CN112199811B - Method and device for determining reactor core parameters of nuclear thermal propulsion reactor - Google Patents
Method and device for determining reactor core parameters of nuclear thermal propulsion reactor Download PDFInfo
- Publication number
- CN112199811B CN112199811B CN202010796899.8A CN202010796899A CN112199811B CN 112199811 B CN112199811 B CN 112199811B CN 202010796899 A CN202010796899 A CN 202010796899A CN 112199811 B CN112199811 B CN 112199811B
- Authority
- CN
- China
- Prior art keywords
- parameters
- target
- thermal
- heat transfer
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000013461 design Methods 0.000 claims abstract description 154
- 238000012546 transfer Methods 0.000 claims abstract description 106
- 238000004364 calculation method Methods 0.000 claims abstract description 61
- 230000008878 coupling Effects 0.000 claims abstract description 47
- 238000010168 coupling process Methods 0.000 claims abstract description 47
- 238000005859 coupling reaction Methods 0.000 claims abstract description 47
- 239000007787 solid Substances 0.000 claims abstract description 45
- 238000004458 analytical method Methods 0.000 claims abstract description 33
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 16
- 239000002826 coolant Substances 0.000 claims description 110
- 239000000446 fuel Substances 0.000 claims description 66
- 238000004590 computer program Methods 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 230000000712 assembly Effects 0.000 description 14
- 238000000429 assembly Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 238000004891 communication Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910026551 ZrC Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910000568 zirconium hydride Inorganic materials 0.000 description 2
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- ZPWZFTQHWMONDP-UHFFFAOYSA-N [W+4].[O-2].[O-2].[U+6] Chemical compound [W+4].[O-2].[O-2].[U+6] ZPWZFTQHWMONDP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 1
- QSGNKXDSTRDWKA-UHFFFAOYSA-N zirconium dihydride Chemical compound [ZrH2] QSGNKXDSTRDWKA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C15/00—Attitude, flight direction, or altitude control by jet reaction
- B64C15/02—Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
本发明提供了一种核热推进反应堆的堆芯参数确定方法及装置,涉及核热推进技术领域,该方法包括:获取核热推进反应堆的流固耦合传热模型;获取满足飞行器性能约束的目标动力参数,并基于目标动力参数对流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数;其中,每组设计参数中包括几何参数及热工参数;基于多组设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数;将目标动力参数、目标热工参数及目标几何参数作为核热反应堆的堆芯设计参数。本发明能够提升对低富集度浓缩铀核热推进反应堆中堆芯参数设计的可靠性。
The invention provides a method and device for determining core parameters of a nuclear thermal propulsion reactor, relating to the technical field of nuclear thermal propulsion. The method includes: obtaining a fluid-solid coupling heat transfer model of a nuclear thermal propulsion reactor; obtaining a target that satisfies the performance constraints of an aircraft Dynamic parameters, and based on the target dynamic parameters, conduct heat transfer calculations on the fluid-solid coupling heat transfer model, and obtain multiple sets of design parameters that meet thermal constraints; where, each set of design parameters includes geometric parameters and thermal parameters; based on multiple sets of design parameters The neutronics modeling and physical analysis are carried out to obtain the target geometric parameters and target thermal parameters satisfying the neutron physical constraints; the target dynamic parameters, target thermal parameters and target geometric parameters are used as the core design parameters of the nuclear thermal reactor. The invention can improve the reliability of core parameter design in low-enrichment uranium nuclear thermal propulsion reactor.
Description
技术领域technical field
本发明涉及核热推进技术领域,尤其是涉及一种核热推进反应堆的堆芯参数确定方法及装置。The invention relates to the technical field of nuclear thermal propulsion, in particular to a method and device for determining core parameters of a nuclear thermal propulsion reactor.
背景技术Background technique
热核推进是指利用核裂变能加热工质,再将加热后的高温高压工质定向喷出而获得推力。核热推进反应堆从上世纪五六十年代开始通常采用高富集度(>90%)的浓缩铀作为核燃料,为了减少核扩散风险,降低研发成本,近年来研究人员正在设计低富集度浓缩铀(<20%)核热推进反应堆。然而,针对核热推进反应堆低的富集度浓缩铀堆芯参数设计,目前研究人员仅在借鉴高富集度浓缩铀堆芯设计参数的基础上做出适当修改,因此,现有的低富集度浓缩铀核热推进反应堆中的堆芯参数设计方式,还存在可靠性较低的问题。Thermonuclear propulsion refers to the use of nuclear fission energy to heat the working medium, and then directional ejection of the heated high-temperature and high-pressure working medium to obtain thrust. Nuclear thermal propulsion reactors usually use high-enrichment (>90%) enriched uranium as nuclear fuel since the 1950s and 1960s. In order to reduce the risk of nuclear proliferation and reduce research and development costs, researchers are designing low-enrichment enrichment uranium in recent years. Uranium (<20%) nuclear thermal propulsion reactors. However, for nuclear thermal propulsion reactor low-enrichment enriched uranium core parameter design, at present, researchers only make appropriate modifications on the basis of referring to high-enrichment enriched uranium core design parameters, therefore, the existing low-enrichment There is also the problem of low reliability in the core parameter design method in the intensively enriched uranium nuclear thermal propulsion reactor.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种核热推进反应堆的堆芯参数确定方法及装置,能够提升对低富集度浓缩铀核热推进反应堆中堆芯参数设计的可靠性。In view of this, the object of the present invention is to provide a method and device for determining core parameters of a nuclear thermal propulsion reactor, which can improve the reliability of core parameter design in a low-enrichment uranium nuclear thermal propulsion reactor.
为了实现上述目的,本发明实施例采用的技术方案如下:In order to achieve the above object, the technical solution adopted in the embodiment of the present invention is as follows:
第一方面,本发明实施例提供了一种核热推进反应堆的堆芯参数确定方法,包括:获取所述核热推进反应堆的流固耦合传热模型;获取满足飞行器性能约束的目标动力参数,并基于所述目标动力参数对所述流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数;其中,每组所述设计参数中包括几何参数及热工参数;基于多组所述设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数;将所述目标动力参数、所述目标热工参数及所述目标几何参数作为所述核热反应堆的堆芯设计参数。In the first aspect, an embodiment of the present invention provides a method for determining core parameters of a nuclear thermal propulsion reactor, including: obtaining a fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor; obtaining target dynamic parameters satisfying aircraft performance constraints, And based on the target dynamic parameters, heat transfer calculations are performed on the fluid-solid coupling heat transfer model to obtain multiple sets of design parameters that meet thermal constraints; wherein, each set of design parameters includes geometric parameters and thermal parameters; based on Perform neutronics modeling and physical analysis on multiple sets of design parameters to obtain target geometric parameters and target thermal parameters satisfying neutron physical constraints; The parameters are used as the core design parameters of the nuclear thermal reactor.
进一步,本发明实施例提供了第一方面的第一种可能的实施方式,其中,所述几何参数包括堆芯高度、堆芯半径及冷却剂流道直径;获取所述核热推进反应堆的流固耦合传热模型的步骤,包括:基于所述堆芯高度、堆芯半径及冷却剂流道直径,分别确定所述核热反应堆中燃料组件结构及慢化组件结构;基于所述燃料组件结构、所述慢化组件结构及冷却剂的流向,得到所述核热反应堆的流固耦合传热模型。Further, the embodiment of the present invention provides the first possible implementation of the first aspect, wherein the geometric parameters include the core height, core radius and coolant flow path diameter; The step of the solid coupling heat transfer model, comprising: based on the height of the core, the radius of the core and the diameter of the coolant flow channel, respectively determining the structure of the fuel assembly and the structure of the moderator assembly in the nuclear thermal reactor; based on the structure of the fuel assembly , the structure of the moderator component and the flow direction of the coolant to obtain a fluid-solid coupling heat transfer model of the nuclear thermal reactor.
进一步,本发明实施例提供了第一方面的第二种可能的实施方式,其中,所述燃料组件结构与所述慢化组件结构均为棱柱结构,所述燃料组件结构与所述慢化组件结构的高度及横截面形状相同,所述燃料组件结构包括多个冷却剂流道,所述慢化组件结构包括第二冷却剂流道,所述冷却剂的流向为从所述第二冷却剂流道流向第一冷却剂流道,所述第一冷却剂流道为所述燃料组件结构中的各冷却剂流道。Furthermore, the embodiment of the present invention provides a second possible implementation of the first aspect, wherein both the fuel assembly structure and the moderation assembly structure are prism structures, and the fuel assembly structure and the moderation assembly The structure has the same height and cross-sectional shape, the fuel assembly structure includes a plurality of coolant flow channels, the moderator assembly structure includes a second coolant flow channel, and the flow direction of the coolant is from the second coolant The flow channels flow to first coolant flow channels, which are respective coolant flow channels in the fuel assembly structure.
进一步,本发明实施例提供了第一方面的第三种可能的实施方式,其中,所述热工参数包括堆芯出口温度;所述基于所述目标动力参数对所述流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数的步骤,包括:基于所述目标动力参数对所述流固耦合传热模型进行轴向传热计算及径向传热计算,得到所述冷却剂流道的壁面温度、燃料中心温度,任意轴向位置处的主流温度、堆芯出口温度及所述堆芯出口温度对应的几何参数;重复执行上述轴向传热计算及径向传热计算,直至达到第一预设条件,得到多组所述设计参数。Further, the embodiment of the present invention provides a third possible implementation manner of the first aspect, wherein the thermal parameters include the core outlet temperature; The step of performing heat transfer calculations to obtain multiple sets of design parameters satisfying thermal constraints includes: performing axial heat transfer calculations and radial heat transfer calculations on the fluid-solid coupling heat transfer model based on the target dynamic parameters to obtain the obtained The wall temperature of the coolant flow channel, the fuel center temperature, the mainstream temperature at any axial position, the core outlet temperature, and the geometric parameters corresponding to the core outlet temperature; repeat the above axial heat transfer calculation and radial heat transfer calculation. Thermal calculation, until the first preset condition is reached, to obtain multiple sets of the design parameters.
进一步,本发明实施例提供了第一方面的第四种可能的实施方式,其中,所述第一预设条件包括:所述燃料中心温度达到燃料最高温度,和/或慢化组件结构中慢化剂的温度达到慢化剂最高温度。Further, the embodiment of the present invention provides a fourth possible implementation manner of the first aspect, wherein the first preset condition includes: the temperature of the fuel center reaches the maximum temperature of the fuel, and/or the structure of the moderator component slows down The temperature of the moderator reaches the maximum temperature of the moderator.
进一步,本发明实施例提供了第一方面的第五种可能的实施方式,其中,所述几何参数包括堆芯高度、堆芯半径及冷却剂流道直径;所述基于多组所述设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数的步骤,包括:从多组所述设计参数中选取任意一组设计参数,得到第一设计参数,基于所述第一设计参数中的几何参数进行中子学建模,得到目标模型;对所述目标模型进行反应堆物理分析,得到所述目标模型的物理参数;判断所述物理参数是否满足第二预设条件,如果是,将所述第一设计参数中的几何参数及热工参数分别作为目标几何参数及目标热工参数。Further, the embodiment of the present invention provides a fifth possible implementation of the first aspect, wherein the geometric parameters include core height, core radius, and coolant flow channel diameter; the design parameters are based on multiple sets of The steps of performing neutronics modeling and physical analysis to obtain target geometric parameters and target thermal parameters satisfying neutron physical constraints include: selecting any set of design parameters from multiple sets of design parameters to obtain the first design parameters , performing neutronics modeling based on the geometric parameters in the first design parameters to obtain a target model; performing reactor physics analysis on the target model to obtain physical parameters of the target model; judging whether the physical parameters meet the first requirement Two preset conditions, if yes, using the geometric parameters and thermal parameters in the first design parameters as the target geometric parameters and target thermal parameters respectively.
进一步,本发明实施例提供了第一方面的第六种可能的实施方式,其中,所述物理参数包括堆芯有效增殖系数;判断所述物理参数是否满足第二预设条件的步骤,包括:判断所述有效增殖系数是否大于1,如果是,确定所述物理参数满足所述第二预设条件。Further, the embodiment of the present invention provides a sixth possible implementation manner of the first aspect, wherein the physical parameters include the effective multiplication coefficient of the core; the step of judging whether the physical parameters meet the second preset condition includes: Judging whether the effective multiplication coefficient is greater than 1, and if so, determining that the physical parameter satisfies the second preset condition.
进一步,本发明实施例提供了第一方面的第七种可能的实施方式,其中,所述方法还包括:如果所述物理参数不满足所述第二预设条件,从多组所述设计参数中选取除所述第一设计参数之外的任意一组设计参数,得到新的第一设计参数;基于所述新的第一设计参数中的几何参数进行中子学建模及物理分析,直至得到目标几何参数及目标热工参数。Further, the embodiment of the present invention provides a seventh possible implementation manner of the first aspect, wherein the method further includes: if the physical parameters do not meet the second preset condition, selecting from multiple groups of the design parameters Select any set of design parameters except the first design parameters in the first design parameters to obtain new first design parameters; perform neutronics modeling and physical analysis based on the geometric parameters in the new first design parameters, until The target geometric parameters and target thermal parameters are obtained.
第二方面,本发明实施例还提供了一种核热推进反应堆的堆芯参数确定装置,包括:获取模块,用于获取所述核热推进反应堆的流固耦合传热模型;计算模块,用于获取满足飞行器性能约束的目标动力参数,并基于所述目标动力参数对所述流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数;其中,每组所述设计参数中包括几何参数及热工参数;分析模块,用于基于多组所述设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数;参数确定模块,用于将所述目标动力参数、所述目标热工参数及所述目标几何参数作为所述核热反应堆的堆芯设计参数。In the second aspect, the embodiment of the present invention also provides a nuclear thermal propulsion reactor core parameter determination device, including: an acquisition module, used to acquire the fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor; a calculation module, used Obtaining target dynamic parameters satisfying aircraft performance constraints, and performing heat transfer calculations on the fluid-solid coupling heat transfer model based on the target dynamic parameters, to obtain multiple sets of design parameters satisfying thermal constraints; wherein, each set of design parameters The parameters include geometric parameters and thermal parameters; the analysis module is used to perform neutronics modeling and physical analysis based on multiple sets of design parameters, and obtain target geometric parameters and target thermal parameters that meet neutron physical constraints; parameter determination A module for using the target power parameter, the target thermal parameter and the target geometric parameter as core design parameters of the nuclear thermal reactor.
第三方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行上述第一方面任一项所述的方法的步骤。In a third aspect, an embodiment of the present invention provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, it executes any one of the above-mentioned first aspects. steps of the method.
本发明实施例提供了一种核热推进反应堆的堆芯参数确定方法及装置,该方法包括:首先获取核热推进反应堆的流固耦合传热模型;获取满足飞行器性能约束的目标动力参数,并基于目标动力参数对流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数(每组设计参数中包括几何参数及热工参数);基于多组设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数;将目标动力参数、目标热工参数及目标几何参数作为核热反应堆的堆芯设计参数。在该方法中,通过基于满足飞行器性能约束的目标动力参数,对核热推进反应堆的流固耦合传热模型进行传热计算,并进行中子学建模及物理分析,可以得到同时满足飞行器性能约束、热工约束及中子物理约束的堆芯设计参数,保证了堆芯设计参数的有效性,该方法可以应用于对低富集度浓缩铀堆芯设计参数的确定,提升了对低富集度浓缩铀核热推进反应堆中堆芯参数设计的可靠性。Embodiments of the present invention provide a method and device for determining core parameters of a nuclear thermal propulsion reactor. The method includes: first obtaining a fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor; obtaining target dynamic parameters that meet the performance constraints of the aircraft, and Based on the target dynamic parameters, the heat transfer calculation of the fluid-solid coupling heat transfer model is carried out to obtain multiple sets of design parameters that meet the thermal constraints (each set of design parameters includes geometric parameters and thermal parameters); based on multiple sets of design parameters, the neutron science construction Through model and physical analysis, the target geometric parameters and target thermal parameters satisfying the neutron physical constraints are obtained; the target dynamic parameters, target thermal parameters and target geometric parameters are used as the core design parameters of the nuclear thermal reactor. In this method, based on the target dynamic parameters that satisfy the performance constraints of the aircraft, the heat transfer calculation is performed on the fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor, and neutronics modeling and physical analysis are performed to obtain Constraints, thermal constraints, and neutron physical constraints ensure the effectiveness of core design parameters. This method can be applied to the determination of core design parameters for low-enrichment Reliability of Core Parameter Design in Intensively Enriched Uranium Nuclear Thermal Propulsion Reactors.
本发明实施例的其他特征和优点将在随后的说明书中阐述,或者,部分特征和优点可以从说明书推知或毫无疑义地确定,或者通过实施本发明实施例的上述技术即可得知。Other features and advantages of the embodiments of the present invention will be described in the following descriptions, or some of the features and advantages can be inferred or unambiguously determined from the descriptions, or can be known by implementing the above-mentioned techniques of the embodiments of the present invention.
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present invention more comprehensible, preferred embodiments will be described in detail below together with the accompanying drawings.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1示出了本发明实施例所提供的一种核热推进反应堆的堆芯参数确定方法流程图;Fig. 1 shows a flow chart of a method for determining core parameters of a nuclear thermal propulsion reactor provided by an embodiment of the present invention;
图2示出了本发明实施例所提供的一种流固耦合传热模型俯视图;Fig. 2 shows a top view of a fluid-solid coupling heat transfer model provided by an embodiment of the present invention;
图3示出了本发明实施例所提供的一种流固耦合传热模型侧面切图;Fig. 3 shows a side cut view of a fluid-solid coupling heat transfer model provided by an embodiment of the present invention;
图4示出了本发明实施例所提供的一种低富集度浓缩铀堆芯参数设计流程图;Fig. 4 shows a kind of low-enrichment enriched uranium core parameter design flowchart provided by the embodiment of the present invention;
图5示出了本发明实施例所提供的一种核热推进反应堆的堆芯参数确定装置结构示意图;Fig. 5 shows a schematic structural diagram of a nuclear thermal propulsion reactor core parameter determination device provided by an embodiment of the present invention;
图6示出了本发明实施例所提供的一种电子设备结构示意图。Fig. 6 shows a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
图标:icon:
011-第一冷却剂流道;012-第二冷却剂流道;013-第三冷却剂流道;014-氢化锆材料;015-锆-4材料;016-碳化锆材料;017-石墨材料;018-钨-二氧化铀材料;021-堆芯入口;022-堆芯出口。011-first coolant channel; 012-second coolant channel; 013-third coolant channel; 014-zirconium hydride material; 015-zirconium-4 material; 016-zirconium carbide material; 017-graphite material ; 018-tungsten-uranium dioxide material; 021-core entrance; 022-core exit.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions of the present invention will be described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present invention, but not all of them.
目前,考虑到现有的核热推进反应堆的堆芯参数设计方式,还存在可靠性较低的问题,为改善此问题,本发明实施例提供的一种核热推进反应堆的堆芯参数确定方法及装置,该技术可应用于提升对低富集度浓缩铀的堆芯参数确定的可靠性。以下对本发明实施例进行详细介绍。At present, considering the core parameter design method of the existing nuclear thermal propulsion reactor, there is still a problem of low reliability. In order to improve this problem, a method for determining the core parameter of the nuclear thermal propulsion reactor provided by the embodiment of the present invention And devices, this technology can be applied to improve the reliability of core parameter determination for low-enrichment enriched uranium. The following describes the embodiments of the present invention in detail.
本实施例提供了一种核热推进反应堆的堆芯参数确定方法,该方法可以应用于对低富集度浓缩铀核热推进反应堆的参数设计,参见图1所示的核热推进反应堆的堆芯参数确定方法流程图,该方法主要包括以下步骤S102~步骤S106:This embodiment provides a method for determining the core parameters of a nuclear thermal propulsion reactor, which can be applied to the parameter design of a low-enrichment uranium nuclear thermal propulsion reactor, see the nuclear thermal propulsion reactor stack shown in Figure 1 A flowchart of a method for determining core parameters, the method mainly includes the following steps S102 to S106:
步骤S102,获取核热推进反应堆的流固耦合传热模型。Step S102, obtaining a fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor.
由于核热推进反应堆的堆芯内存在两种不同的组件:燃料组件和慢化组件,通过确定堆芯的几何参数(即燃料组件和慢化组件的尺寸形状),并分析核热推进反应堆内部冷却剂的流动规律,可以建立核热推进反应堆的流固耦合传热模型。通过该流固耦合传热模型,可以模拟计算核热推进反应堆的堆芯中冷却剂与燃料组件及慢化组件的传热过程。Since there are two different components in the nuclear thermal propulsion reactor core: the fuel assembly and the moderator assembly, by determining the geometric parameters of the core (that is, the size and shape of the fuel assembly and the moderator assembly), and analyzing the internal nuclear thermal propulsion reactor The fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor can be established based on the flow law of the coolant. Through the fluid-solid coupling heat transfer model, the heat transfer process of the coolant, the fuel assembly and the moderator assembly in the core of the nuclear thermal propulsion reactor can be simulated and calculated.
步骤S104,获取满足飞行器性能约束的目标动力参数,并基于目标动力参数对流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数。Step S104, obtaining target dynamic parameters satisfying the performance constraints of the aircraft, and performing heat transfer calculation on the fluid-structure coupling heat transfer model based on the target dynamic parameters, and obtaining multiple sets of design parameters satisfying thermal constraints.
上述动力参数包括比冲和推力等参数,根据动力参数的取值范围确定满足飞行器性能约束的动力参数值,得到目标动力参数,通常情况下核热推进系统中比冲值要尽可能地高,比冲(又可以称为比冲量,为单位推进剂的量所产生的冲量)的取值可以是在900s左右。The above dynamic parameters include parameters such as specific impulse and thrust. According to the value range of the dynamic parameters, the dynamic parameter values that meet the performance constraints of the aircraft are determined to obtain the target dynamic parameters. Usually, the specific impulse value in the nuclear thermal propulsion system should be as high as possible. The value of the specific impulse (also called the specific impulse, which is the impulse generated by the unit amount of propellant) may be around 900s.
上述每组设计参数中包括几何参数及热工参数,该热工参数可以是堆芯出口温度,该几何参数可以是堆芯高度、半径和冷却剂流道直径等。在对流固耦合传热模型进行传热计算的过程中,每一轮迭代计算都能得到一组设计参数值(堆芯出口温度,及对应的几何参数值),当上述迭代计算满足热工收敛条件时,可以得到满足热工约束的多组设计参数。Each set of design parameters above includes a geometric parameter and a thermal parameter, the thermal parameter may be the core outlet temperature, and the geometric parameter may be the core height, radius, and coolant channel diameter. In the process of heat transfer calculation of the fluid-solid coupling heat transfer model, each round of iterative calculation can obtain a set of design parameter values (core outlet temperature, and corresponding geometric parameter values), when the above iterative calculation meets the thermal convergence When conditions are met, multiple sets of design parameters that satisfy thermal constraints can be obtained.
步骤S106,基于多组设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数。In step S106, neutronics modeling and physical analysis are performed based on multiple sets of design parameters to obtain target geometric parameters and target thermal parameters satisfying neutron physical constraints.
从上述步骤S104得到的多组设计参数中,获取任意一组设计参数进行中学建模,并对得到的模型进行物理分析,从而从上述多组设计参数中筛选出满足中子物理约束条件的几何参数及热工参数,得到目标几何参数和目标热工参数。From the multiple sets of design parameters obtained in the above step S104, obtain any set of design parameters for secondary modeling, and perform physical analysis on the obtained model, so as to screen out the geometry that meets the neutron physical constraints from the above multiple sets of design parameters. parameters and thermal parameters to obtain the target geometric parameters and target thermal parameters.
步骤S108,将目标动力参数、目标热工参数及目标几何参数作为核热反应堆的堆芯设计参数。Step S108, using the target dynamic parameters, target thermal parameters and target geometric parameters as core design parameters of the nuclear thermal reactor.
上述计算得到的目标动力参数、目标热工参数及目标几何参数为满足飞行器性能约束、热工约束及中子物理约束的设计参数,因此,可以将同时满足飞行器性能约束、热工约束及中子物理约束的目标动力参数、目标热工参数及目标几何参数的值作为核热推进反应堆的堆芯设计参数。The target dynamic parameters, target thermal parameters and target geometric parameters calculated above are the design parameters that satisfy the performance constraints, thermal constraints and neutron physical constraints of the aircraft. The values of the target dynamic parameters, target thermal parameters and target geometric parameters of physical constraints are used as the core design parameters of the nuclear thermal propulsion reactor.
本实施例提供的上述核热推进反应堆的堆芯参数确定方法,通过基于满足飞行器性能约束的目标动力参数,对核热推进反应堆的流固耦合传热模型进行传热计算,并进行中子学建模及物理分析,可以得到同时满足飞行器性能约束、热工约束及中子物理约束的堆芯设计参数,保证了堆芯设计参数的有效性,该方法可以应用于对低富集度浓缩铀堆芯设计参数的确定,提升了对低富集度浓缩铀核热推进反应堆中堆芯参数设计的可靠性。The method for determining the core parameters of the above-mentioned nuclear thermal propulsion reactor provided in this embodiment is to calculate the heat transfer of the fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor based on the target dynamic parameters satisfying the performance constraints of the aircraft, and conduct neutronics Modeling and physical analysis can obtain core design parameters that simultaneously satisfy aircraft performance constraints, thermal constraints, and neutron physical constraints, ensuring the validity of core design parameters. This method can be applied to low-enrichment enriched uranium The determination of the core design parameters improves the reliability of core parameter design in low-enrichment uranium nuclear thermal propulsion reactors.
为了准确获取到流固耦合传热模型,本实施例提供了获取核热推进反应堆的流固耦合传热模型的具体实施方式:基于堆芯高度、堆芯半径及冷却剂流道直径,分别确定核热反应堆中燃料组件结构及慢化组件结构。基于燃料组件结构、慢化组件结构及冷却剂的流向,得到核热反应堆的流固耦合传热模型。上述堆芯高度、堆芯半径及冷却剂流道直径为核热推进反应堆堆芯的几何参数,由于该堆芯包括燃料组件和慢化组件,上述堆芯高度包括燃料组件的高度及慢化组件的高度,上述堆芯半径包括燃料组件横截面的半径及慢化组件横截面的半径,上述冷却剂流道直径包括燃料组件结构中的冷却剂流道直径及慢化组件结构中冷却道直径。In order to accurately obtain the fluid-solid coupling heat transfer model, this embodiment provides a specific implementation method for obtaining the fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor: based on the core height, core radius and coolant flow channel diameter, respectively determine Fuel assembly structure and moderator assembly structure in nuclear thermal reactor. Based on the structure of the fuel assembly, the structure of the moderator assembly and the flow direction of the coolant, the fluid-solid coupling heat transfer model of the nuclear thermal reactor is obtained. The above-mentioned core height, core radius and coolant flow path diameter are the geometric parameters of the nuclear thermal propulsion reactor core. Since the core includes fuel assemblies and moderator assemblies, the above-mentioned core height includes the height of the fuel assemblies and the moderator assemblies. The above-mentioned core radius includes the radius of the cross-section of the fuel assembly and the radius of the cross-section of the moderator assembly, and the diameter of the coolant flow channel includes the diameter of the coolant flow channel in the fuel assembly structure and the diameter of the cooling channel in the moderator assembly structure.
在一种具体的实施方式中,上述燃料组件结构与慢化组件结构均为棱柱结构,上述燃料组件结构与慢化组件结构的高度及横截面形状相同,参见如图2所示的流固耦合传热模型俯视图,图2中左侧的六棱柱为燃料组件结构,右侧的六棱柱为慢化组件结构,如图2所示,上述燃料组件结构为六棱柱形状的钨-二氧化铀材料018,该棱柱结构中均匀分布有多个圆柱形冷却剂流道(图2中用多个圆圈表示流道的截面),可以用第一冷却剂流道011表示,燃料组件结构中的各流道均可以作为第一冷却剂流道011,上述慢化组件结构包括第二冷却剂流道012和第三冷却剂流道013,上述第三冷却剂流道013为圆柱形通道,位于慢化组件结构的中心,第二冷却剂流道012为圆环形通道,第二冷却剂流道012与第三冷却剂流道013之间填充有氢化锆材料014及锆-4材料015,第二冷却剂流道012的外围依次为锆-4材料015、碳化锆材料016及石墨材料017,其中,各类材料的环宽值可以根据实际情况进行设定。参见如图3所示的流固耦合传热模型侧面切图,冷却剂流动换热从堆芯入口021进入第三冷却剂流道013(也可以称为流道三),再从第三冷却剂流道013到第二冷却剂流道012(也可以称为流道二)到第一冷却剂流道011(也可以称为流道一),从堆芯出口022流出(如图3中的左侧图所示),在实际应用中,冷却剂的流向可以简化为从堆芯入口021进入第二冷却剂流道012到第一冷却剂流道011(燃料组件中的各个冷却剂流道均可以作为流道1),从堆芯出口022流出(如图3中的右侧图所示),即冷却剂的流向为从第二冷却剂流道012流向第一冷却剂流道011,第一冷却剂流道011为燃料组件结构中的各冷却剂流道。In a specific embodiment, the above-mentioned fuel assembly structure and moderator assembly structure are both prism structures, and the height and cross-sectional shape of the above-mentioned fuel assembly structure and moderator assembly structure are the same, see the fluid-solid coupling as shown in Figure 2 The top view of the heat transfer model, the hexagonal prism on the left in Figure 2 is the structure of the fuel assembly, and the hexagonal prism on the right is the structure of the moderator assembly, as shown in Figure 2, the above-mentioned fuel assembly structure is a hexagonal prism-shaped tungsten-
为了得到满足热工约束的设计参数,本实施例提供了基于目标动力参数对流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数的实施方式,具体可参照如下步骤(1)~步骤(2)执行:In order to obtain design parameters satisfying thermal constraints, this embodiment provides an implementation method of performing heat transfer calculation on the fluid-solid coupling heat transfer model based on target dynamic parameters to obtain multiple sets of design parameters satisfying thermal constraints. For details, refer to the following steps ( 1) ~ step (2) execution:
步骤(1):基于目标动力参数对流固耦合传热模型进行轴向传热计算及径向传热计算,得到冷却剂流道的壁面温度、燃料中心温度,任意轴向位置处的主流温度、堆芯出口温度及堆芯出口温度对应的几何参数。Step (1): Calculate the axial heat transfer and radial heat transfer of the fluid-solid coupling heat transfer model based on the target dynamic parameters, and obtain the wall temperature of the coolant channel, the temperature of the fuel center, the mainstream temperature at any axial position, The core outlet temperature and the geometric parameters corresponding to the core outlet temperature.
如图3所示,左侧图中的TM为第二冷却剂流道012远离燃料组件一侧的壁面温度,Tw为第二冷却剂流道012靠近燃料组件一侧的壁面温度。右侧图中的TMn为第二冷却剂流道012中远离燃料组件一侧的壁面温度在轴向上的离散值(慢化剂最高温度即为TMn中的最大值),TFn为第二冷却剂流道012靠近燃料组件一侧的壁面温度在轴向上的离散值(燃料中心最高温度即为TFn的最大值)。As shown in FIG. 3 , T M in the left figure is the wall surface temperature of the second
对流固耦合传热模型进行轴向(图3中的Z方向)传热计算,少部分冷却剂由慢化组件的第三冷却剂流道013流入,经第二冷却剂流道012最终流入燃料组件FE的第一冷却剂流道011,大部分冷却剂在燃料组件FE的第一冷却剂流道011内至上而下一次性通过。Axial (Z direction in Figure 3) heat transfer calculations are performed on the fluid-solid coupling heat transfer model, a small part of the coolant flows in from the third
为流量分配系统分配给堆芯内全部慢化组件的冷却剂质量流量,为流量分配系统分配给堆芯内全部燃料组件的冷却剂质量流量,由于慢化组件内的冷却剂将回流到燃料组件进行二次冷却,如图3所示,因此流经全部燃料组件的质量流量等于与二者之和。 is the coolant mass flow distributed by the flow distribution system to all moderating components in the core, is the mass flow rate of coolant distributed to all fuel assemblies in the core by the flow distribution system, since the coolant in the moderator assembly will flow back to the fuel assemblies for secondary cooling, as shown in Figure 3, the mass flow through all fuel assemblies flow equal and sum of both.
堆芯内总质量流量与推力和比冲的关系如下公式total mass flow in the core The relationship with thrust and specific impulse is as follows
其中,Isp为飞行器的动力参数比冲,F为飞行器的动力参数推力,g0为重力加速度,比冲Isp与堆芯出口温度Te(热工参数)又满足以下关系式:Among them, I sp is the specific impulse of the dynamic parameter of the aircraft, F is the thrust of the dynamic parameter of the aircraft, g 0 is the acceleration of gravity, and the specific impulse I sp and the core outlet temperature T e (thermal parameters) satisfy the following relationship:
上式中的γ为定压热容与定容热容的比值,称为比热容比。R为玻尔兹曼常数,M为冷却剂的相对分子质量。γ in the above formula is the ratio of heat capacity at constant pressure to heat capacity at constant volume, which is called specific heat capacity ratio. R is the Boltzmann constant, and M is the relative molecular mass of the coolant.
流经单个慢化组件的冷却剂质量流量为:Coolant mass flow through individual moderator components for:
α为流经全部慢化组件的冷却剂质量流量占堆芯总质量流量的份额,用如下公式表示:α is the proportion of the mass flow rate of coolant flowing through all moderator components in the total mass flow rate of the core, expressed by the following formula:
NME为堆芯内慢化组件个数,设NFE为堆芯内燃料组件个数,有:N ME is the number of moderator components in the core, let N FE be the number of fuel components in the core, there are:
NFE+NME=N0 N FE +N ME =N 0
N0为堆芯内组件总个数,N0的计算公式如下:N 0 is the total number of components in the core, and the calculation formula of N 0 is as follows:
N0≈πr2/S0 N 0 ≈πr 2 /S 0
其中r为堆芯活性区半径,S0为六边形组件截面面积。where r is the radius of the active area of the core, and S 0 is the cross-sectional area of the hexagonal component.
引入慢化组件与燃料组件的个数比β0,有:Introducing the number ratio β 0 of moderator components to fuel components, we have:
β0=NME/NFE β 0 =N ME /N FE
β0的大小可以根据堆内组件的不同排布规律进行调整。The size of β0 can be adjusted according to the different arrangement rules of components in the stack.
根据能量守恒,质量流量为出口温度为T2的冷却剂经第二冷却剂流道012流出,与质量流量为温度为T1的冷却剂混合进入第二冷却剂流道011,则混合后冷却剂的入口温度T0满足下面的关系式:According to energy conservation, the mass flow rate is The coolant whose outlet temperature is T2 flows out through the
为了准确计算得到轴向上燃料最高温度及慢化剂最高温度,在轴向Z上划分了n个节点,如图3所示。每个流道的每个节点内壁面温度和主流温度满足:In order to accurately calculate the maximum temperature of the fuel and the maximum temperature of the moderator in the axial direction, n nodes are divided on the axial Z, as shown in Fig. 3 . The inner wall surface temperature and mainstream temperature of each node of each flow channel satisfy:
-q=h(Tw-Tb)-q=h(T w -T b )
上式中的q为热流密度,Tw为壁面温度,h为对流换热系数,相邻节点的主流温度Tb满足以下关系式:In the above formula, q is the heat flux density, Tw is the wall temperature, h is the convective heat transfer coefficient, and the mainstream temperature Tb of adjacent nodes satisfies the following relationship:
qn为节点n处的流量产生的热量(即节点n处的热流密度与传热面积的乘积得到的热量),cp为比热容,假设冷却剂通道的线功率密度为ql,流道长度为L,质量流量为同时功率分布呈现余弦分布,那流动方向上任意轴向位置z处的主流温度可以根据下面的公式计算:q n is the heat generated by the flow at node n (that is, the heat obtained by the product of the heat flux at node n and the heat transfer area), c p is the specific heat capacity, assuming that the linear power density of the coolant channel is q l , the length of the channel is L, the mass flow rate is At the same time, the power distribution presents a cosine distribution, so the mainstream temperature at any axial position z in the flow direction can be calculated according to the following formula:
对流固耦合传热模型进行径向(图3中的X方向)传热计算,径向上主要关注FE(燃料组件)对ME(慢化组件)的传热。TFn(燃料中心温度)对TMn(慢化剂表面温度)的传热可视为无内热源的多层平板导热,则FE对ME的热流量Φ2:The radial (X direction in Figure 3) heat transfer calculation is performed on the fluid-solid coupling heat transfer model, and the radial direction mainly focuses on the heat transfer from FE (fuel assembly) to ME (moderation assembly). The heat transfer from T Fn (fuel center temperature) to T Mn (moderator surface temperature) can be regarded as the heat conduction of a multi-layer flat plate without internal heat source, then the heat flow Φ 2 of FE to ME:
为TFn与TMn之间材料的热阻,di为第i层材料的厚度,λi为第i层材料的热导率,A0为两个组件的接触导热面积,A0=L*H,L是六边形组件截面的边长,H是堆芯活性区高度。若单个燃料组件冷却剂通道带走的热量为Φ1,则有 is the thermal resistance of the material between T Fn and T Mn , d i is the thickness of the i-th layer material, λ i is the thermal conductivity of the i-th layer material, A 0 is the contact heat transfer area of the two components, A 0 =L *H, L is the side length of the cross-section of the hexagonal component, and H is the height of the active area of the core. If the heat taken away by the coolant channel of a single fuel assembly is Φ 1 , then there is
p=Φ1+β1Φ2 p=Φ 1 +β 1 Φ 2
β1表示在堆芯中平均每个慢化组件相邻的燃料组件的个数,p为单个燃料组件发出的功率。根据燃料组件发出的功率p可以进一步确定轴向传热计算中的线功率密度ql以及燃料中心温度。 β1 represents the average number of fuel assemblies adjacent to each moderator assembly in the core, and p is the power emitted by a single fuel assembly. According to the power p emitted by the fuel assembly, the linear power density q l and the fuel center temperature in the axial heat transfer calculation can be further determined.
在给定初始飞行器性能参数如推力(25kN~75kN)和热工初始参数如堆芯入口温度(取120K左右)的前提下,通过编程联立并迭代求解上述方程即可获得反应堆的热工参数(堆芯出口温度)和堆芯几何参数(堆芯高度,半径及冷却剂流道直径)。上述迭代计算中的收敛准则包括:燃料中心最高温度max(TFn)<3000K,慢化剂表面最高温度max(TMn)<773K。在每一轮迭代计算中,可以得到一组满足热工约束条件的设计参数(即堆芯出口温度,及对应的堆芯几何参数)。Under the premise of given initial aircraft performance parameters such as thrust (25kN~75kN) and thermal initial parameters such as core inlet temperature (about 120K), the thermal parameters of the reactor can be obtained by simultaneously programming and iteratively solving the above equations (core outlet temperature) and core geometric parameters (core height, radius and coolant flow channel diameter). The convergence criteria in the above iterative calculation include: the maximum temperature of the fuel center max(T Fn )<3000K, and the maximum temperature of the moderator surface max(T Mn )<773K. In each round of iterative calculation, a set of design parameters (ie core outlet temperature and corresponding core geometric parameters) satisfying thermal constraints can be obtained.
步骤(2):重复执行上述轴向传热计算及径向传热计算,直至达到第一预设条件,得到多组设计参数。Step (2): The above-mentioned axial heat transfer calculation and radial heat transfer calculation are repeatedly performed until the first preset condition is reached, and multiple sets of design parameters are obtained.
上述第一预设条件包括:燃料中心温度达到燃料最高温度,和/或慢化组件结构中慢化剂的温度达到慢化剂最高温度。上述第一预设条件为上述传热计算的结束标志,重复执行上述步骤(1)中的轴向传热计算及径向传热计算,当燃料中心温度和/或慢化组件中的慢化剂温度满足上述第一预设条件时,达到收敛条件,结束上述传热计算,即当上述流固耦合传热模型中的燃料中心温度达到燃料最高温度时,或者当上述慢化组件结构中的慢化剂温度达到慢化剂最高温度时,确定上述传热计算达到了热工收敛条件,停止上述传热计算,以使燃料中心温度(包括燃料中心温度中的最大值)达到燃料最高温度和/或慢化组件中的慢化剂温度(包括慢化剂温度中的最大值)达到慢化剂最高温度。由于每一次传热计算中均能到一组设计参数,在经过多轮的传热计算后,可以得到多组设计参数。在实际应用中,上述燃料最高温度小于3000K,上述慢化剂最高温度小于773K。上述慢化剂温度可以是第二冷却剂流道012远离燃料组件一侧的壁面温度TM,当轴向上的离散值TMn中的最大值达到慢化剂最高温度时,确定上述传热计算达到了热工收敛条件。上述燃料中心温度为第二冷却剂流道012靠近燃料组件一侧的壁面温度,当轴向上的离散值TFn中的最大值达到燃料最高温度时,确定上述传热计算达到了热工收敛条件。The above-mentioned first preset condition includes: the temperature of the fuel center reaches the maximum temperature of the fuel, and/or the temperature of the moderator in the structure of the moderator component reaches the maximum temperature of the moderator. The above-mentioned first preset condition is the end sign of the above-mentioned heat transfer calculation. Repeat the axial heat transfer calculation and radial heat transfer calculation in the above step (1), when the fuel center temperature and/or the moderator in the moderator assembly When the temperature of the agent satisfies the above-mentioned first preset condition, the convergence condition is reached, and the above-mentioned heat transfer calculation ends, that is, when the fuel center temperature in the above-mentioned fluid-solid coupling heat transfer model reaches the maximum temperature of the fuel, or when the above-mentioned moderator component structure When the temperature of the moderator reaches the maximum temperature of the moderator, it is determined that the above heat transfer calculation has reached the thermal convergence condition, and the above heat transfer calculation is stopped so that the fuel center temperature (including the maximum value of the fuel center temperature) reaches the maximum fuel temperature and and/or the moderator temperature in the moderator assembly (including the maximum in moderator temperature) reaches the moderator maximum temperature. Since a set of design parameters can be obtained in each heat transfer calculation, multiple sets of design parameters can be obtained after multiple rounds of heat transfer calculations. In practical application, the maximum temperature of the above-mentioned fuel is less than 3000K, and the maximum temperature of the above-mentioned moderator is less than 773K. The temperature of the moderator mentioned above may be the temperature T M of the wall surface of the
为了得到满足中子物理约束的设计参数,本实施例提供了基于多组设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数的实施方式,具体可参照如下步骤1~步骤3执行:In order to obtain design parameters satisfying neutron physical constraints, this embodiment provides an implementation mode in which neutronics modeling and physical analysis are performed based on multiple sets of design parameters, and target geometric parameters and target thermal parameters satisfying neutron physical constraints are obtained. For details, please refer to the following steps 1 to 3:
步骤1:从多组设计参数中选取任意一组设计参数,得到第一设计参数,基于第一设计参数中的几何参数进行中子学建模,得到目标模型。Step 1: Select any set of design parameters from multiple sets of design parameters to obtain the first design parameters, and perform neutronics modeling based on the geometric parameters in the first design parameters to obtain the target model.
由于上述每组设计参数中包括几何参数及热工参数,该几何参数包括堆芯高度、堆芯半径及冷却剂流道直径,通过基于任意一组设计参数中的几何参数进行中子学建模,可以得到该几何参数对应的目标模型。Since each set of design parameters above includes geometric parameters and thermal parameters, the geometric parameters include core height, core radius and coolant flow path diameter, neutronics modeling is performed based on the geometric parameters in any set of design parameters , the target model corresponding to the geometric parameters can be obtained.
步骤2:对目标模型进行反应堆物理分析,得到目标模型的物理参数。Step 2: Perform reactor physics analysis on the target model to obtain the physical parameters of the target model.
对上述中子学建模得到的目标模型进行反应堆物理分析,可以分析得到目标模型的物理参数,该物理参数诸如可以是堆芯有效增殖系数等。By performing reactor physical analysis on the target model obtained from the above-mentioned neutronics modeling, the physical parameters of the target model can be analyzed, such as the effective multiplication coefficient of the core and the like.
步骤3:判断物理参数是否满足第二预设条件,如果是,将第一设计参数中的几何参数及热工参数分别作为目标几何参数及目标热工参数。Step 3: judging whether the physical parameters satisfy the second preset condition, if yes, using the geometric parameters and thermal parameters in the first design parameters as target geometric parameters and target thermal parameters respectively.
根据上述堆芯有效增殖系数的大小判断上述物理参数是否满足第二预设条件,具体的,可以判断上述有效增殖系数是否大于1,如果上述有效增殖系数大于1,确定物理参数满足第二预设条件。当上述物理参数满足第二预设条件时,表明上述第一设计参数中的几何参数建模得到的目标模型满足中子物理约束条件,即第一设计参数满足中子物理约束条件,将第一设计参数中的几何参数作为目标几何参数,将与该目标几何参数同组的热工参数作为目标热工参数。According to the size of the effective multiplication coefficient of the above-mentioned core, it is judged whether the above-mentioned physical parameters meet the second preset condition, specifically, it can be judged whether the above-mentioned effective multiplication coefficient is greater than 1, and if the above-mentioned effective multiplication coefficient is greater than 1, it is determined that the physical parameters meet the second preset condition condition. When the above physical parameters meet the second preset condition, it indicates that the target model obtained by modeling the geometric parameters in the first design parameters meets the neutron physical constraints, that is, the first design parameters meet the neutron physical constraints, and the first The geometric parameters in the design parameters are used as the target geometric parameters, and the thermal parameters in the same group as the target geometric parameters are used as the target thermal parameters.
考虑到当上述物理参数不满足上述第二预设条件的情况,本实施例提供的方法还包括:如果物理参数不满足第二预设条件,从多组设计参数中选取除第一设计参数之外的任意一组设计参数,得到新的第一设计参数;基于新的第一设计参数中的几何参数进行中子学建模及物理分析,直至得到目标几何参数及目标热工参数。当上述物理参数不满足第二预设条件时,从上述多组设计参数中挑选除上述第一设计参数之外的任意一组设计参数,作为新的第一设计参数,或者将上述多组设计参数依次作为新的第一设计参数,并基于新的第一设计参数重复执行上述步骤1~3,直至得到满足中子物理约束条件的目标几何参数及目标热工参数。Considering that when the above physical parameters do not meet the above second preset condition, the method provided in this embodiment further includes: if the physical parameter does not meet the second preset condition, selecting one of the multiple groups of design parameters except the first design parameter Based on any set of design parameters outside the new first design parameters, new first design parameters are obtained; neutronics modeling and physical analysis are performed based on the geometric parameters in the new first design parameters until the target geometric parameters and target thermal parameters are obtained. When the above-mentioned physical parameters do not meet the second preset condition, select any set of design parameters from the above-mentioned multiple sets of design parameters except the above-mentioned first design parameters as a new first design parameter, or combine the above-mentioned multiple sets of design parameters The parameters are successively used as new first design parameters, and the above steps 1 to 3 are repeated based on the new first design parameters until the target geometric parameters and target thermal parameters satisfying neutron physical constraints are obtained.
本实施例提供的上述核热推进反应堆的堆芯参数确定方法,为核热推进反应堆低富集度浓缩铀堆芯的参数设计提供了完整计算思路,利用合理建立的简化传热模型,适用于燃料组件和慢化组件在堆芯内不同的个数分配规律和排布规律,也适用于冷却剂质量流量在两种组件内不同的分配情况,可方便灵活地针对不同的组件排布方式和流量分配进行优化设计,通过飞行器性能约束、热工水力约束和中子物理约束三方面约束条件保证设计参数的有效性。The core parameter determination method of the above-mentioned nuclear thermal propulsion reactor provided in this embodiment provides a complete calculation idea for the parameter design of the low-enrichment enriched uranium core of the nuclear thermal propulsion reactor. Using a reasonably established simplified heat transfer model, it is suitable for The different number distribution and arrangement rules of fuel assemblies and moderator assemblies in the core are also applicable to the different distribution of coolant mass flow in the two assemblies, which can be conveniently and flexibly tailored to different assembly arrangements and The flow distribution is optimally designed, and the effectiveness of the design parameters is guaranteed through three constraints: aircraft performance constraints, thermal hydraulic constraints, and neutron physical constraints.
在前述实施例的基础上,本实施例提供了一种应用前述核热推进反应堆的堆芯参数确定方法对低富集度浓缩铀堆芯进行参数设计的示例,具体可参照如下步骤a~步骤d执行:On the basis of the above-mentioned embodiments, this embodiment provides an example of applying the core parameter determination method of the aforementioned nuclear thermal propulsion reactor to design the parameters of the low-enrichment enriched uranium core. For details, please refer to the following steps a to steps d execute:
步骤a:确定核热推进反应堆中满足飞行器性能约束的目标动力参数,确定核热推进反应堆中几何参数及热工参数的取值范围。Step a: Determine the target power parameters that satisfy the performance constraints of the aircraft in the nuclear thermal propulsion reactor, and determine the value ranges of the geometric parameters and thermal parameters in the nuclear thermal propulsion reactor.
上述动力参数包括比冲、推力等参数,上述几何参数包括堆芯高度、半径、冷却剂流道直径等,上述热工参数包括堆芯出口温度等。参见如图4所示的低富集度浓缩铀堆芯参数设计流程图,首先根据飞行器的初始性能确定满足飞行器约束的目标动力参数,然后设置核热推进反应堆中几何参数及热工参数的取值范围。The aforementioned dynamic parameters include parameters such as specific impulse and thrust, the aforementioned geometric parameters include core height, radius, coolant flow path diameter, etc., and the aforementioned thermal parameters include core outlet temperature, etc. Referring to the flow chart of core parameter design for low-enrichment enriched uranium shown in Fig. 4, firstly, according to the initial performance of the aircraft, the target power parameters satisfying the constraints of the aircraft are determined, and then the selection of geometric parameters and thermal parameters in the nuclear thermal propulsion reactor is set. range of values.
步骤b:基于核热推进反应堆内部冷却剂的流动规律,确定流固耦合传热模型。Step b: Determine the fluid-solid coupling heat transfer model based on the flow law of the coolant inside the nuclear thermal propulsion reactor.
上述流固耦合传热模型满足以下条件:1)堆芯内存在两种不同的组件:燃料组件和慢化组件,两种组件外形尺寸相同,但燃料组件内分布有若干尺寸相同的冷却剂流道,慢化组件内的结构则相对复杂,两种组件的材料和结构如图2所示;2)燃料最高温度点S1与慢化组件第二冷却剂流道012内壁面温度点S2之间的传热为无内热源平壁导热;3)冷却剂流动换热从第三冷却剂流道013到第二冷却剂流道012再到第一冷却剂流道011简化为从第二冷却剂流道012到第一冷却剂流道011;4)堆芯核热在轴向上服从余弦分布。The above fluid-solid coupling heat transfer model satisfies the following conditions: 1) There are two different components in the core: the fuel component and the moderator component. The structure inside the moderator component is relatively complicated. The materials and structures of the two components are shown in Figure 2; 2) Between the highest temperature point S1 of the fuel and the temperature point S2 on the inner wall surface of the
步骤c:对上述流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数。Step c: Perform heat transfer calculations on the fluid-solid coupling heat transfer model above to obtain multiple sets of design parameters that satisfy thermal constraints.
上述多组设计参数(包括几何参数和热工参数)可以构成设计参数的取值范围。通过上述传热计算可以获取相应冷却剂流道的主流温度、壁面温度以及燃料中心温度,利用燃料极限温度和慢化剂的耐受温度设置热工收敛条件,当上述设计参数不满足热工收敛条件时,根据上述几何参数及热工参数范围更新传热计算中的几何参数及热工参数的值,得到满足热工约束的多组设计参数。The above multiple sets of design parameters (including geometric parameters and thermal parameters) can constitute the value range of the design parameters. Through the above heat transfer calculation, the mainstream temperature, wall surface temperature and fuel center temperature of the corresponding coolant flow channel can be obtained, and the thermal convergence condition can be set by using the limit temperature of the fuel and the tolerance temperature of the moderator. When the above design parameters do not satisfy the thermal convergence Conditions, update the geometric parameters and thermal parameter values in the heat transfer calculation according to the above geometric parameters and thermal parameter ranges, and obtain multiple sets of design parameters that meet the thermal constraints.
步骤d:对上述多组设计参数中每组设计参数依次进行中子学建模,并对得到的模型进行物理学分析,以判断各组设计参数是否满足中子物理约束。Step d: Carry out neutronics modeling for each set of design parameters in the above multiple sets of design parameters in turn, and perform physical analysis on the obtained model to judge whether each set of design parameters satisfies neutron physics constraints.
当得到满足中子物理约束的设计参数时,将满足中子物理约束的目标热工参数和目标几何参数作为堆芯设计参数,还可以进一步判断由上述目标动力参数计算得到的堆芯设计参数(包括目标动力参数、目标热工参数及目标几何参数)是否符合要求(或者是否对上述堆芯设计参数满意),如果符合要求,得到低富集度浓缩铀堆芯设计参数,如果不符合要求,可以返回上述步骤a中修改初始的目标动力参数(推力和比冲),以重新计算设计参数,直到获得满意的满足三方面约束条件的反应堆设计参数为止。When the design parameters satisfying the neutron physical constraints are obtained, the target thermal parameters and the target geometric parameters satisfying the neutron physical constraints are taken as the core design parameters, and the core design parameters calculated by the above target dynamic parameters can be further judged ( Including whether the target dynamic parameters, target thermal parameters and target geometric parameters) meet the requirements (or whether the above-mentioned core design parameters are satisfied), if the requirements are met, the low-enrichment uranium core design parameters are obtained, if the requirements are not met, The initial target power parameters (thrust and specific impulse) can be modified by returning to step a above to recalculate the design parameters until satisfactory reactor design parameters satisfying the three constraints are obtained.
对应于上述实施例所提供的核热推进反应堆的堆芯参数确定方法,本发明实施例提供了一种核热推进反应堆的堆芯参数确定装置,参见图5所示的一种核热推进反应堆的堆芯参数确定装置结构示意图,该装置包括以下模块:Corresponding to the nuclear thermal propulsion reactor core parameter determination method provided by the above embodiments, the embodiment of the present invention provides a nuclear thermal propulsion reactor core parameter determination device, see Figure 5 for a nuclear thermal propulsion reactor Schematic diagram of the structure of the core parameter determination device, which includes the following modules:
获取模块51,用于获取核热推进反应堆的流固耦合传热模型。The obtaining module 51 is used to obtain the fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor.
计算模块52,用于获取满足飞行器性能约束的目标动力参数,并基于目标动力参数对流固耦合传热模型进行传热计算,得到满足热工约束的多组设计参数;其中,每组设计参数中包括几何参数及热工参数。The calculation module 52 is used to obtain the target dynamic parameters satisfying the performance constraints of the aircraft, and perform heat transfer calculation on the fluid-solid coupling heat transfer model based on the target dynamic parameters, and obtain multiple sets of design parameters satisfying the thermal constraints; wherein, in each set of design parameters Including geometric parameters and thermal parameters.
分析模块53,用于基于多组设计参数进行中子学建模及物理分析,得到满足中子物理约束的目标几何参数及目标热工参数。The analysis module 53 is used to perform neutronics modeling and physical analysis based on multiple sets of design parameters, and obtain target geometric parameters and target thermal parameters satisfying neutron physical constraints.
参数确定模块54,用于将目标动力参数、目标热工参数及目标几何参数作为核热反应堆的堆芯设计参数。The parameter determination module 54 is used to use the target dynamic parameters, target thermal parameters and target geometric parameters as core design parameters of the nuclear thermal reactor.
本实施例提供的上述核热推进反应堆的堆芯参数确定装置,通过基于满足飞行器性能约束的目标动力参数,对核热推进反应堆的流固耦合传热模型进行传热计算,并进行中子学建模及物理分析,可以得到同时满足飞行器性能约束、热工约束及中子物理约束的堆芯设计参数,保证了堆芯设计参数的有效性,该方法可以应用于对低富集度浓缩铀堆芯设计参数的确定,提升了对低富集度浓缩铀核热推进反应堆中堆芯参数设计的可靠性。The nuclear thermal propulsion reactor core parameter determination device provided in this embodiment performs heat transfer calculation on the fluid-solid coupling heat transfer model of the nuclear thermal propulsion reactor based on the target dynamic parameters satisfying the performance constraints of the aircraft, and performs neutronics Modeling and physical analysis can obtain core design parameters that simultaneously satisfy aircraft performance constraints, thermal constraints, and neutron physical constraints, ensuring the validity of core design parameters. This method can be applied to low-enrichment enriched uranium The determination of the core design parameters improves the reliability of core parameter design in low-enrichment uranium nuclear thermal propulsion reactors.
在一种实施方式中,上述几何参数包括堆芯高度、堆芯半径及冷却剂流道直径;上述获取模块51,进一步用于基于堆芯高度、堆芯半径及冷却剂流道直径,分别确定核热反应堆中燃料组件结构及慢化组件结构;基于燃料组件结构、慢化组件结构及冷却剂的流向,得到核热反应堆的流固耦合传热模型。In one embodiment, the above-mentioned geometric parameters include core height, core radius and coolant flow channel diameter; the acquisition module 51 is further used to determine respectively based on the core height, core radius and coolant flow channel diameter Fuel assembly structure and moderator assembly structure in nuclear thermal reactor; Based on the fuel assembly structure, moderator assembly structure and coolant flow direction, the fluid-solid coupling heat transfer model of nuclear thermal reactor is obtained.
在一种实施方式中,上述燃料组件结构与慢化组件结构均为棱柱结构,燃料组件结构与慢化组件结构的高度及横截面形状相同,燃料组件结构包括多个冷却剂流道,慢化组件结构包括第二冷却剂流道,冷却剂的流向为从第二冷却剂流道流向第一冷却剂流道,第一冷却剂流道为燃料组件结构中的各冷却剂流道。In one embodiment, the above-mentioned fuel assembly structure and moderator assembly structure are both prismatic structures, the height and cross-sectional shape of the fuel assembly structure and the moderation assembly structure are the same, the fuel assembly structure includes a plurality of coolant channels, and the moderator The assembly structure includes a second coolant flow channel, and the flow direction of the coolant is from the second coolant flow channel to the first coolant flow channel, and the first coolant flow channel is each coolant flow channel in the fuel assembly structure.
在一种实施方式中,上述热工参数包括堆芯出口温度;上述计算模块52,进一步用于基于目标动力参数对流固耦合传热模型进行轴向传热计算及径向传热计算,得到冷却剂流道的壁面温度、燃料中心温度,任意轴向位置处的主流温度、堆芯出口温度及堆芯出口温度对应的几何参数;重复执行上述轴向传热计算及径向传热计算,直至达到第一预设条件,得到多组设计参数。In one embodiment, the above-mentioned thermal parameters include the core outlet temperature; the above-mentioned calculation module 52 is further used to perform axial heat transfer calculation and radial heat transfer calculation on the fluid-solid coupling heat transfer model based on the target dynamic parameters to obtain cooling The wall temperature of the agent flow channel, the temperature of the fuel center, the mainstream temperature at any axial position, the core outlet temperature, and the geometric parameters corresponding to the core outlet temperature; repeat the above axial heat transfer calculation and radial heat transfer calculation until When the first preset condition is reached, multiple sets of design parameters are obtained.
在一种实施方式中,上述第一预设条件包括:燃料中心温度达到燃料最高温度,和/或慢化组件结构中慢化剂的温度达到慢化剂最高温度。In one embodiment, the above-mentioned first preset condition includes: the temperature of the fuel center reaches the maximum temperature of the fuel, and/or the temperature of the moderator in the moderator assembly structure reaches the maximum temperature of the moderator.
在一种实施方式中,上述几何参数包括堆芯高度、堆芯半径及冷却剂流道直径;上述分析模块53,进一步用于从多组设计参数中选取任意一组设计参数,得到第一设计参数,基于第一设计参数中的几何参数进行中子学建模,得到目标模型;对目标模型进行反应堆物理分析,得到目标模型的物理参数;判断物理参数是否满足第二预设条件,如果是,将第一设计参数中的几何参数及热工参数分别作为目标几何参数及目标热工参数。In one embodiment, the above-mentioned geometric parameters include the core height, the core radius and the diameter of the coolant flow channel; the above-mentioned analysis module 53 is further used to select any set of design parameters from multiple sets of design parameters to obtain the first design Parameters, based on the geometric parameters in the first design parameters, neutronics modeling is carried out to obtain the target model; the reactor physics analysis is performed on the target model to obtain the physical parameters of the target model; whether the physical parameters meet the second preset condition is judged, if yes , taking the geometric parameter and the thermal parameter in the first design parameter as the target geometric parameter and the target thermal parameter respectively.
在一种实施方式中,上述物理参数包括堆芯有效增殖系数;上述分析模块53,进一步用于判断有效增殖系数是否大于1,如果是,确定物理参数满足第二预设条件。In one embodiment, the above-mentioned physical parameters include the effective multiplication coefficient of the core; the above-mentioned analysis module 53 is further configured to determine whether the effective multiplication coefficient is greater than 1, and if so, determine that the physical parameters meet the second preset condition.
在一种实施方式中,上述装置还包括:In one embodiment, the above-mentioned device also includes:
重复分析模块,用于在物理参数不满足第二预设条件时,从多组设计参数中选取除第一设计参数之外的任意一组设计参数,得到新的第一设计参数;基于新的第一设计参数中的几何参数进行中子学建模及物理分析,直至得到目标几何参数及目标热工参数。The repeated analysis module is used to select any set of design parameters except the first design parameters from multiple sets of design parameters when the physical parameters do not meet the second preset condition to obtain new first design parameters; based on the new The geometric parameters in the first design parameters are subjected to neutronics modeling and physical analysis until the target geometric parameters and target thermal parameters are obtained.
本实施例提供的上述核热推进反应堆的堆芯参数确定装置,为核热推进反应堆低富集度浓缩铀堆芯的参数设计提供了完整计算思路,利用合理建立的简化传热模型,适用于燃料组件和慢化组件在堆芯内不同的个数分配规律和排布规律,也适用于冷却剂质量流量在两种组件内不同的分配情况,可方便灵活地针对不同的组件排布方式和流量分配进行优化设计,通过飞行器性能约束、热工水力约束和中子物理约束三方面约束条件保证设计参数的有效性。The nuclear thermal propulsion reactor core parameter determination device provided in this embodiment provides a complete calculation idea for the parameter design of the low-enrichment enriched uranium core of the nuclear thermal propulsion reactor. Using a reasonably established simplified heat transfer model, it is suitable for The different number distribution and arrangement rules of fuel assemblies and moderator assemblies in the core are also applicable to the different distribution of coolant mass flow in the two assemblies, which can be conveniently and flexibly tailored to different assembly arrangements and The flow distribution is optimally designed, and the effectiveness of the design parameters is guaranteed through three constraints: aircraft performance constraints, thermal hydraulic constraints, and neutron physical constraints.
本实施例所提供的装置,其实现原理及产生的技术效果和前述实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述方法实施例中相应内容。The implementation principle and technical effects of the device provided in this embodiment are the same as those of the foregoing embodiments. For brief description, for the parts not mentioned in the device embodiments, reference may be made to the corresponding content in the foregoing method embodiments.
本发明实施例提供了一种电子设备,如图6所示的电子设备结构示意图,电子设备包括处理器61、存储器62,所述存储器中存储有可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述实施例提供的方法的步骤。An embodiment of the present invention provides an electronic device. As shown in FIG. 6 , the electronic device includes a
参见图6,电子设备还包括:总线64和通信接口63,处理器61、通信接口63和存储器62通过总线64连接。处理器61用于执行存储器62中存储的可执行模块,例如计算机程序。Referring to FIG. 6 , the electronic device further includes: a bus 64 and a
其中,存储器62可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个通信接口63(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。Wherein, the
总线64可以是ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(ExtendedIndustry Standard Architecture,扩展工业标准结构)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。The bus 64 may be an ISA (Industry Standard Architecture, industry standard architecture) bus, a PCI (Peripheral Component Interconnect, peripheral component interconnect standard) bus, or an EISA (Extended Industry Standard Architecture, extended industry standard architecture) bus, etc. The bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one double-headed arrow is used in FIG. 6 , but it does not mean that there is only one bus or one type of bus.
其中,存储器62用于存储程序,所述处理器61在接收到执行指令后,执行所述程序,前述本发明实施例任一实施例揭示的流过程定义的装置所执行的方法可以应用于处理器61中,或者由处理器61实现。Wherein, the
处理器61可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器61中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器61可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等。还可以是数字信号处理器(Digital SignalProcessing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现成可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器62,处理器61读取存储器62中的信息,结合其硬件完成上述方法的步骤。The
本发明实施例提供了一种计算机可读介质,其中,所述计算机可读介质存储有计算机可执行指令,所述计算机可执行指令在被处理器调用和执行时,所述计算机可执行指令促使所述处理器实现上述实施例所述的方法。An embodiment of the present invention provides a computer-readable medium, wherein the computer-readable medium stores computer-executable instructions, and when the computer-executable instructions are invoked and executed by a processor, the computer-executable instructions cause The processor implements the methods described in the foregoing embodiments.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统具体工作过程,可以参考前述实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of description, the specific working process of the system described above can refer to the corresponding process in the foregoing embodiments, and details are not repeated here.
本发明实施例所提供的核热推进反应堆的堆芯参数确定方法及装置的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面方法实施例中所述的方法,具体实现可参见方法实施例,在此不再赘述。The computer program product of the method and device for determining core parameters of a nuclear thermal propulsion reactor provided by the embodiments of the present invention includes a computer-readable storage medium storing program codes, and the instructions included in the program codes can be used to execute the foregoing method embodiments The specific implementation of the method described in may refer to the method embodiments, and details are not repeated here.
另外,在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In addition, in the description of the embodiments of the present invention, unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes. .
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, therefore, should not be construed as limiting the invention. In addition, the terms "first", "second", and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。Finally, it should be noted that: the above-described embodiments are only specific implementations of the present invention, used to illustrate the technical solutions of the present invention, rather than limiting them, and the scope of protection of the present invention is not limited thereto, although referring to the foregoing The embodiment has described the present invention in detail, and those skilled in the art should understand that any person familiar with the technical field can still modify the technical solutions described in the foregoing embodiments within the technical scope disclosed in the present invention Changes can be easily thought of, or equivalent replacements are made to some of the technical features; and these modifications, changes or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be covered by the scope of the present invention. within the scope of protection. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010796899.8A CN112199811B (en) | 2020-08-10 | 2020-08-10 | Method and device for determining reactor core parameters of nuclear thermal propulsion reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010796899.8A CN112199811B (en) | 2020-08-10 | 2020-08-10 | Method and device for determining reactor core parameters of nuclear thermal propulsion reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112199811A CN112199811A (en) | 2021-01-08 |
CN112199811B true CN112199811B (en) | 2022-11-22 |
Family
ID=74006065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010796899.8A Active CN112199811B (en) | 2020-08-10 | 2020-08-10 | Method and device for determining reactor core parameters of nuclear thermal propulsion reactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112199811B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113012826B (en) * | 2021-03-02 | 2022-11-22 | 上海交通大学 | Small lead-cooled fast reactor core |
CN113609744B (en) * | 2021-08-04 | 2023-10-20 | 上海交通大学 | Quick reactor core three-dimensional power construction method based on Meng Ka critical calculation single-step method |
CN113643830A (en) * | 2021-08-10 | 2021-11-12 | 上海交通大学 | A processing method for a heat pipe cooling reactor core |
CN114694861A (en) * | 2022-03-28 | 2022-07-01 | 哈尔滨工程大学 | A nuclear reactor core parameter simulation method, device and electronic device |
CN114898900B (en) * | 2022-05-16 | 2023-06-20 | 西安交通大学 | Systematic hexagonal prism type fuel dual-mode nuclear heat propulsion reactor modeling design method |
CN115221813B (en) * | 2022-08-03 | 2023-05-09 | 西安交通大学 | A nuclear-thermal-mechanical cross-dimensional coupling method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018157157A2 (en) * | 2017-02-27 | 2018-08-30 | Terrapower, Llc | System and method for modeling a nuclear reactor |
CN108648834A (en) * | 2018-04-19 | 2018-10-12 | 西安交通大学 | Honeycomb briquet type fuel assembly and small size long-life lead bismuth cool down fast reactor reactor core |
CN110867261A (en) * | 2019-11-21 | 2020-03-06 | 中国核动力研究设计院 | Multi-type pellet mixed loading metal cooling reactor and management method |
JP2020046343A (en) * | 2018-09-20 | 2020-03-26 | 三菱重工業株式会社 | Atomic reactor evaluation device, atomic reactor evaluation method and atomic reactor evaluation program |
-
2020
- 2020-08-10 CN CN202010796899.8A patent/CN112199811B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018157157A2 (en) * | 2017-02-27 | 2018-08-30 | Terrapower, Llc | System and method for modeling a nuclear reactor |
CN108648834A (en) * | 2018-04-19 | 2018-10-12 | 西安交通大学 | Honeycomb briquet type fuel assembly and small size long-life lead bismuth cool down fast reactor reactor core |
JP2020046343A (en) * | 2018-09-20 | 2020-03-26 | 三菱重工業株式会社 | Atomic reactor evaluation device, atomic reactor evaluation method and atomic reactor evaluation program |
CN110867261A (en) * | 2019-11-21 | 2020-03-06 | 中国核动力研究设计院 | Multi-type pellet mixed loading metal cooling reactor and management method |
Non-Patent Citations (4)
Title |
---|
"Distributed Parameter Control Method for Axial Neutron Flux in Fast Nuclear Reactor;Minghan Yang;《IEEE TRANSACTIONS ON NUCLEAR SCIENCE》;20190630;第66卷(第6期);第899-910页 * |
"Thermo-hydraulic analysis of the supercritical water-cooled reactor core by porous media approach";M.H. Rahimi 等;《The Journal of Supercritical Fluids》;20151210;第110卷;摘要,第276、278、280页 * |
"基于GA的Tokamak聚变堆芯参数优化方法研究";孙林 等;《核科学与工程》;20170228;第37卷(第1期);第74页 * |
"模块化铅冷快堆M~2LFR-1000堆芯初步设计与燃料添加MA核素研究";赵永松;《中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑)》;20190115;正文第14、23、26-27页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112199811A (en) | 2021-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112199811B (en) | Method and device for determining reactor core parameters of nuclear thermal propulsion reactor | |
CN113255229B (en) | Fuel assembly multidisciplinary structural design optimization method based on joint simulation | |
CN112699620B (en) | Reactor core thermal hydraulic characteristic analysis method based on computational fluid dynamics | |
CN114282460B (en) | Thermal hydraulic characteristic analysis method for lead bismuth fast reactor core | |
JP5199557B2 (en) | 3D core analysis method and 3D core analysis program | |
CN115803826A (en) | Nuclear fuel assembly with multi-pitch wire windings | |
CN112964397B (en) | Heat exchange calculation method and device for melting tank and electronic equipment | |
CN116757108B (en) | Simulation method, device and equipment of heat exchanger | |
CN113536580A (en) | Method and system for determining nuclear reactor test loop power and neutron flux density | |
CN116504431A (en) | A Sodium Cooled Fast Reactor Core Core Thermal Coupling Method | |
CN116364313A (en) | A laser inertial fusion cladding and its design method | |
Tang et al. | A novel liquid cooling battery thermal management system with a cooling plate based on biomimetic fractal channels | |
Lei et al. | The Analysis and Improvement of Fuel Damage Fraction Calculate | |
CN116415449B (en) | Maleic anhydride reactor design method, maleic anhydride reactor design system and information data processing terminal | |
Sui et al. | Sub-channel analysis code development and core thermal calculation for fast reactor refueling cycle | |
Wei et al. | New temperature and heat loss charts for one-dimensional, transient heat conduction | |
CN118070363A (en) | A sub-channel division method for a rod bundle channel with a helical structure | |
CN119150741A (en) | A steady-state physical-thermal coupling analysis method for a pin-by-pin liquid metal cooled fast reactor | |
Davis | Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor | |
CN116680911A (en) | An Automatic Modeling Method of Nuclear Reactor Based on Subchannel Calculation Program | |
CN117807757A (en) | Multi-scale simulation method and system for reactor core temperature field of air-cooled reactor | |
CN118569116A (en) | Multi-component coupling solving method and system for full system of pebble-bed high-temperature gas cooled reactor | |
김성찬 | Enhancement of High Fidelity Hexagonal Geometry Core Analysis System for Diverse Applications | |
박장근 | Coupling between subchannel module of CUPID and fuel code FINIX for multi-physics transient analysis of PWR core | |
Kefan et al. | The Thermal-Hydraulic Analysis and Optimization of Annular Fuel for Lead-Cooled Fast Reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |