375B (en) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111362254B (en) | Preparation method and application of nitrogen-doped carbon nanotube-loaded phosphorus-doped cobaltosic oxide composite material | |
KR100760530B1 (en) | Methods for Manufacturing manganese oxide nanotube or nanorod by anodic aluminum oxide template | |
CN108922790B (en) | Preparation method and application of composite material | |
CN107934955B (en) | Method for activating commercial carbon fiber cloth | |
CN110517900B (en) | Preparation method of nitrogen-doped low-temperature carbon nanofiber electrode material for supercapacitor | |
CN111969164A (en) | Composite modified diaphragm for lithium-sulfur battery and preparation method thereof | |
CN111777058A (en) | Preparation of carbon nano tube and application of carbon nano tube in lithium ion battery | |
CN109192533B (en) | Super capacitor electrode material and preparation method thereof | |
CN112086642B (en) | Graphitized carbon-coated high-specific-surface-area porous carbon sphere and preparation method and application thereof | |
CN111974430B (en) | Preparation method of monoatomic copper catalyst and application of monoatomic copper catalyst in positive electrode of lithium-sulfur battery | |
CN111704171B (en) | Manganese ferrite @ carbon nitride composite material and preparation method and application thereof | |
CN108550824A (en) | A kind of high-capacity battery cathode material preparation method | |
CN114436376A (en) | Electrode material for in-situ growth of Prussian blue analogue by taking MOF (Metal organic framework) derived carbon nanotube array as substrate and preparation method of electrode material | |
CN111320761A (en) | Metal organic framework nano composite material and preparation method and application thereof | |
CN110729438B (en) | Heteroatom-doped porous graphene-modified carbon fiber paper and preparation method and application thereof | |
CN114914097A (en) | Preparation method of composite porous aerogel material | |
CN112863893B (en) | Composite biochar-based material, and preparation method and application thereof | |
CN112877715B (en) | Preparation method and application of porous carbon supported ruthenium phosphide catalyst | |
CN106340615A (en) | Negative electrode material, negative electrode, and battery with negative electrode | |
CN112209375B (en) | Purification method of graphitized carbon | |
CN102502580B (en) | Carbon nano tube array and preparation method thereof as well as application of carbon nano tube array in preparation of super capacitor | |
CN115010117B (en) | Preparation method and application of active metal modified carbon nano tube brush material | |
CN114974927B (en) | Preparation method of self-supporting electrode material of carbon nano array | |
CN113764195B (en) | Lithium ion capacitor and preparation method thereof | |
CN113299901B (en) | Phosphorus-doped vanadium pentoxide/vanadium trioxide heptaoxide porous nanofiber and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220802 |