CN112201959A - Large-angle stable miniaturized frequency selection surface - Google Patents

Large-angle stable miniaturized frequency selection surface Download PDF

Info

Publication number
CN112201959A
CN112201959A CN202011046429.6A CN202011046429A CN112201959A CN 112201959 A CN112201959 A CN 112201959A CN 202011046429 A CN202011046429 A CN 202011046429A CN 112201959 A CN112201959 A CN 112201959A
Authority
CN
China
Prior art keywords
metal
dielectric plate
metal strip
strip line
frequency selection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011046429.6A
Other languages
Chinese (zh)
Other versions
CN112201959B (en
Inventor
崔满堂
温亚庆
卢阳沂
汪隽潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
724th Research Institute of CSIC
Original Assignee
724th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 724th Research Institute of CSIC filed Critical 724th Research Institute of CSIC
Priority to CN202011046429.6A priority Critical patent/CN112201959B/en
Publication of CN112201959A publication Critical patent/CN112201959A/en
Application granted granted Critical
Publication of CN112201959B publication Critical patent/CN112201959B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

The invention relates to a miniaturized frequency selective surface, and belongs to the field of radar antennas. The frequency selection surface is formed by a plurality of same SxT units which are arranged periodically, each unit is composed of a dielectric plate in a regular hexagonal prism shape, two layers of metal printed on the upper surface and the lower surface of the dielectric plate, and a metal through hole group vertically penetrating through the dielectric plate. The two layers of metal on the upper surface and the lower surface of the dielectric plate are respectively composed of three metal strip lines which are rotationally symmetrical, each metal strip line is bent into an arrow shape, and the upper metal strip line and the lower metal strip line are connected through metal through holes which vertically penetrate through the dielectric plate to form a 2.5D frequency selection unit structure. The frequency selection surface designed by the invention has good miniaturization characteristic, can still keep the band elimination performance in a stable frequency band when electromagnetic waves with different polarizations are incident at a large angle, and is suitable for the fields of wireless communication and radar.

Description

Large-angle stable miniaturized frequency selection surface
Technical Field
The invention belongs to the field of radar antennas.
Background
Frequency Selective Surface (FSS) generally refers to a planar structure composed of periodic arrays of elementary cells. Theoretically, the FSS is a two-dimensional structure with an infinite period extension, however, in practical application, there must be a limit to the size of the structure, and in order to arrange enough units on a plane with the same area, the size of each unit must be reduced, so that the characteristics of the whole plane are closer to the characteristics of the infinite period, that is, the energy loss caused by edge diffraction, grating lobes, mode interaction zero points and the like is reduced, and the filtering performance of the frequency selective surface is improved. In addition, the miniaturization of the FSS can reduce the central frequency, improve the polarization and angle stability of electromagnetic wave propagation, and expand the application range of the FSS. Therefore, the method has practical significance for the miniaturization of the FSS unit area.
Currently, there are several methods for realizing a miniaturized frequency selection surface: (1) and if lumped elements are added, such as lumped element capacitors are added between the frequency selection surface patch units, compared with capacitors formed between the patches, the lumped capacitance value is far larger than the capacitance formed between the patches, and the generated resonant frequency is smaller so as to realize the miniaturization of the frequency selection surface. The method can realize the condition of less than lambda0Unit size of/100, lambda0Refers to the free space wavelength corresponding to the resonance frequency point. However, the accuracy error of the lumped element hardly guarantees stable resonance performance of the FSS. (2) The curling technology is to form a frequency selection surface unit by using a bent and spiral metal curve, to prolong the current flowing path on the unit, and to increase the generated resonance frequency by the capacitance inductance in the equivalent circuit of the unit, thereby achieving the purpose of miniaturization. However, considering the limited planar space and the minimum width limitation of the microstrip line, it is impossible to design an infinitely long curved structure. (3) The 2.5D woven structure is essentially characterized in that the equivalent inductance of the unit and the gap capacitance between adjacent units are increased by connecting the upper layer metal and the lower layer metal of the frequency selection surface through the metallized through holes, the purpose of miniaturization of the unit size of the frequency selection surface is achieved, the sensitivity to large-angle oblique incident waves is reduced, and the angle stability of the frequency selection surface is improved.
In 2017, Zhaozhen Zhenzhen et al published a paper entitled "storage and Frequency Selective Surface with Ultra-Large Angle of incorporation" on page 556, stage 16, 553-year of the periodical of IEEE Antenna and Wireless amplification Letters, disclosing a high-Angle stable Frequency Selective Surface, improving miniaturization effect by printing bent metal strip lines on the upper Surface of a dielectric plate, and showing that the unit size is only 0.116 resonance wavelength and the resonance Frequency point is still stable when different polarized waves are incident at 80 °. However, since the metal structure on the unit is only printed on the single-layer surface of the dielectric plate, the total length of the bent structure is limited by the planar space, which is not beneficial to reducing the electrical length of the unit structure. In addition, under the oblique incidence irradiation of the TE polarized electromagnetic wave of 80 °, the resonance frequency point is shifted by 0.08GHz, and the angular stability needs to be further improved.
Disclosure of Invention
Aiming at the problems of insufficient miniaturization degree and poor stability of large angle caused by the limited single-layer planar design of the frequency selection surface, the invention designs a more compact planar symmetrical structure, breaks through the limitation of planar space, and improves the performances of miniaturization and stability of large angle of the frequency selection surface.
The invention is realized by the following technical scheme:
a large-angle stable miniaturized frequency selective surface is composed of a plurality of same unit structures which are arranged in an equal period, wherein each unit comprises a dielectric plate 1 in a regular hexagonal prism shape, an upper surface metal layer 2 and a lower surface metal layer 3 which are printed on the dielectric plate 1, and a metal via group 4 which vertically penetrates through the dielectric plate 1. The upper surface metal layer 2 is formed by three first metal strip lines 2-1 in the same shape in a rotational symmetry mode by using the central axis of the dielectric plate 1, and the rotation angle is 120 degrees; the lower surface metal layer 3 is formed by three second metal strip lines 3-1 in the same shape in a rotational symmetry mode with the central axis of the dielectric plate 1, and the rotation angle is 120 degrees; the metal via group 4 is formed by three identical metal vias 4-1 which are rotationally symmetrical about the central axis of the dielectric plate 1, and the rotation angle is 120 degrees.
The first metal strip line 2-1 and the second metal strip line 3-1 are both bent by a microstrip line for multiple times, and the coverage area is in an arrow shape, and the difference is that the terminal of the first metal strip line 2-1 is superposed with the rotation center, and the terminal of the second metal strip line 3-1 has a certain distance with the rotation center. The first metal strip line 2-1 and the second metal strip line 3-1 are identical in geometric form and size and are symmetrical up and down, except for the difference in terminal positions. The metal via hole 4-1 penetrates the starting ends of the first metal strip line 2-1 and the second metal strip line 3-1 in the vertical direction to form a 2.5D space structure.
Compared with the prior art, the invention has the following beneficial effects:
(1) the metal through holes are adopted to connect the metal strip lines on the upper surface and the lower surface of the dielectric plate to form a 2.5D structural unit, so that the limitation of plane space is broken through, the current path is prolonged, the equivalent electric size is reduced, the sensitivity to large-angle oblique incidence electromagnetic waves is favorably reduced, and the large-angle stability of the frequency selection surface is improved.
(2) The unit structure only needs three metal via holes, and fewer via hole structures can improve the stability of the dielectric plate and reduce the manufacturing cost.
Drawings
FIG. 1 is a schematic view of the overall structure of the present invention;
FIG. 2 is a schematic diagram of the structure of the periodic unit of the present invention;
FIG. 3 is a schematic view showing the structure of the upper surface metal layer 2 of the printed board in the periodic unit of the present invention;
FIG. 4 is a schematic view showing the structure of a metal layer 3 on the lower surface of a printed board in the periodic unit of the present invention;
FIG. 5 is a front view of a cycle unit of the present invention;
FIG. 6 is a transmission curve diagram of the TE-polarized electromagnetic wave of the present invention at different oblique incidence angles;
fig. 7 is a transmission curve diagram of the invention at different angles of oblique incidence of TM polarized electromagnetic waves.
Description of the drawings: 1, printing a board; 2, printing a metal layer on the upper surface of the board; 2-1, a first metal strip line; 3, printing a metal layer on the lower surface of the board; 3-1, a second metal strip line; 4, a metal through hole group penetrating through the dielectric plate 1; 4-1, forming a metal via of 4.
Detailed Description
The invention is described in further detail below with reference to the following figures and embodiments:
example 1
Referring to fig. 1, a large angle stable miniaturized frequency selective surface includes a periodic arrangement of S × T resonant cells, where S ═ 40 and T ═ 40 are combined into a honeycomb-like structure.
Referring to fig. 2, the frequency selective surface unit structure is composed of a dielectric plate 1 having a cross-sectional shape of a regular hexagon, an upper surface metal layer 2 printed on an upper surface of the dielectric plate 1, a lower surface metal layer 3 printed on a lower surface of the dielectric plate 1, and a metal via group 4 vertically penetrating the dielectric plate 1.
The side length of the dielectric plate 1 is 3.2mm, the thickness is 0.5mm, the relative dielectric constant is 2.2, and the loss tangent is 0.0009.
Referring to fig. 3 and 4, the upper surface metal layer 2 and the lower surface metal layer 3 are respectively composed of three first metal strip lines 2-1 and second metal strip lines 3-1 which are rotationally symmetric, and the rotation angle is 120 °. Each metal strip line is arranged by a continuous metal microstrip line in a zigzag manner, and the whole coverage area is in an arrow shape. The distance between the edge of the upper surface metal layer 2 and the edge of the lower surface metal layer 3 and the edge of the dielectric plate 1 is 0.1 mm. The upper surface metal layer 2 and the lower surface metal layer 3 have the advantages of compact structure, rotational symmetry and the like, and are beneficial to realizing the miniaturization of the structure and improving the stability of angle and polarization.
The first metal strip line 2-1 and the second metal strip line 3-1 are different in that the end positions of the strip lines are different, the end position of the first metal strip line 2-1 coincides with the center position of the regular hexagon, and the end position of the second metal strip line 3-1 is 0.45mm away from the center position of the regular hexagon. Besides, the geometric forms and the dimensions of the first metal strip line 2-1 and the second metal strip line 3-1 are completely the same, and are symmetrically distributed on the upper surface and the lower surface of the dielectric plate 1. The width of the first metal strip line 2-1 and the width of the second metal strip line 3-1 are both 0.2mm, and the width of the gap between the adjacent parallel strip lines is equal to that of the strip lines on the bending path of the strip lines.
Referring to fig. 5, the metal via group 4 is composed of three rotationally symmetric vertical metal vias 4-1, the rotation angle is 120 °, the diameter of each metal via is the same as the width of the metal strip lines on the upper and lower surfaces, and the metal vias 4-1 penetrate the starting ends of the first metal strip line 2-1 and the second metal strip line 3-1 in the vertical direction to form a 2.5D space structure. The unit structure breaks through the limitation of plane layout, fully utilizes the limited three-dimensional space, prolongs the current path on the unit structure, reduces the equivalent electric size, is favorable for reducing the sensitivity to large-angle oblique incident waves and improves the large-angle stability of the frequency selection surface.
The technical effects of the invention are further explained by combining simulation experiments as follows:
1. simulation conditions and content
The transmission coefficient S21 of the embodiment 1 under different incident angles was simulated by commercial simulation software, and the simulation results are shown in fig. 6 to 7.
2. Analysis of simulation results
Referring to fig. 6 and 7, transmission curves S21 of the frequency selective surface in embodiment 1 when electromagnetic waves of both TE and TM polarizations are incident at different angles. It can be seen from the figure that the frequency selective surface shows band elimination characteristics, when an electromagnetic wave is incident normally (theta is 0 DEG), the resonance frequency points of TE and TM polarized waves are both 2.1GHz, and the electrical length corresponding to the maximum structural size of the unit is only 0.045 lambda0Wherein λ is0The free space wavelength corresponding to the resonance frequency point is indicated, and the unit structure has the characteristic of miniaturization. When the incident angle is 85 degrees, the resonance frequency point of the TE polarized wave is not more than 0.01GHz, and the resonance frequency point of the TM polarized wave is not more than 0.02GHz, namely, the maximum percentage of the deviation is not more than 1%. Therefore, the 2.5D miniaturized frequency selective surface has a stable band-stop characteristic with a large angle.

Claims (3)

1. A miniaturized frequency selective surface stabilized by large angles, characterized by: the surface is composed of a plurality of same SxT unit structures which are arranged in an equal period; the unit comprises a dielectric plate (1) in a regular hexagonal prism shape, an upper surface metal layer (2) and a lower surface metal layer (3) printed on the dielectric plate (1), and a metal through hole group (4) vertically penetrating through the dielectric plate (1); the upper surface metal layer (2) is formed by three first metal strip lines (2-1) with the same shape in a rotational symmetry mode by using the central axis of the dielectric plate (1), and the rotation angle is 120 degrees; the lower surface metal layer (3) is formed by three second metal strip lines (3-1) with the same shape in a rotational symmetry mode by using the central axis of the dielectric plate (1), and the rotation angle is 120 degrees; the metal through hole group (4) is formed by three same metal through holes (4-1) in a rotational symmetry mode by using the central axis of the dielectric plate (1), and the rotation angle is 120 degrees.
2. A large angle stabilized miniaturized frequency selective surface as claimed in claim 1, wherein: the first metal strip line (2-1) and the second metal strip line (3-1) are both bent by one microstrip line for multiple times, the coverage area is in an arrow shape, the geometric forms and the sizes are completely the same, and the coverage areas are symmetrical up and down; wherein the terminal of the first metal strip line (2-1) coincides with the center of rotation and the terminal of the second metal strip line (3-1) is at a distance from the center of rotation.
3. A large angle stabilized miniaturized frequency selective surface as claimed in claim 1, wherein: the starting ends of the first metal strip line (2-1) and the second metal strip line (3-1) are penetrated through by the metal through hole (4-1) in the vertical direction to form a 2.5D frequency selection structure.
CN202011046429.6A 2020-09-29 2020-09-29 Large-angle stable miniaturized frequency selection surface Active CN112201959B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011046429.6A CN112201959B (en) 2020-09-29 2020-09-29 Large-angle stable miniaturized frequency selection surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011046429.6A CN112201959B (en) 2020-09-29 2020-09-29 Large-angle stable miniaturized frequency selection surface

Publications (2)

Publication Number Publication Date
CN112201959A true CN112201959A (en) 2021-01-08
CN112201959B CN112201959B (en) 2022-05-13

Family

ID=74007027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011046429.6A Active CN112201959B (en) 2020-09-29 2020-09-29 Large-angle stable miniaturized frequency selection surface

Country Status (1)

Country Link
CN (1) CN112201959B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530675A (en) * 2022-01-24 2022-05-24 华为技术有限公司 Filtering device, base station antenna and base station equipment
CN115084863A (en) * 2022-08-16 2022-09-20 国网山西省电力公司电力科学研究院 Frequency selective surface structure with dual-passband characteristic

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218978B1 (en) * 1994-06-22 2001-04-17 British Aerospace Public Limited Co. Frequency selective surface
CN106887710A (en) * 2017-03-07 2017-06-23 西安电子科技大学 Improve the frequency-selective surfaces structure of angle stability
CN107394410A (en) * 2017-07-18 2017-11-24 南京航空航天大学 The dimension of one kind 2.5 closes ring-like frequency-selective surfaces structure and its design method
CN207052765U (en) * 2017-07-18 2018-02-27 南京航空航天大学 The dimension of one kind 2.5 closes ring-like frequency-selective surfaces structure
CN108281796A (en) * 2017-12-08 2018-07-13 西安电子科技大学 Two-band based on 2.5D braiding structures minimizes frequency-selective surfaces
CN108281797A (en) * 2017-12-08 2018-07-13 西安电子科技大学 High angle stability frequency-selective surfaces based on 2.5D braiding structures
CN108832303A (en) * 2018-06-07 2018-11-16 西安电子科技大学 A kind of frequency-selective surfaces that high angle is stable
CN109193167A (en) * 2018-09-06 2019-01-11 西安电子科技大学 The frequency-selective surfaces of low frequency ratio miniaturization
CN109216931A (en) * 2018-08-31 2019-01-15 西安电子科技大学 Miniaturization low section frequency-selective surfaces based on nested curved structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6218978B1 (en) * 1994-06-22 2001-04-17 British Aerospace Public Limited Co. Frequency selective surface
CN106887710A (en) * 2017-03-07 2017-06-23 西安电子科技大学 Improve the frequency-selective surfaces structure of angle stability
CN107394410A (en) * 2017-07-18 2017-11-24 南京航空航天大学 The dimension of one kind 2.5 closes ring-like frequency-selective surfaces structure and its design method
CN207052765U (en) * 2017-07-18 2018-02-27 南京航空航天大学 The dimension of one kind 2.5 closes ring-like frequency-selective surfaces structure
CN108281796A (en) * 2017-12-08 2018-07-13 西安电子科技大学 Two-band based on 2.5D braiding structures minimizes frequency-selective surfaces
CN108281797A (en) * 2017-12-08 2018-07-13 西安电子科技大学 High angle stability frequency-selective surfaces based on 2.5D braiding structures
CN108832303A (en) * 2018-06-07 2018-11-16 西安电子科技大学 A kind of frequency-selective surfaces that high angle is stable
CN109216931A (en) * 2018-08-31 2019-01-15 西安电子科技大学 Miniaturization low section frequency-selective surfaces based on nested curved structure
CN109193167A (en) * 2018-09-06 2019-01-11 西安电子科技大学 The frequency-selective surfaces of low frequency ratio miniaturization

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEIYANG YIN等: ""Ultra-Miniaturized Low-Profile Angularly-Stable Frequency Selective Surface Design"", 《IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY ( VOLUME: 61, ISSUE: 4, AUG. 2019)》 *
宫元勋,等: "混杂组元低频吸波阵列层板复合材料的吸波性能", 《宇航材料工艺》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530675A (en) * 2022-01-24 2022-05-24 华为技术有限公司 Filtering device, base station antenna and base station equipment
CN114530675B (en) * 2022-01-24 2023-03-10 华为技术有限公司 Filtering device, base station antenna and base station equipment
WO2023138434A1 (en) * 2022-01-24 2023-07-27 华为技术有限公司 Filtering device, base station antenna and base station apparatus
CN115084863A (en) * 2022-08-16 2022-09-20 国网山西省电力公司电力科学研究院 Frequency selective surface structure with dual-passband characteristic

Also Published As

Publication number Publication date
CN112201959B (en) 2022-05-13

Similar Documents

Publication Publication Date Title
CN108336491B (en) Double-frequency dual-polarized laminated patch antenna based on microstrip balun feed and design method thereof
Zhong et al. Dual-linear polarized phased array with 9: 1 bandwidth and 60° scanning off broadside
CN110323575B (en) Dual-polarized strong-coupling ultra-wideband phased array antenna loaded by electromagnetic metamaterial
US7071889B2 (en) Low frequency enhanced frequency selective surface technology and applications
US9136609B2 (en) Resonator antenna
US7446712B2 (en) Composite right/left-handed transmission line based compact resonant antenna for RF module integration
US10840593B1 (en) Antenna devices to suppress ground plane interference
CN107946762B (en) X-waveband miniaturized high-wave-permeability FSS (frequency selective surface system) based on C-type interlayer radar cover wall structure
CN112201959B (en) Large-angle stable miniaturized frequency selection surface
CN114744409B (en) Ten-fold frequency-range dual-polarized strong-coupling phased array antenna loaded by resistive material
CN105390819A (en) Ultra-wideband electromagnetic super-surface circular polarizer
Kushwaha et al. Design and analysis of new compact UWB frequency selective surface and its equivalent circuit
CN104993226A (en) Artificial magnetic conductor unit, artificial magnetic conductor structure and planar antenna
US9391374B2 (en) Reciprocal circular polarization selective surfaces and elements thereof
CN114361806B (en) Miniaturized integrated frequency selective surface that absorbs thoroughly
US10224637B2 (en) Reciprocal circular polarization selective surfaces and elements thereof
CN108134203B (en) Large-unit-space wide-angle scanning phased array antenna based on electromagnetic band gap structure
WO2004013933A1 (en) Low frequency enhanced frequency selective surface technology and applications
CN113314850B (en) 2.5D multilayer frequency selective surface
CN112186362B (en) Dual-frequency miniaturized frequency selective surface with complementary structure
CN111769345B (en) Terahertz metamaterial filter
CN114156652A (en) Low-sidelobe broadband low-cross polarization plane dipole antenna array
Payne et al. Highly-selective miniaturized first-order low-profile dual-band frequency selective surface
CN113571865A (en) Ficus antenna finite array
CN113067133A (en) Low-profile low-sidelobe large-angle frequency-scanning array antenna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant