CN112203311B - Network element abnormity diagnosis method, device, equipment and computer storage medium - Google Patents

Network element abnormity diagnosis method, device, equipment and computer storage medium Download PDF

Info

Publication number
CN112203311B
CN112203311B CN201910609173.6A CN201910609173A CN112203311B CN 112203311 B CN112203311 B CN 112203311B CN 201910609173 A CN201910609173 A CN 201910609173A CN 112203311 B CN112203311 B CN 112203311B
Authority
CN
China
Prior art keywords
network element
data
target network
kpi data
kpi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910609173.6A
Other languages
Chinese (zh)
Other versions
CN112203311A (en
Inventor
邢彪
张卷卷
凌啼
章淑敏
何婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Communications Group Co Ltd
China Mobile Group Zhejiang Co Ltd
Original Assignee
China Mobile Communications Group Co Ltd
China Mobile Group Zhejiang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Communications Group Co Ltd, China Mobile Group Zhejiang Co Ltd filed Critical China Mobile Communications Group Co Ltd
Priority to CN201910609173.6A priority Critical patent/CN112203311B/en
Publication of CN112203311A publication Critical patent/CN112203311A/en
Application granted granted Critical
Publication of CN112203311B publication Critical patent/CN112203311B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The embodiment of the invention relates to the technical field of communication, and discloses a method, a device, equipment and a computer storage medium for diagnosing network element abnormity, wherein the method comprises the following steps: acquiring KPI data of a VNF layer target network element in a preset time window, KPI data of a correlation network element correlated with the VNF layer and the target network element and KPI data corresponding to an NFVI layer and the target network element to obtain test data; inputting the test data into a prediction model to obtain predicted KPI data of the target network element within a preset time period; and carrying out abnormity diagnosis on the target network element according to the predicted KPI data of the target network element and the real KPI data of the target network element. By the method, the network element abnormity is diagnosed according to the error between the real KPI data and the predicted KPI data of the network element, so that the abnormity of the network element can be diagnosed before the network element fails, and the network operation and maintenance efficiency is improved.

Description

网元异常诊断方法、装置、设备及计算机存储介质Network element abnormal diagnosis method, device, equipment and computer storage medium

技术领域technical field

本发明实施例涉及通信技术领域,具体涉及一种网元异常诊断方法、装置、设备及计算机存储介质。Embodiments of the present invention relate to the field of communication technologies, and in particular to a network element abnormality diagnosis method, device, equipment, and computer storage medium.

背景技术Background technique

随着移动通信技术的进步,数据业务发展迅速,移动通信网络的结构越来越复杂,移动通信网络中的网元数量也在不断增加,这对通信网络的维护工作提出了更高的要求。With the advancement of mobile communication technology and the rapid development of data services, the structure of the mobile communication network is becoming more and more complex, and the number of network elements in the mobile communication network is also increasing, which puts forward higher requirements for the maintenance of the communication network.

通信网络的维护工作的重点工作之一是网元故障诊断,在实现本发明实施例的过程中,发明人发现:现有的网元故障诊断方法主要通过对网元KPI直接设置阈值,这种方法只能对已经发生的故障进行诊断,无法在网元故障前对网元进行异常检测。One of the key tasks of the maintenance work of the communication network is network element fault diagnosis. In the process of implementing the embodiment of the present invention, the inventor found that: the existing network element fault diagnosis method mainly directly sets the threshold value for the network element KPI. The method can only diagnose the faults that have occurred, and cannot detect the abnormality of the network element before the network element fails.

发明内容Contents of the invention

鉴于上述问题,本发明实施例提供了一种网元异常诊断方法、装置、设备及计算机存储介质,克服了上述问题或者至少部分地解决了上述问题。In view of the above problems, embodiments of the present invention provide a network element abnormality diagnosis method, device, device, and computer storage medium, which overcome the above problems or at least partially solve the above problems.

根据本发明实施例的一个方面,提供了一种网元异常诊断方法,所述方法包括:According to an aspect of an embodiment of the present invention, a network element abnormality diagnosis method is provided, and the method includes:

获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据,得到测试数据;将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,其中,预测模型是根据多组训练数据训练得到的,所述多组训练数据中的每一组均包含VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据;根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断。Obtain the KPI data of the VNF layer target network element within the preset time window, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element, to obtain test data; inputting the test data into a predictive model to obtain predictive KPI data of the target network element within a preset period of time, wherein the predictive model is trained according to multiple sets of training data, each of the multiple sets of training data All include the KPI data of the VNF layer target network element, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element; according to the predicted KPI of the target network element An error between the data and the real KPI data of the target network element is used to diagnose the abnormality of the target network element.

在一种可选的方式中,根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断,包括:计算所述目标网元的预测KPI数据中每一项KPI数据与所述目标网元的真实KPI数据中对应项KPI数据之间的误差;计算所述误差在所述预设时间段内的均方根误差;当存在至少一项KPI数据的均方根误差超过其对应的设定阈值时,确定所述目标网元异常。In an optional manner, performing abnormal diagnosis on the target network element according to the error between the predicted KPI data of the target network element and the real KPI data of the target network element includes: calculating the KPI of the target network element Predict the error between each item of KPI data in the KPI data and the corresponding KPI data in the real KPI data of the target network element; calculate the root mean square error of the error within the preset time period; when there is at least When the root mean square error of one KPI data exceeds its corresponding set threshold, it is determined that the target network element is abnormal.

在一种可选的方式中,计算所述误差在所述预设时间段内的均方根误差,包括:In an optional manner, calculating the root mean square error of the error within the preset time period includes:

根据公式

Figure BDA0002121778490000021
计算所述误差在所述预设时间段内的均方根误差,其中,
Figure BDA0002121778490000022
Figure BDA0002121778490000023
分别表示预测时间为t+a时刻的第i项预测KPI数据及真实KPI数据,m表示所述预设时间段包含的分钟数。According to the formula
Figure BDA0002121778490000021
calculating the root mean square error of the error within the preset time period, wherein,
Figure BDA0002121778490000022
and
Figure BDA0002121778490000023
Respectively represent the predicted KPI data and real KPI data of the i-th item whose predicted time is t+a, and m represents the number of minutes included in the preset time period.

在一种可选的方式中,在得到测试数据之后,所述方法还包括:对所述测试数据进行归一化处理,得到标准测试数据;将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,包括:将所述标准测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据。In an optional manner, after obtaining the test data, the method further includes: performing normalization processing on the test data to obtain standard test data; inputting the test data into the prediction model to obtain the preset time The predicted KPI data of the target network element in the period includes: inputting the standard test data into a forecast model to obtain the predicted KPI data of the target network element in the preset time period.

在一种可选的方式中,在得到测试数据之前,所述方法还包括:构建LSTM神经网络框架;对获取的多组训练数据进行归一化处理,得到标准训练数据;将所述标准训练数据中的每一组训练数据的维度转换为三维训练数据;根据所述三维训练数据对所述LSTM神经网络框架进行训练,得到所述预测模型。In an optional manner, before obtaining the test data, the method further includes: constructing an LSTM neural network framework; performing normalization processing on multiple sets of training data acquired to obtain standard training data; The dimensions of each set of training data in the data are converted into three-dimensional training data; the LSTM neural network framework is trained according to the three-dimensional training data to obtain the prediction model.

在一种可选的方式中,构建LSTM神经网络框架,包括:构建包含一个输出层、十六个隐藏层和一个输出层的LSTM神经网络框架,其中,十六个隐藏层包括八个LSTM层和八个dropout层。In an optional manner, constructing the LSTM neural network framework includes: constructing an LSTM neural network framework comprising an output layer, sixteen hidden layers and an output layer, wherein the sixteen hidden layers include eight LSTM layers and eight dropout layers.

在一种可选的方式中,根据多组训练数据对LSTM神经网络框架进行训练,得到所述预测模型,包括:根据所述多组训练数据得到所述LSTM神经网络框架的权重;根据所述权重计算损失函数值;根据优化算法重复更新所述权重,直至所述损失函数值最小;根据所述损失函数值最小的权重,得到预测模型。In an optional manner, training the LSTM neural network framework according to multiple sets of training data to obtain the prediction model includes: obtaining the weight of the LSTM neural network framework according to the multiple sets of training data; according to the The weight is used to calculate the value of the loss function; the weight is repeatedly updated according to the optimization algorithm until the value of the loss function is the smallest; and the prediction model is obtained according to the weight with the smallest value of the loss function.

根据本发明实施例的另一方面,提供了一种网元异常诊断装置,包括:获取模块、输入模块和异常诊断模块,其中,获取模块用于获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据,得到测试数据;输入模块,用于将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,其中,预测模型是根据多组训练数据训练得到的,所述多组训练数据中的每一组均包含VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据;异常诊断模块,用于根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断。According to another aspect of the embodiments of the present invention, a network element abnormality diagnosis device is provided, including: an acquisition module, an input module, and an abnormality diagnosis module, wherein the acquisition module is used to acquire VNF layer target network elements within a preset time window The KPI data of the KPI data, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element, to obtain test data; the input module is used to input the test data into the prediction A model to obtain the predicted KPI data of the target network element within a preset time period, wherein the prediction model is obtained according to multiple sets of training data training, and each set of the multiple sets of training data includes a VNF layer target network element The KPI data of the KPI data, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element; the abnormal diagnosis module is used to predict the KPI data according to the target network element An error with the real KPI data of the target network element is used to diagnose the abnormality of the target network element.

在一种可选的方式中,异常诊断模块进一步用于,计算所述目标网元的预测KPI数据中每一项KPI数据与所述目标网元的真实KPI数据中对应项KPI数据之间的误差;计算所述误差在所述预设时间段内的均方根误差;当存在至少一项KPI数据的均方根误差超过其对应的设定阈值时,确定所述目标网元异常。In an optional manner, the abnormality diagnosis module is further used to calculate the difference between each item of KPI data in the predicted KPI data of the target network element and the corresponding item of KPI data in the real KPI data of the target network element. Error; calculate the root mean square error of the error within the preset time period; when the root mean square error of at least one KPI data exceeds its corresponding set threshold, determine that the target network element is abnormal.

在一种可选的方式中,计算所述误差在所述预设时间段内的均方根误差,包括:根据公式

Figure BDA0002121778490000031
计算所述误差在所述预设时间段内的均方根误差,其中,
Figure BDA0002121778490000032
Figure BDA0002121778490000033
分别表示预测时间为t+a时刻的第i项预测KPI数据及真实KPI数据,m表示所述预设时间段包含的分钟数。In an optional manner, calculating the root mean square error of the error within the preset time period includes: according to the formula
Figure BDA0002121778490000031
calculating the root mean square error of the error within the preset time period, wherein,
Figure BDA0002121778490000032
and
Figure BDA0002121778490000033
Respectively represent the predicted KPI data and real KPI data of the i-th item whose predicted time is t+a, and m represents the number of minutes included in the preset time period.

在一种可选的方式中,所述装置还包括:构建模块,用于构建LSTM神经网络框架;归一化模块,用于对获取的多组训练数据进行归一化,得到标准训练数据;转换模块,用于将所述标准训练数据中的每一组训练数据的维度转换为三维训练数据;训练模块,用于根据所述三维训练数据对所述LSTM神经网络框架进行训练,得到所述预测模型。In an optional manner, the device further includes: a construction module, configured to construct an LSTM neural network framework; a normalization module, configured to normalize multiple sets of acquired training data to obtain standard training data; The conversion module is used to convert the dimensions of each group of training data in the standard training data into three-dimensional training data; the training module is used to train the LSTM neural network framework according to the three-dimensional training data to obtain the described predictive model.

在一种可选的方式中,构建模块进一步用于,构建包含一个输出层、十六个隐藏层和一个输出层的LSTM神经网络框架,其中,十六个隐藏层包括八个LSTM层和八个dropout层。In an optional manner, the building block is further used to construct an LSTM neural network framework comprising an output layer, sixteen hidden layers and an output layer, wherein the sixteen hidden layers include eight LSTM layers and eight A dropout layer.

在一种可选的方式中,训练模块进一步用于,根据所述多组训练数据得到所述LSTM神经网络框架的权重;根据所述权重计算损失函数值;根据优化算法重复更新所述权重,直至所述损失函数值最小;根据所述损失函数值最小的权重,得到预测模型。In an optional manner, the training module is further used to obtain the weight of the LSTM neural network framework according to the multiple sets of training data; calculate the loss function value according to the weight; repeatedly update the weight according to the optimization algorithm, Until the loss function value is minimum; according to the weight with the minimum loss function value, a prediction model is obtained.

在一种可选的方式中,所述装置还包括:验证模块,用于根据多组验证数据对预测模型进行验证。训练模块进一步用于,当多组验证数据的准确率低于预设阈值时,重新训练预测模型。In an optional manner, the device further includes: a verification module, configured to verify the prediction model according to multiple sets of verification data. The training module is further used to retrain the forecasting model when the accuracy of multiple sets of verification data is lower than a preset threshold.

根据本发明实施例的另一方面,提供了一种网元异常诊断设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;According to another aspect of the embodiments of the present invention, a network element abnormality diagnosis device is provided, including: a processor, a memory, a communication interface, and a communication bus, and the processor, the memory, and the communication interface communicate through the The bus completes the communication with each other;

所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行上述的一种网元异常诊断方法对应的操作。The memory is used to store at least one executable instruction, and the executable instruction causes the processor to perform an operation corresponding to the above-mentioned network element abnormality diagnosis method.

根据本发明实施例的又一方面,提供了一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使所述处理器执行上述的一种网元异常诊断方法对应的操作。According to still another aspect of the embodiments of the present invention, a computer storage medium is provided, and at least one executable instruction is stored in the storage medium, and the executable instruction causes the processor to execute the above-mentioned network element abnormality diagnosis The operation corresponding to the method.

本发明实施例通过将获取到的测试数据输入到预测模型得到预设时间段内目标网元的预测KPI数据,根据该预设时间段内的预测KPI数据与真实KPI数据的误差对目标网元进行异常诊断,从而可以在网元发生故障之前对网元进行异常诊断,提高了网络运维的效率。In the embodiment of the present invention, the predicted KPI data of the target network element within the preset time period is obtained by inputting the acquired test data into the prediction model, and the target network element is calculated according to the error between the predicted KPI data and the real KPI data within the preset time period. Abnormal diagnosis is performed, so that the abnormal diagnosis of the network element can be performed before the network element fails, and the efficiency of network operation and maintenance is improved.

上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solutions of the embodiments of the present invention. In order to better understand the technical means of the embodiments of the present invention, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and The advantages can be more obvious and understandable, and the specific embodiments of the present invention are enumerated below.

附图说明Description of drawings

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating a preferred embodiment and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same parts. In the attached picture:

图1示出了本发明第一实施例提供的一种网元异常诊断方法的流程图;FIG. 1 shows a flow chart of a network element abnormality diagnosis method provided by the first embodiment of the present invention;

图2示出了本发明第二实施例提供的一种网元异常诊断方法的流程图;FIG. 2 shows a flow chart of a network element abnormality diagnosis method provided by the second embodiment of the present invention;

图3示出了本发明第三实施例提供的一种网元异常诊断方法的流程图;FIG. 3 shows a flow chart of a network element abnormality diagnosis method provided by a third embodiment of the present invention;

图4示出了本发明第四实施例提供的一种网元异常诊断装置的功能框图;FIG. 4 shows a functional block diagram of a device for diagnosing network element abnormality provided by a fourth embodiment of the present invention;

图5示出了本发明第五实施例提供的一种网元异常诊断设备的结构示意图。Fig. 5 shows a schematic structural diagram of a network element abnormality diagnosis device provided by a fifth embodiment of the present invention.

具体实施方式detailed description

下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present invention are shown in the drawings, it should be understood that the invention may be embodied in various forms and should not be limited to the embodiments set forth herein. Rather, these embodiments are provided for more thorough understanding of the present invention and to fully convey the scope of the present invention to those skilled in the art.

图1示出了本发明第一实施例的一种网元异常诊断方法的流程图,如图1所示,该方法包括以下步骤:Fig. 1 shows a flow chart of a network element abnormality diagnosis method according to the first embodiment of the present invention. As shown in Fig. 1, the method includes the following steps:

步骤110:获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与目标网元关联的关联网元的KPI数据以及NFVI层与目标网元对应的KPI数据,得到测试数据。Step 110: Obtain the KPI data of the VNF layer target network element, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element within the preset time window to obtain test data.

其中,VNF(Virtualised Network Function)是对应于传统电信业务网络的虚拟网络功能,传统电信业务网络中物理网元在映射为一个虚拟网元,能够通过纯软件实现物理网元的功能。虚拟网元运行在网络功能虚拟化基础设施NFVI(Network FunctionVirtualization Infrastructure)上,NFVI为虚拟网元提供计算、存储、网络互通等虚拟资源。KPI(Key Performance Indication)数据是网元运行时的关键性能指标数据,用于表征网元的运行状态。目标网元是VNF层所有网元中的某一个网元。对于已经确定的VNF层的目标网元,则VNF层与该目标网元关联的关联网元以及NFVI层与所述目标网元对应的KPI数据是确定的。Among them, VNF (Virtualized Network Function) is a virtual network function corresponding to the traditional telecommunication service network. The physical network element in the traditional telecommunication service network is mapped to a virtual network element, and the function of the physical network element can be realized through pure software. Virtual network elements run on the network function virtualization infrastructure NFVI (Network Function Virtualization Infrastructure), and NFVI provides computing, storage, network interworking and other virtual resources for virtual network elements. KPI (Key Performance Indication) data is the key performance indicator data when the network element is running, and is used to represent the running state of the network element. The target network element is a certain network element among all network elements at the VNF layer. For the determined target network element of the VNF layer, the associated network element associated with the VNF layer and the target network element and the KPI data corresponding to the NFVI layer and the target network element are determined.

目标网元的KPI数据和关联网元的KPI数据均包括业务负荷、业务成功率、吞吐量、错误码次数等属性,NFVI层与目标网元对应的KPI数据包括CPU利用率、I/O速率、内存使用率、读写响应时长等属性,在具体实施过程中,可以选取其中的若干个属性作为KPI数据,目标网元的KPI属性和关联网元的KPI属性类别可以相同,也可以不同,选取的属性类别的数量也可以相同,或不同。考虑到网元的KPI数据具有随时间变化性,因此,通过预先设置的时间窗口来获取最近某个时间段内的KPI数据,以更加准确地预测未来某个时间段的目标网元的KPI数据。Both the KPI data of the target network element and the KPI data of the associated network element include attributes such as business load, business success rate, throughput, and number of error codes, and the KPI data corresponding to the NFVI layer and the target network element include CPU utilization and I/O rate , memory usage, read and write response time, and other attributes. In the specific implementation process, several attributes can be selected as KPI data. The KPI attribute of the target network element and the KPI attribute category of the associated network element can be the same or different. The number of selected attribute categories can also be the same or different. Considering that the KPI data of a network element changes with time, the KPI data of a recent period of time is obtained through a preset time window to more accurately predict the KPI data of a target network element in a certain period of time in the future .

步骤120:将测试数据输入预测模型,得到预设时间段内目标网元的预测KPI数据。Step 120: Input the test data into the prediction model to obtain the prediction KPI data of the target network element within the preset time period.

其中,预测模型是根据多组训练数据训练得到的,多组训练数据中的每一组均包含VNF层目标网元的KPI数据、VNF层与目标网元关联的关联网元的KPI数据以及NFVI层与目标网元对应的KPI数据。Among them, the predictive model is trained according to multiple sets of training data, and each set of multiple sets of training data includes the KPI data of the VNF layer target network element, the KPI data of the associated network element associated with the VNF layer and the target network element, and the NFVI The KPI data corresponding to the layer and the target network element.

值得说明的是,在通过多组训练数据训练预测模型时,可以针对能够预测某一项KPI数据的预测模型进行训练,也可以针对能够预测所有项KPI数据的预测模型进行训练。当针对能够预测某一项KPI数据的预测模型进行训练时,为了能够有效的对网元进行异常诊断,对于每一项KPI数据均需要训练一个预测模型,以对所有项KPI数据进行预测。It is worth noting that when training the forecasting model with multiple sets of training data, the training can be performed on the forecasting model that can predict a certain item of KPI data, or can be trained on the forecasting model that can predict all items of KPI data. When training a prediction model capable of predicting a certain item of KPI data, in order to effectively diagnose abnormalities of network elements, a prediction model needs to be trained for each item of KPI data to predict all items of KPI data.

在一些实施方式中,预测模型是根据多组训练数据对LSTM神经网络框架进行训练得到的。LSTM神经网络是一种有记忆功能的神经网络,每个隐藏层的LSTM神经元的输出都会被存储在缓存中,当下一次该LSTM神经元有数据输入时,存在缓存中的数据会被当做输入的一部分,在每一个时间点,LSTM神经元的输出都会被放到缓存中去,在下一个时间点,缓存中的数值都会被覆盖掉。LSTM神经元包含三个门控,遗忘门、输入门和输出门,遗忘门决定了上一时刻存储的信息ht-1中丢弃和保留的信息,其计算公式为:ft=σ(Wf·[ht-1,xt]+bf),其中,xt表示输入信息,bf为输入层偏置向量,σ表示sigmoid函数,Wf表示遗忘门的权重,遗忘门的输出结果是一个介于0至1之间的数,1表示“完全保留该信息”,0表示“完全丢弃该信息”。输入门决定上一时刻神经元状态Ct-1中需要更新的信息,其计算公式为:it=σ(Wi·[ht-1,xt]+bi),

Figure BDA0002121778490000061
其中,Ct表示当前时刻神经元的状态,Wi、Wc分别表示输入门的权重,bi和bc分别为输入层偏置向量。输出包含两个部分,一部分是全部输出,一部分是用于输入下一LSTM神经元的输出,全部输出的计算公式为:ot=σ(Wo[ht-1,xt]+bo),用于输入下一LSTM神经元的输出的计算公式为:ht=ot*tanh(Ct),其中,Wo为输出层权重,bo为输出层偏置向量。在得到全部输出ot后,对ot去归一化即可得到输出结果。In some embodiments, the prediction model is obtained by training the LSTM neural network framework according to multiple sets of training data. The LSTM neural network is a neural network with a memory function. The output of the LSTM neuron in each hidden layer will be stored in the cache. When the LSTM neuron has data input next time, the data in the cache will be used as input. At each time point, the output of the LSTM neuron will be put into the cache, and at the next time point, the value in the cache will be overwritten. The LSTM neuron contains three gates, the forget gate, the input gate and the output gate. The forget gate determines the discarded and retained information in the information h t-1 stored at the last moment, and its calculation formula is: f t =σ(W f ·[h t-1 ,x t ]+b f ), where x t represents the input information, b f is the input layer bias vector, σ represents the sigmoid function, W f represents the weight of the forget gate, and the output of the forget gate The result is a number between 0 and 1, where 1 means "keep the information completely" and 0 means "discard the information completely". The input gate determines the information that needs to be updated in the neuron state C t-1 at the last moment, and its calculation formula is: it =σ(W i ·[h t -1 ,x t ]+ bi ),
Figure BDA0002121778490000061
Among them, C t represents the state of the neuron at the current moment, W i and W c represent the weight of the input gate respectively, and b i and b c are the bias vectors of the input layer respectively. The output consists of two parts, one part is the whole output, and the other part is the output used to input the next LSTM neuron. The calculation formula of the whole output is: o t = σ(W o [h t-1 ,x t ]+b o ), the calculation formula for inputting the output of the next LSTM neuron is: h t =o t *tanh(C t ), where W o is the weight of the output layer, and b o is the bias vector of the output layer. After obtaining all the output o t , the output result can be obtained by denormalizing o t .

在执行步骤110的测试步骤之前,构建LSTM神经网络框架,对获取的多组训练数据进行归一化处理,得到标准训练数据;将标准训练数据中的每一组训练数据的维度转换为三维训练数据;根据三维训练数据对LSTM神经网络框架进行训练,得到预测模型。归一化是将测试数据按照比例进行缩放,使之落入一个特定的区间,以消除不同种类的数据之间的数量级差异。在具体实施方式中,该特定的区间一般为[0,1],在一种具体的实施方式中,按照以下公式进行归一化:Before performing the test step of step 110, construct the LSTM neural network framework, carry out normalization processing to the multiple sets of training data obtained, obtain standard training data; convert the dimension of each group of training data in the standard training data into three-dimensional training Data; according to the three-dimensional training data, the LSTM neural network framework is trained to obtain the prediction model. Normalization is to scale the test data proportionally so that it falls into a specific interval, so as to eliminate the order of magnitude difference between different types of data. In a specific implementation, the specific interval is generally [0, 1]. In a specific implementation, normalization is performed according to the following formula:

Figure BDA0002121778490000071
Figure BDA0002121778490000071

Xstd=Xsca×(Xmax-Xmin)+Xmin X std =X sca ×(X max -X min )+X min

其中,Xstd是一组标准训练数据,X为一组训练数据,Xmax和Xmax分别为该组训练数据的最大值和最小值。Among them, X std is a set of standard training data, X is a set of training data, X max and X max are the maximum and minimum values of this set of training data, respectively.

考虑到LSTM神经网络对于输入的数据形状要求是三维数组,因此,在得到标准测试数据后,需要对标准测试数据进行数据变换,将其转换为三维训练数据。例如,标准训练数据包含每一数据的数据编号和该数据对应的KPI数据,在进行转换时,加入时间特征将标准测试数据转换为三维训练数据。值得说明的是,多组训练数据是根据预设时间窗口对获取的历史KPI数据划分得到的,该预设时间窗口与步骤110中测试数据对应的预设时间窗口一致,加入的时间特征为预设时间窗口对应的时间。Considering that the LSTM neural network requires the input data shape to be a three-dimensional array, therefore, after obtaining the standard test data, it is necessary to perform data transformation on the standard test data to convert it into three-dimensional training data. For example, the standard training data includes the data number of each data and the KPI data corresponding to the data. During the conversion, time features are added to convert the standard test data into three-dimensional training data. It is worth noting that the multiple sets of training data are obtained by dividing the acquired historical KPI data according to a preset time window, which is consistent with the preset time window corresponding to the test data in step 110, and the added time features are preset Set the time corresponding to the time window.

应理解,对于测试数据的处理过程与训练数据的处理过程一致,在此不再赘述。It should be understood that the processing process of the test data is consistent with the processing process of the training data, and will not be repeated here.

在一种具体的实施方式中,构建的LSTM神经网络的结构如图2所示,该LSTM神经网络包含一个输入层、十六个隐藏层和一个输出层,其中,十六个隐藏层包含八个LSTM层和八个dropout层。输入层用于输入预设时间窗口内的VNF层目标网元的KPI数据、VNF层与目标网元关联的关联网元的KPI数据以及NFVI层与目标网元对应的KPI数据。输入层包含的神经元个数与测试每一组训练数据中包含的KPI数据的属性个数有关,例如,每一组训练数据包含的目标网元的KPI属性为j个,与目标网元关联的关联网元的KPI属性为k个,与目标网元对应的NFVI层KPI属性为l个,则,输入层的神经元个数应设置为j+k+l个。输出层的神经元个数与预设时间段对应的时间有关,如果预设时间段为m分钟,则对应的输出层神经元的个数为m个,每一个神经元用于输出每一分钟对应的KPI数据,如果KPI数据为某一项KPI数据,则每一神经元的输出结果是一个确定的数值,如果KPI数据为某一分钟对应的所有项KPI数据,则每一神经元的输出结果为一个数组。八个LSTM层和八个dropout层是一一对应的,每一个LSTM层均连接一个dropout层,用于以预设概率p舍弃神经元,从而避免过拟合的发生。在一种具体的实施方式中,第一层和第二层LSTM层设置128个神经元,第三层和第四层LSTM层设置64个神经元,第五层和第六层LSTM层设置16个神经元。In a specific embodiment, the structure of the constructed LSTM neural network is shown in Figure 2, the LSTM neural network includes an input layer, sixteen hidden layers and an output layer, wherein the sixteen hidden layers include eight LSTM layers and eight dropout layers. The input layer is used to input the KPI data of the VNF layer target network element within the preset time window, the KPI data of the associated network elements associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element. The number of neurons contained in the input layer is related to the number of attributes of the KPI data contained in each set of training data. For example, each set of training data contains j KPI attributes of the target network element, which are associated with the target network element The KPI attribute of the associated network element is k, and the KPI attribute of the NFVI layer corresponding to the target network element is l, then, the number of neurons in the input layer should be set to j+k+l. The number of neurons in the output layer is related to the time corresponding to the preset time period. If the preset time period is m minutes, the number of neurons in the corresponding output layer is m, and each neuron is used to output every minute Corresponding KPI data, if the KPI data is a certain item of KPI data, the output result of each neuron is a certain value, if the KPI data is all items of KPI data corresponding to a certain minute, then the output of each neuron The result is an array. The eight LSTM layers and the eight dropout layers are in one-to-one correspondence, and each LSTM layer is connected to a dropout layer, which is used to discard neurons with a preset probability p, thereby avoiding the occurrence of overfitting. In a specific embodiment, the first layer and the second layer LSTM layer are provided with 128 neurons, the third layer and the fourth layer LSTM layer are provided with 64 neurons, and the fifth layer and the sixth layer LSTM layer are provided with 16 neurons. neurons.

在进行训练时,根据多组训练数据得到LSTM神经网络框架的权重,根据该权重计算损失函数值;根据优化算法重复更新权重,直至损失函数值最小;根据损失函数值最小的权重,得到预测模型。其中,损失函数可以由本领域技术人员在实施本发明实施例时人为设置,在一种具体的实施方式中,损失函数选择为均方差MSE(Mean Squared Error)函数。优化算法选择梯度下降优化算法,用于改善传统梯度下降的学习速度。During training, the weight of the LSTM neural network framework is obtained according to multiple sets of training data, and the loss function value is calculated according to the weight; the weight is updated repeatedly according to the optimization algorithm until the loss function value is the smallest; according to the weight with the smallest loss function value, the prediction model is obtained . Wherein, the loss function may be manually set by those skilled in the art when implementing the embodiments of the present invention. In a specific implementation manner, the loss function is selected as a Mean Squared Error (MSE) function. The optimization algorithm selects the gradient descent optimization algorithm, which is used to improve the learning speed of traditional gradient descent.

在训练完成得到预测模型之后,根据多组验证数据对预测模型进行验证;当多组验证数据的预测准确率低于预设阈值时,重新训练预测模型。多组验证数据和多组训练数据均来自获取的历史KPI数据,在具体实施过程中,可以将多组训练数据按照比例划分为用于训练预测模型的训练数据和用于测试模型的验证数据。After the training is completed and the prediction model is obtained, the prediction model is verified according to multiple sets of verification data; when the prediction accuracy of multiple sets of verification data is lower than the preset threshold, the prediction model is retrained. Multiple sets of verification data and multiple sets of training data come from the acquired historical KPI data. In the specific implementation process, multiple sets of training data can be divided into training data for training the prediction model and verification data for testing the model in proportion.

步骤130:根据目标网元的预测KPI数据与目标网元的真实KPI数据的误差对目标网元进行异常诊断。Step 130: Perform abnormality diagnosis on the target network element according to the error between the predicted KPI data of the target network element and the real KPI data of the target network element.

在本步骤中,如果目标网元的预测KPI数据与目标网元的真实KPI数据的误差达到了网元异常的条件,即可判定为目标网元异常。在一种具体的实施方式中,目标网元的异常条件为预设阈值,当预测KPI数据与真实KPI数据的误差超过预设阈值时,表示KPI数据发生了劣化迹象,目标网元异常。In this step, if the error between the predicted KPI data of the target network element and the real KPI data of the target network element meets the condition of an abnormal network element, it can be determined that the target network element is abnormal. In a specific implementation manner, the abnormal condition of the target network element is a preset threshold, and when the error between the predicted KPI data and the real KPI data exceeds the preset threshold, it indicates that the KPI data has signs of degradation and the target network element is abnormal.

本发明实施例通过将获取到的测试数据输入到预测模型得到预设时间段内目标网元的预测KPI数据,根据该预设时间段内的预测KPI数据与真实KPI数据的误差对目标网元进行异常诊断,从而可以在网元发生故障之前对网元进行异常诊断,提高了网络运维的效率。In the embodiment of the present invention, the predicted KPI data of the target network element within the preset time period is obtained by inputting the obtained test data into the prediction model, and the target network element is calculated according to the error between the predicted KPI data and the real KPI data within the preset time period. Abnormal diagnosis is performed, so that the abnormal diagnosis of the network element can be performed before the network element fails, and the efficiency of network operation and maintenance is improved.

图3示出了本发明第二实施例的一种网元异常诊断方法的流程图,如图3所示,该方法包括以下步骤:Fig. 3 shows a flow chart of a method for diagnosing a network element abnormality according to a second embodiment of the present invention. As shown in Fig. 3, the method includes the following steps:

步骤210:获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与目标网元关联的关联网元的KPI数据以及NFVI层与目标网元对应的KPI数据,得到测试数据。Step 210: Obtain the KPI data of the VNF layer target network element, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element within the preset time window to obtain test data.

步骤220:将测试数据输入预测模型,得到预设时间段内目标网元的预测KPI数据。Step 220: Input the test data into the prediction model to obtain the prediction KPI data of the target network element within the preset time period.

步骤210至步骤220的具体描述可以参阅第一实施例中的步骤110至步骤120的具体描述,在此不再赘述。For specific descriptions of steps 210 to 220, reference may be made to the specific descriptions of steps 110 to 120 in the first embodiment, and details are not repeated here.

步骤230:计算目标网元的预测KPI数据中每一项KPI数据与目标网元的真实KPI数据中对应项KPI数据之间的误差。Step 230: Calculate the error between each item of KPI data in the predicted KPI data of the target network element and the corresponding item of KPI data in the real KPI data of the target network element.

本发明实施例适用于预测KPI数据为全部项KPI数据的情况。在这种情况下,需要计算每一项预测KPI数据与该项对应的真实KPI数据的误差,以便进一步判断目标网元是否发生异常。The embodiment of the present invention is applicable to the case where the predicted KPI data is the KPI data of all items. In this case, it is necessary to calculate the error between each item of predicted KPI data and the corresponding real KPI data, so as to further determine whether the target network element is abnormal.

步骤240:计算该误差在预设时间段内的均方根误差。Step 240: Calculate the root mean square error of the error within a preset time period.

在本步骤中,预设时间段内每一时间分钟对应的KPI预测值分别为

Figure BDA0002121778490000091
Figure BDA0002121778490000092
预设时间段内每一分钟对应的KPI真实值为:
Figure BDA0002121778490000093
则预测值与真实值之间的误差分别为:
Figure BDA0002121778490000094
Figure BDA0002121778490000095
均方根误差用于表示预设时间段内的平均误差,均方根误差的计算公式为:
Figure BDA0002121778490000096
其中,
Figure BDA0002121778490000097
Figure BDA0002121778490000098
分别表示预测时间为t+a时刻的第i项预测KPI数据及真实KPI数据,m表示预测时间段包含的分钟数。In this step, the KPI prediction values corresponding to each time minute in the preset time period are respectively
Figure BDA0002121778490000091
Figure BDA0002121778490000092
The actual KPI value corresponding to each minute within the preset time period is:
Figure BDA0002121778490000093
Then the error between the predicted value and the actual value is:
Figure BDA0002121778490000094
Figure BDA0002121778490000095
The root mean square error is used to represent the average error within a preset time period, and the formula for calculating the root mean square error is:
Figure BDA0002121778490000096
in,
Figure BDA0002121778490000097
and
Figure BDA0002121778490000098
Represents the i-th forecasted KPI data and real KPI data at time t+a respectively, and m represents the number of minutes included in the forecasted time period.

步骤250:当存在至少一项KPI数据的均方根误差超过其对应的设定阈值时,确定目标网元异常。Step 250: When the root mean square error of at least one item of KPI data exceeds its corresponding set threshold, determine that the target network element is abnormal.

在本步骤中,每一项KPI数据均预设有对应的设定阈值,该设定阈值用于表示KPI数据发生异常的边界,当存在至少一项KPI数据的均方根误差超过其对应的设定阈值时,说明该至少一项KPI数据发生了异常,则该目标网元异常。In this step, each item of KPI data is preset with a corresponding set threshold value, which is used to indicate the boundary of abnormal KPI data, when the root mean square error of at least one KPI data exceeds its corresponding When setting the threshold, it means that at least one KPI data is abnormal, and the target network element is abnormal.

本发明实施例通过目标网元在预设时间段内的均方根误差是否超过其对应的设定阈值确定目标网元是否发生异常,从而可以在目标网元发生故障前预测目标网元的异常,方便网络运维。In the embodiment of the present invention, it is determined whether the target network element is abnormal according to whether the root mean square error of the target network element exceeds its corresponding set threshold within the preset time period, so that the abnormality of the target network element can be predicted before the target network element fails , to facilitate network operation and maintenance.

图4示出了本发明第四实施例的网元异常诊断装置的结构示意图。如图4所示,该装置包括:获取模块410、输入模块420和异常诊断模块430,其中,获取模块410用于获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据,得到测试数据。输入模块420,用于将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,其中,预测模型是根据多组训练数据训练得到的,所述多组训练数据中的每一组均包含VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据。异常诊断模块430,用于根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断。Fig. 4 shows a schematic structural diagram of an apparatus for diagnosing an abnormality of a network element according to a fourth embodiment of the present invention. As shown in FIG. 4 , the device includes: an acquisition module 410, an input module 420, and an abnormality diagnosis module 430, wherein the acquisition module 410 is used to acquire the KPI data of the VNF layer target network element within a preset time window, the VNF layer and all The KPI data of the associated network element associated with the target network element and the KPI data corresponding to the NFVI layer and the target network element are obtained to obtain test data. The input module 420 is configured to input the test data into the forecasting model to obtain the forecasted KPI data of the target network element within a preset time period, wherein the forecasting model is trained according to multiple sets of training data, and the multiple sets of training Each group of data includes KPI data of the target network element at the VNF layer, KPI data of associated network elements associated with the target network element at the VNF layer, and KPI data corresponding to the target network element at the NFVI layer. The abnormality diagnosis module 430 is configured to perform abnormality diagnosis on the target network element according to the error between the predicted KPI data of the target network element and the real KPI data of the target network element.

在一种可选的方式中,异常诊断模块430进一步用于,计算所述目标网元的预测KPI数据中每一项KPI数据与所述目标网元的真实KPI数据中对应项KPI数据之间的误差;计算所述误差在所述预设时间段内的均方根误差;当存在至少一项KPI数据的均方根误差超过其对应的设定阈值时,确定所述目标网元异常。In an optional manner, the abnormality diagnosis module 430 is further configured to calculate the difference between each item of KPI data in the predicted KPI data of the target network element and the corresponding item of KPI data in the real KPI data of the target network element. Calculate the root mean square error of the error within the preset time period; when the root mean square error of at least one KPI data exceeds its corresponding set threshold, determine that the target network element is abnormal.

在一种可选的方式中,计算所述误差在所述预设时间段内的均方根误差,包括:根据公式

Figure BDA0002121778490000101
计算所述误差在所述预设时间段内的均方根误差,其中,
Figure BDA0002121778490000102
Figure BDA0002121778490000103
分别表示预测时间为t+a时刻的第i项预测KPI数据及真实KPI数据,m表示所述预设时间段包含的分钟数。In an optional manner, calculating the root mean square error of the error within the preset time period includes: according to the formula
Figure BDA0002121778490000101
calculating the root mean square error of the error within the preset time period, wherein,
Figure BDA0002121778490000102
and
Figure BDA0002121778490000103
Respectively represent the predicted KPI data and real KPI data of the i-th item whose predicted time is t+a, and m represents the number of minutes included in the preset time period.

在一种可选的方式中,所述装置还包括:构建模块450,用于构建LSTM神经网络框架。归一化模块460,用于对获取的多组训练数据进行归一化,得到标准训练数据。转换模块470,用于将所述标准训练数据中的每一组训练数据的维度转换为三维训练数据。训练模块480,用于根据所述三维训练数据对所述LSTM神经网络框架进行训练,得到所述预测模型。In an optional manner, the device further includes: a construction module 450, configured to construct an LSTM neural network framework. A normalization module 460, configured to normalize the multiple sets of acquired training data to obtain standard training data. A conversion module 470, configured to convert the dimensions of each set of training data in the standard training data into three-dimensional training data. The training module 480 is configured to train the LSTM neural network framework according to the three-dimensional training data to obtain the prediction model.

在一种可选的方式中,构建模块450进一步用于,构建包含一个输出层、十六个隐藏层和一个输出层的LSTM神经网络框架,其中,十六个隐藏层包括八个LSTM层和八个dropout层。In an optional manner, the construction module 450 is further used to construct an LSTM neural network framework comprising an output layer, sixteen hidden layers and an output layer, wherein the sixteen hidden layers include eight LSTM layers and Eight dropout layers.

在一种可选的方式中,训练模块470进一步用于,根据所述多组训练数据得到所述LSTM神经网络框架的权重;根据所述权重计算损失函数值;根据优化算法重复更新所述权重,直至所述损失函数值最小;根据所述损失函数值最小的权重,得到预测模型。In an optional manner, the training module 470 is further used to obtain the weight of the LSTM neural network framework according to the multiple sets of training data; calculate the loss function value according to the weight; and repeatedly update the weight according to the optimization algorithm , until the value of the loss function is minimum; according to the weight with the minimum value of the loss function, a prediction model is obtained.

在一种可选的方式中,所述装置还包括:验证模块490,用于根据多组验证数据对预测模型进行验证。训练模块470进一步用于,当多组验证数据的准确率低于预设阈值时,重新训练预测模型。In an optional manner, the device further includes: a verification module 490, configured to verify the prediction model according to multiple sets of verification data. The training module 470 is further used for retraining the prediction model when the accuracy rate of multiple sets of verification data is lower than a preset threshold.

本发明实施例通过输入模块420将获取到的测试数据输入到预测模型得到预设时间段内目标网元的预测KPI数据,通过异常诊断模块430对目标网元进行异常诊断,从而可以在网元发生故障之前对网元进行异常诊断,提高了网络运维的效率。In the embodiment of the present invention, the acquired test data is input into the prediction model through the input module 420 to obtain the predicted KPI data of the target network element within the preset time period, and the abnormality diagnosis of the target network element is performed through the abnormality diagnosis module 430, so that the network element can be Abnormal diagnosis is performed on network elements before a fault occurs, which improves the efficiency of network operation and maintenance.

本发明实施例提供了一种非易失性计算机存储介质,所述计算机存储介质存储有至少一可执行指令,该计算机可执行指令可执行上述任意方法实施例中的网元异常诊断方法对应的操作。An embodiment of the present invention provides a non-volatile computer storage medium, where at least one executable instruction is stored in the computer storage medium, and the computer executable instruction can execute the method corresponding to the network element abnormality diagnosis method in any of the above method embodiments. operate.

本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的网元异常诊断方法对应的操作。An embodiment of the present invention provides a computer program product, the computer program product includes a computer program stored on a computer storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer Execute the operations corresponding to the network element abnormality diagnosis method in any of the foregoing method embodiments.

图5示出了本发明第五实施例的一种网元异常诊断设备的结构示意图,本发明具体实施例并不对该设备的具体实现做限定。Fig. 5 shows a schematic structural diagram of a network element abnormality diagnosis device according to a fifth embodiment of the present invention, and the specific embodiment of the present invention does not limit the specific implementation of the device.

如图5所示,该设备可以包括:处理器(processor)502、通信接口(CommunicationsInterface)504、存储器(memory)506、以及通信总线508。As shown in FIG. 5 , the device may include: a processor (processor) 502 , a communication interface (Communications Interface) 504 , a memory (memory) 506 , and a communication bus 508 .

其中:处理器502、通信接口504、以及存储器506通过通信总线508完成相互间的通信。通信接口504,用于与其它设备比如客户端或其它服务器等的网元通信。处理器502,用于执行程序510,具体可以执行上述用于执行上述网元异常诊断方法实施例中的相关步骤。Wherein: the processor 502 , the communication interface 504 , and the memory 506 communicate with each other through the communication bus 508 . The communication interface 504 is configured to communicate with network elements of other devices such as clients or other servers. The processor 502 is configured to execute the program 510, and may specifically execute the above-mentioned relevant steps in the embodiment of the above-mentioned network element abnormality diagnosis method.

具体地,程序510可以包括程序代码,该程序代码包括计算机操作指令。Specifically, the program 510 may include program codes including computer operation instructions.

处理器502可能是中央处理器CPU,或者是特定集成电路ASIC(ApplicationSpecific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。网元异常诊断设备包括的一个或多个处理器,可以是同一类型的处理器,如一个或多个CPU;也可以是不同类型的处理器,如一个或多个CPU以及一个或多个ASIC。The processor 502 may be a central processing unit CPU, or an ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present invention. One or more processors included in the network element abnormality diagnosis device can be the same type of processor, such as one or more CPUs; or different types of processors, such as one or more CPUs and one or more ASICs .

存储器506,用于存放程序510。存储器506可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。The memory 506 is used for storing the program 510 . The memory 506 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.

程序510具体可以用于使得处理器502执行以下操作:The program 510 can specifically be used to make the processor 502 perform the following operations:

获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据,得到测试数据;将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,其中,预测模型是根据多组训练数据训练得到的,所述多组训练数据中的每一组均包含VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据;根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断。Obtain the KPI data of the VNF layer target network element within the preset time window, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element, to obtain test data; inputting the test data into a predictive model to obtain predictive KPI data of the target network element within a preset period of time, wherein the predictive model is trained according to multiple sets of training data, each of the multiple sets of training data All include the KPI data of the VNF layer target network element, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element; according to the predicted KPI of the target network element An error between the data and the real KPI data of the target network element is used to diagnose the abnormality of the target network element.

在一种可选的方式中,程序510具体可以用于使得处理器502执行以下操作:计算所述目标网元的预测KPI数据中每一项KPI数据与所述目标网元的真实KPI数据中对应项KPI数据之间的误差;计算所述误差在所述预设时间段内的均方根误差;当存在至少一项KPI数据的均方根误差超过其对应的设定阈值时,确定所述目标网元异常。In an optional manner, the program 510 may be specifically configured to enable the processor 502 to perform the following operations: calculate the difference between each item of KPI data in the predicted KPI data of the target network element and the actual KPI data of the target network element The error between the corresponding KPI data; calculate the root mean square error of the error in the preset time period; when there is at least one KPI data whose root mean square error exceeds its corresponding set threshold, determine the The target NE is abnormal.

在一种可选的方式中,程序510具体可以用于使得处理器502执行以下操作:触发告警装置向运维人员发出目标网元异常告警。In an optional manner, the program 510 may be specifically configured to enable the processor 502 to perform the following operations: triggering the alarm device to issue an alarm of the abnormality of the target network element to the operation and maintenance personnel.

在一种可选的方式中,程序510具体可以用于使得处理器502执行以下操作:对所述测试数据进行归一化处理,得到标准测试数据;将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,包括:将所述标准测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据。In an optional manner, the program 510 may be specifically configured to cause the processor 502 to perform the following operations: perform normalization processing on the test data to obtain standard test data; input the test data into the prediction model to obtain the predicted Setting the predicted KPI data of the target network element within a time period includes: inputting the standard test data into a prediction model to obtain the predicted KPI data of the target network element within a preset time period.

在一种可选的方式中,程序510具体可以用于使得处理器502执行以下操作:构建LSTM神经网络框架;根据所述多组训练数据对所述LSTM神经网络框架进行训练,得到所述预测模型。In an optional manner, the program 510 may be specifically configured to cause the processor 502 to perform the following operations: construct an LSTM neural network framework; train the LSTM neural network framework according to the multiple sets of training data to obtain the prediction Model.

在一种可选的方式中,程序510具体可以用于使得处理器502执行以下操作:构建包含一个输出层、十六个隐藏层和一个输出层的LSTM神经网络框架,其中,十六个隐藏层包括八个LSTM层和八个dropout层。In an optional manner, the program 510 can specifically be used to make the processor 502 perform the following operations: construct an LSTM neural network framework including an output layer, sixteen hidden layers and an output layer, wherein sixteen hidden layers The layers include eight LSTM layers and eight dropout layers.

在一种可选的方式中,程序510具体可以用于使得处理器502执行以下操作:根据所述多组训练数据得到所述LSTM神经网络框架的权重;根据所述权重计算损失函数值;根据优化算法重复更新所述权重,直至所述损失函数值最小;根据所述损失函数值最小的权重,得到预测模型。In an optional manner, the program 510 may be specifically configured to cause the processor 502 to perform the following operations: obtain the weight of the LSTM neural network framework according to the multiple sets of training data; calculate the loss function value according to the weight; The optimization algorithm repeatedly updates the weights until the loss function value is the smallest; according to the weight with the smallest loss function value, a prediction model is obtained.

在此提供的算法或显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明实施例也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。The algorithms or displays presented herein are not inherently related to any particular computer, virtual system, or other device. Various generic systems can also be used with the teachings based on this. The structure required to construct such a system is apparent from the above description. Furthermore, embodiments of the present invention are not directed to any particular programming language. It should be understood that various programming languages can be used to implement the content of the present invention described herein, and the above description of specific languages is for disclosing the best mode of the present invention.

在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.

类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明实施例的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。Similarly, it should be appreciated that in the foregoing description of exemplary embodiments of the invention, in order to streamline the present disclosure and to facilitate an understanding of one or more of the various inventive aspects, various features of the embodiments of the invention are sometimes grouped together into a single implementation examples, figures, or descriptions thereof. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.

本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。Those skilled in the art can understand that the modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment. Modules or units or components in the embodiments may be combined into one module or unit or component, and furthermore may be divided into a plurality of sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings) and any method or method so disclosed may be used in any combination, except that at least some of such features and/or processes or units are mutually exclusive. All processes or units of equipment are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.

此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will understand that although some embodiments herein include some features included in other embodiments but not others, combinations of features from different embodiments are meant to be within the scope of the invention. And form different embodiments. For example, in the following claims, any of the claimed embodiments may be used in any combination.

应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。上述实施例中的步骤,除有特殊说明外,不应理解为对执行顺序的限定。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names. The steps in the above embodiments, unless otherwise specified, should not be construed as limiting the execution order.

Claims (9)

1.一种网元异常诊断方法,其特征在于,所述方法包括:1. A network element abnormality diagnosis method, is characterized in that, described method comprises: 获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据,得到测试数据;Obtain the KPI data of the VNF layer target network element within the preset time window, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element, to obtain test data; 将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,其中,预测模型是根据多组训练数据对LSTM神经网络框架进行训练得到的,所述多组训练数据中的每一组均包含VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据;其中,所述LSTM神经网络框架包含一个输入层、十六个隐藏层和一个输出层的LSTM神经网络框架,其中,十六个隐藏层包括八个LSTM层和八个dropout层,八个所述LSTM层和八个所述dropout层是一一对应的,每一个所述LSTM层均连接一个所述dropout层;Inputting the test data into a predictive model to obtain predictive KPI data of the target network element within a preset time period, wherein the predictive model is obtained by training the LSTM neural network framework according to multiple sets of training data, and the multiple sets of training Each group in the data includes the KPI data of the VNF layer target network element, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element; wherein, the The LSTM neural network framework includes an input layer, sixteen hidden layers and an output layer LSTM neural network framework, wherein the sixteen hidden layers include eight LSTM layers and eight dropout layers, eight of the LSTM layers and The eight dropout layers are in one-to-one correspondence, and each of the LSTM layers is connected to one of the dropout layers; 根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断。An abnormality diagnosis is performed on the target network element according to an error between the predicted KPI data of the target network element and the real KPI data of the target network element. 2.根据权利要求1所述的方法,其特征在于,根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断,包括:2. The method according to claim 1, wherein the abnormal diagnosis is performed on the target network element according to the error between the predicted KPI data of the target network element and the real KPI data of the target network element, comprising: 计算所述目标网元的预测KPI数据中每一项KPI数据与所述目标网元的真实KPI数据中对应项KPI数据之间的误差;calculating an error between each item of KPI data in the predicted KPI data of the target network element and the corresponding KPI data in the real KPI data of the target network element; 计算所述误差在所述预设时间段内的均方根误差;calculating the root mean square error of the error within the preset time period; 当存在至少一项KPI数据的均方根误差超过其对应的设定阈值时,确定所述目标网元异常。When the root mean square error of at least one item of KPI data exceeds its corresponding set threshold, it is determined that the target network element is abnormal. 3.根据权利要求2所述的方法,其特征在于,计算所述误差在所述预设时间段内的均方根误差,包括:3. The method according to claim 2, wherein calculating the root mean square error of the error within the preset time period comprises: 根据公式
Figure FDA0003874881250000011
计算所述误差在所述预设时间段内的均方根误差,其中,
Figure FDA0003874881250000012
Figure FDA0003874881250000013
分别表示预测时间为t+a时刻的第i项预测KPI数据及真实KPI数据,m表示所述预设时间段包含的分钟数。
According to the formula
Figure FDA0003874881250000011
calculating the root mean square error of the error within the preset time period, wherein,
Figure FDA0003874881250000012
and
Figure FDA0003874881250000013
Respectively represent the predicted KPI data and real KPI data of the i-th item whose predicted time is t+a, and m represents the number of minutes included in the preset time period.
4.根据权利要求1所述的方法,其特征在于,在得到测试数据之前,所述方法还包括:4. method according to claim 1, is characterized in that, before obtaining test data, described method also comprises: 构建LSTM神经网络框架;Construct LSTM neural network framework; 对获取的多组训练数据进行归一化处理,得到标准训练数据;Perform normalization processing on multiple sets of acquired training data to obtain standard training data; 将所述标准训练数据中的每一组训练数据的维度转换为三维训练数据;converting the dimensions of each set of training data in the standard training data into three-dimensional training data; 根据所述三维训练数据对所述LSTM神经网络框架进行训练,得到所述预测模型。The LSTM neural network framework is trained according to the three-dimensional training data to obtain the prediction model. 5.根据权利要求4所述的方法,其特征在于,根据所述多组训练数据对所述LSTM神经网络框架进行训练,得到所述预测模型,包括:5. method according to claim 4, is characterized in that, according to described multiple groups of training data, described LSTM neural network frame is trained, obtains described predictive model, comprising: 根据所述多组训练数据得到所述LSTM神经网络框架的权重;Obtain the weight of the LSTM neural network framework according to the multiple sets of training data; 根据所述权重计算损失函数值;calculating a loss function value based on the weights; 根据优化算法重复更新所述权重,直至所述损失函数值最小;Repeatedly updating the weights according to an optimization algorithm until the loss function value is minimum; 根据所述损失函数值最小的权重,得到预测模型。A prediction model is obtained according to the weight with the smallest loss function value. 6.根据权利要求5所述的方法,其特征在于,在得到预测模型后,所述方法还包括:6. method according to claim 5, is characterized in that, after obtaining prediction model, described method also comprises: 根据多组验证数据对所述预测模型进行验证;Verifying the predictive model according to multiple sets of verification data; 当所述多组验证数据的预测准确率低于预设阈值时,重新训练所述预测模型。When the prediction accuracy rate of the plurality of sets of verification data is lower than a preset threshold, the prediction model is retrained. 7.一种网元异常诊断装置,其特征在于,所述装置包括:7. A network element abnormality diagnosis device, characterized in that the device comprises: 获取模块,用于获取预设时间窗口内的VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据,得到测试数据;An acquisition module, configured to acquire the KPI data of the VNF layer target network element within the preset time window, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI data corresponding to the NFVI layer and the target network element , get test data; 输入模块,用于将所述测试数据输入预测模型,得到预设时间段内所述目标网元的预测KPI数据,其中,预测模型是根据多组训练数据对LSTM神经网络框架进行训练得到的,所述多组训练数据中的每一组均包含VNF层目标网元的KPI数据、VNF层与所述目标网元关联的关联网元的KPI数据以及NFVI层与所述目标网元对应的KPI数据;其中,所述LSTM神经网络框架包含一个输入层、十六个隐藏层和一个输出层的LSTM神经网络框架,其中,十六个隐藏层包括八个LSTM层和八个dropout层,八个所述LSTM层和八个所述dropout层是一一对应的,每一个所述LSTM层均连接一个所述dropout层;The input module is used to input the test data into the prediction model to obtain the prediction KPI data of the target network element within the preset time period, wherein the prediction model is obtained by training the LSTM neural network framework according to multiple sets of training data, Each of the multiple sets of training data includes the KPI data of the VNF layer target network element, the KPI data of the associated network element associated with the VNF layer and the target network element, and the KPI corresponding to the NFVI layer and the target network element Data; Wherein, described LSTM neural network framework comprises the LSTM neural network framework of an input layer, sixteen hidden layers and an output layer, wherein, sixteen hidden layers comprise eight LSTM layers and eight dropout layers, eight The LSTM layer is in one-to-one correspondence with the eight dropout layers, and each of the LSTM layers is connected to one of the dropout layers; 异常诊断模块,用于根据所述目标网元的预测KPI数据与所述目标网元的真实KPI数据的误差对所述目标网元进行异常诊断。An abnormality diagnosis module, configured to perform abnormality diagnosis on the target network element according to the error between the predicted KPI data of the target network element and the real KPI data of the target network element. 8.一种网元异常诊断设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;8. A network element abnormality diagnosis device, comprising: a processor, a memory, a communication interface, and a communication bus, wherein the processor, the memory, and the communication interface complete mutual communication through the communication bus; 所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如权利要求1-6任一项所述的一种网元异常诊断方法对应的操作。The memory is used to store at least one executable instruction, and the executable instruction causes the processor to perform an operation corresponding to the network element abnormality diagnosis method according to any one of claims 1-6. 9.一种计算机存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如权利要求1-6任一项所述的一种网元异常诊断方法对应的操作。9. A computer storage medium, wherein at least one executable instruction is stored in the storage medium, and the executable instruction causes a processor to execute a network element abnormality diagnosis method corresponding to any one of claims 1-6. operation.
CN201910609173.6A 2019-07-08 2019-07-08 Network element abnormity diagnosis method, device, equipment and computer storage medium Active CN112203311B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910609173.6A CN112203311B (en) 2019-07-08 2019-07-08 Network element abnormity diagnosis method, device, equipment and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910609173.6A CN112203311B (en) 2019-07-08 2019-07-08 Network element abnormity diagnosis method, device, equipment and computer storage medium

Publications (2)

Publication Number Publication Date
CN112203311A CN112203311A (en) 2021-01-08
CN112203311B true CN112203311B (en) 2022-12-27

Family

ID=74004543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910609173.6A Active CN112203311B (en) 2019-07-08 2019-07-08 Network element abnormity diagnosis method, device, equipment and computer storage medium

Country Status (1)

Country Link
CN (1) CN112203311B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608830A (en) * 2021-07-13 2021-11-05 全球能源互联网研究院有限公司 VNF migration method and device based on fault prediction
CN113988452A (en) * 2021-11-08 2022-01-28 成都四方伟业软件股份有限公司 Network element alarm prediction method and device based on stacked LSTM
CN116232851A (en) * 2022-12-28 2023-06-06 中国电信股份有限公司 A network abnormality early warning method, device, electronic equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783855A (en) * 2016-08-30 2018-03-09 中兴通讯股份有限公司 The fault self-recovery control device and method of Virtual NE
CN109492193A (en) * 2018-12-28 2019-03-19 同济大学 Abnormal network data based on depth machine learning model generate and prediction technique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178990A (en) * 2011-12-20 2013-06-26 中国移动通信集团青海有限公司 A network equipment performance monitoring method and network management system
EP2887578A1 (en) * 2013-12-19 2015-06-24 BAE Systems PLC Network fault detection and location
CN103945442A (en) * 2014-05-07 2014-07-23 东南大学 System anomaly detection method based on linear prediction principle in mobile communication system
CN109150564B (en) * 2017-06-19 2021-09-21 中国移动通信集团广东有限公司 Prediction method and device for cell fault alarm
CN107819631B (en) * 2017-11-23 2021-03-02 东软集团股份有限公司 Equipment anomaly detection method, device and equipment
CN108427986A (en) * 2018-02-26 2018-08-21 中车青岛四方机车车辆股份有限公司 A kind of production line electrical fault prediction technique and device
CN108737193A (en) * 2018-06-05 2018-11-02 亚信科技(中国)有限公司 A kind of failure prediction method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783855A (en) * 2016-08-30 2018-03-09 中兴通讯股份有限公司 The fault self-recovery control device and method of Virtual NE
CN109492193A (en) * 2018-12-28 2019-03-19 同济大学 Abnormal network data based on depth machine learning model generate and prediction technique

Also Published As

Publication number Publication date
CN112203311A (en) 2021-01-08

Similar Documents

Publication Publication Date Title
CN111124840B (en) Method and device for predicting alarm in business operation and maintenance and electronic equipment
US11650968B2 (en) Systems and methods for predictive early stopping in neural network training
CN113255882B (en) A Bearing Fault Diagnosis Method Based on Improved Convolutional Capsule Network
JP6182242B1 (en) Machine learning method, computer and program related to data labeling model
JP2023501030A (en) Engine surge failure prediction system and method based on fusion neural network model
CN107909206B (en) PM2.5 prediction method based on deep structure recurrent neural network
CN112203311B (en) Network element abnormity diagnosis method, device, equipment and computer storage medium
CN102445902A (en) System and method for conditional multi-output regression for machine condition monitoring
CN110686633A (en) Landslide displacement prediction method and device and electronic equipment
CN113824575B (en) Method and device for identifying fault node, computing equipment and computer storage medium
CN108879732A (en) Transient stability evaluation in power system method and device
CN116403019A (en) Remote sensing image quantum recognition method, device, storage medium and electronic device
CN111898247A (en) Landslide displacement prediction method, equipment and storage medium
CN114584406A (en) Industrial big data privacy protection system and method for federated learning
CN118310746A (en) An unsupervised generator bearing fault detection method based on variational autoencoder
CN113825165A (en) 5G slice network congestion early warning method and device based on time chart network
WO2023217127A1 (en) Causation determination method and related device
US20180067831A1 (en) Fine-Grained Causal Anomaly Inference for Complex System Fault Diagnosis
CN113282470B (en) Performance prediction method and device
CN114595764A (en) Method and system for acquiring influence degree of urban factors on inland inundation disaster loss
CN113825148B (en) Method, device and computing equipment for determining network node alarm level
CN115438575B (en) Analysis method for high-precision airfoil flow field prediction
CN116248472A (en) Cloud edge end system fault prediction method based on neural Hox process
CN116826734A (en) A method and device for predicting photovoltaic power generation based on multiple input models
CN116980307A (en) Operation and maintenance fault analysis method and device and computer equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant