CN112194634A - Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative - Google Patents

Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative Download PDF

Info

Publication number
CN112194634A
CN112194634A CN202010944657.9A CN202010944657A CN112194634A CN 112194634 A CN112194634 A CN 112194634A CN 202010944657 A CN202010944657 A CN 202010944657A CN 112194634 A CN112194634 A CN 112194634A
Authority
CN
China
Prior art keywords
difluoromethyl
imidazole
sodium
reaction
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010944657.9A
Other languages
Chinese (zh)
Other versions
CN112194634B (en
Inventor
汤日元
邓建超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202010944657.9A priority Critical patent/CN112194634B/en
Publication of CN112194634A publication Critical patent/CN112194634A/en
Application granted granted Critical
Publication of CN112194634B publication Critical patent/CN112194634B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/28Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/84Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom
    • C07D473/34Nitrogen atom attached in position 6, e.g. adenine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention discloses a preparation method of an N-difluoromethyl imidazole sulfur (selenium) urea derivative. N-difluoromethyl azole thiourea derivatives including N-difluoromethyl benzimidazole thiourea, N-difluoromethyl imidazole thiourea, and N-difluoromethyl tris (seleno) ureaAzolylthiourea and its related N-difluoromethyl selenourea derivatives. Adding imidazole derivative or triazole derivative, elemental sulfur powder or selenium powder and catalyst into a reaction tube, adding organic solvent into the reaction tube, adding BrCF2CO2Et, reacting under heating to obtain the N-difluoromethyl imidazole sulfur (selenium) urea derivative. The preparation method is simple and easy to operate, mild in condition, cheap and economical; the provided compound has important potential application value in pesticides, medicines and organic functional materials.

Description

Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative
The patent application of the invention is a divisional application with the application number of "CN 201811452050.8", the application date of the original application is "11.30.2018", the application number is "CN 201811452050.8", and the invention name is "an N-difluoromethyl azole sulfur (selenium) urea derivative and a preparation method thereof".
Technical Field
The invention belongs to the technical field of organic chemical reaction, and particularly relates to a preparation method of an N-difluoromethyl imidazole sulfur (selenium) urea derivative.
Background
Azole compounds such as derivatives of benzimidazole, imidazole, triazole and the like have important application in the fields of medicines and materials, and play an important role in the creation of novel efficient medicines. The compound has the characteristics of high efficiency, low toxicity, excellent bioactivity and various structural changes, has wide application in the aspects of pesticides and medicines, and is always a hotspot and key point of organic chemistry research. (Liyan, organic chemistry, 2007,28(2): 210-217; Zhang Ying, pesticide, 2008,47(3), 164-170). Selective fluorination and fluoroalkylation of organic compounds results in significant changes in the electronic effects and skeletal characteristics of the product. The fluorine-containing compound has wide application in the fields of medicine, pesticide, material chemistry, catalysis and the like. In fluoroalkyl groups, difluoromethyl group behaves like a traditional hydrogen bond donor (N-H, O-H), which shows a stronger lipophilicity. Furthermore, when difluoromethyl is introduced, there is a clear effect on the pharmacokinetic properties of the drug, i.e. membrane permeability, bioavailability, binding affinity, metabolic stability and lipophilicity. (org. Process Res. Dev.2008,12 (2)), 305-. These compounds have a similar structure to herbicides (e.g. Sulfentrazone, Carfentrazone-ethyl and Neuro-peptide Y antagonists) which may have good biological activity for pharmaceutical and agricultural applications. ((a) Dumas, D.J.US Patent 5990315,1999., (b) Poss, K.M.PCT Int.Pat.WO 1990/002120,1990., (c) Sato, N.; Ando, M.; Ishikawa, S.; Nagase, T.; Nagai, K.; Kanatani, A.PCT Int.Pat WO 2004/031175,2004.; and (d) Org.Lett.2014,16, 54.).
In view of the important functions and application values of N-difluoromethylthiourea, it is necessary to develop a simple and efficient method for preparing N-difluoromethylthiourea derivatives. The prior reaction technology for preparing N-difluoromethyl azole thiourea generally realizes the reaction conversion by generating difluoromethyl carbene through a complex reagent of Trimethylsilyl Fluorosulfonyl Difluoroacetate (TFDA) under the catalysis of strong base (Organic Letters,2006,8(24): 5549-5551.). However, the TFDA fluorine-containing reagent is not easy to obtain, and the applicability of the substrate is very limited, so that the preparation of thiourea compounds with various structures is not facilitated; the use of strong base also has destructive effects on functional groups to different degrees, resulting in poor compatibility of the functional groups and being unfavorable for the construction of drug molecule libraries.
In view of the defects of the existing preparation technology of the N-difluoromethyl azole thiourea compound, a broad-spectrum, economical and efficient reaction technology for preparing the N-difluoromethyl azole thiourea derivative is required to be developed.
Disclosure of Invention
In order to overcome the defects and shortcomings in the prior art, the invention mainly aims to provide the N-difluoromethyl azole thiourea (selenium) derivative.
Another object of the present invention is to provide a method for producing the above N-difluoromethyl azole thiourea (selenium) derivative. The method is characterized in that the corresponding N-difluoromethyl azole thiourea derivatives are synthesized by converting heterocycles such as benzimidazole, imidazole, triazole and derivatives thereof.
The purpose of the invention is realized by the following technical scheme:
the invention provides an N-difluoromethyl azole thiourea (selenium) derivative, which comprises N-difluoromethyl benzimidazole thiourea, N-difluoromethyl imidazole thiourea, N-difluoromethyl triazole thiourea and related N-difluoromethyl selenourea derivatives, and the structural general formula of the N-difluoromethyl azole thiourea derivative is shown as chemical formulas I, II, III, IV, V, VI or VII:
Figure BDA0002674838180000031
in the chemical formula I, R1The functional group can be more than one of carbon-carbon double bond, carbon-carbon triple bond, cyano, tetrahydrofuran, dioxolane, ester group, benzyl and pentafluorobenzyl; r2Is one or more than one substitution on a benzene ring, can be the same or different and is selected from methyl, methoxy, ester group, halogen, nitro and the like at any position of the benzene ring;
in the chemical formula II, R3Can be various alkyl and various aryl groups with or without various functional groups, the carbon number of the alkyl carbon chain is 1-12, and the functional group can be phenyl, benzyl, ester group, fluorine-containing aromatic hydrocarbon,
Figure BDA0002674838180000032
One or more of (1);
in the chemical formula III, R4Can be various alkyl groups and various aryl groups with or without various functional groups, the carbon number of the alkyl carbon chain is 1-12, and the functional group can be benzyl and
Figure BDA0002674838180000041
one or more of (two-bonded N-difluoromethyl), and the like;
in the chemical formula IV, R1The alkyl can be various alkyls containing or not containing various functional groups, the carbon number of the alkyl carbon chain is 1-12, and the functional group can be more than one of carbon-carbon double bond, carbon-carbon triple bond, cyano, tetrahydrofuran, dioxolane, ester group, benzyl and pentafluorobenzyl; r2Is one or more than one substitution on a benzene ring, can be the same or different and is selected from methyl, methoxy, ester group, halogen and the like at any position of the benzene ring;
in the chemical formula V, R3The functional group can be various alkyls and various aryls with or without various functional groups, the carbon number of the alkyl carbon chain is 1-12, and the functional group can be more than one of benzene ring, benzyl, ester group and fluorine-containing aromatic hydrocarbon;
preferably, the N-difluoromethyl azole sulfur (selenium) urea derivative is a compound represented by the following structural formula:
Figure BDA0002674838180000051
Figure BDA0002674838180000061
the invention also provides a method for preparing the compound in the formula I-III, wherein reaction paths are respectively shown as the formula (1), (2) and (3); the reaction path of the preparation method of the compound in the formula IV and V is shown as the formula (4), and the reaction path of the preparation method of the compound in the formula VI is shown as the formula (5); a process for the preparation of a compound of formula VII, the reaction scheme being represented by formula (6):
Figure BDA0002674838180000062
compound 1
Figure BDA0002674838180000063
Compound 2
Figure BDA0002674838180000064
Compound 3
Figure BDA0002674838180000071
Compound 4
Figure BDA0002674838180000072
Compound 5
Figure BDA0002674838180000073
Compound 6
Figure BDA0002674838180000074
Compound 7
The azole compounds in the reaction formula (1-7), i.e. the compounds 1-7, can be benzimidazole, substituted benzimidazole derivatives, imidazole, substituted imidazole derivatives, triazole or substituted triazole derivatives, wherein the substituent refers to R1、R2、R3And R4Compounds I to VII can be obtained by the above reaction route;
the specific steps of the above reaction formula (1-7): weighing azole compound, elemental sulfur powder or selenium powder and catalyst, adding into a reaction tube, adding organic solvent into the reaction tube, and injecting BrCF2CO2Et, reacting under heating to obtain the compound shown in the formulas I-VII;
in the reaction (1-5), R1、R2、R3、R4Are as defined in (1) and R in the compounds I to VII1、R2、R3、R4The same definition is applied.
The method comprises the following steps:
the organic solvent is a commonly used organic solvent, and specifically may be at least one selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, dichloromethane, 1, 2-dichloroethane, chloroform, carbon tetrachloride, diethyl ether, diisopropyl ether, tetrahydrofuran, acetone, butanone, methyl isobutyl ketone, acetonitrile, propionitrile, butyronitrile, N-dimethylformamide, N-dimethylacetamide, N-methyl-formanilide, N-methylpyrrolidone, hexamethylphosphoric triamide, ethyl acetate, dimethyl sulfoxide, methanol, ethanol, N-propanol, isopropanol, ethylene glycol monomethyl ether, and 1, 4-dioxane; preferably at least one of N, N-dimethylformamide, tetrahydrofuran, N-methylpyrrolidone, acetonitrile and N, N-dimethylacetamide;
the catalyst is sulfinate and/or alkali;
the sulfinate can be selected from at least one of sodium hydroxymethyl sulfinate, sodium dithionite, sodium bisulfite, sodium sulfite and sodium thiosulfate, preferably at least one of sodium hydroxymethyl sulfinate, sodium dithionite, sodium bisulfite and sodium thiosulfate; the alkali may be selected from at least one of sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, sodium hydroxide, potassium hydroxide, choline, etc., preferably at least one of sodium carbonate, sodium bicarbonate, potassium carbonate, and potassium bicarbonate.
In the reaction step, the reaction temperature is 40-160 ℃, and preferably 80-120 ℃; the reaction time is 12 to 24 hours, preferably 24 hours.
In the above reaction formulae (1) to (3), (6) and (7), the amount ratio of the compound 1, the compound 2, the compound 3, the compound 6 or the compound 7 to the sulfur powder and the halogenated hydrocarbon (mass-to-mole ratio) is 1:1 to 3, preferably 1:2: 2.5;
in the above reaction formulas (4) and (5), the amount ratio of the compound 4 or the compound 5 to the selenium powder and the halogenated hydrocarbon (mass-mole ratio) is 1:1 to 3, preferably 1:2: 2.5.
Compared with the prior art, the invention has the following advantages and beneficial effects:
(1) the invention provides a technical method for preparing a batch of N-difluoromethyl azole thiourea (selenium) derivatives with simplicity, easy operation, mild condition, low price, economy and high efficiency;
(2) the compounds shown in the formulas I to VII provided by the invention have important potential application values in pesticides, medicines and organic functional materials.
Detailed Description
The present invention will be described in further detail with reference to examples, but the embodiments of the present invention are not limited thereto. The method is a conventional method which is carried out according to the above reaction chemical equation unless otherwise specified.
Example 1:
preparation of benzyl-3- (difluoromethyl) -1, 3-dihydro-2H-benzo [ d ] of formula I]Imidazole-2-thione compounds (R)1Is benzyl, R2As hydrogen):
Figure BDA0002674838180000091
the synthesis steps of the 1-benzyl benzimidazole are as follows:
in an oven-dried 100 mL round flask, equipped with a magnetic stirrer to which was added benzimidazole (5.0mmol, 0.59g), benzyl bromide (6.0mmol) and Cs2CO3(10.0 mmol). Reaction the mixture was stirred at 80 ℃ under reflux for 8 hours with acetonitrile. After the reaction was complete, the reaction mixture was cooled to room temperature. Acetonitrile was removed under vacuum and the residue was dissolved in dichloromethane and filtered to remove inorganic salts. The filtrate was concentrated in vacuo and the resulting residue was purified by flash column chromatography using petroleum and EtOAc as eluent, isolated in 92% yield (0.957 g).
The method comprises the following steps: 1-Benzylbenzimidazole (0.4mmol), sulfur powder (S) were added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-1) as a yellow solid in m.p. 113.6-113.9 ℃ in 88% yield.
The second method comprises the following steps: 1-Benzylbenzimidazole (0.4mmol), sulfur powder (S) were added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in anhydrous potassium carbonate (K)2CO3) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) for 24 hours at 100 ℃. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-1) as a yellow solid in m.p. 113.6-113.9 ℃ in 87% yield.
Example 2:
preparation of 1- (difluoromethyl) -3-methyl-1, 3-dihydro-2H-benzo [ d ] of formula I]Imidazole-2-thione compounds (R)1Is methyl, R2As hydrogen):
Figure BDA0002674838180000101
1-methylbenzimidazole (0.4mmol), sulfur powder (S) were added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-10) as a white solid in m.p. 111.3-112.5 ℃ in 73% yield.
Example 3:
preparation of 1-benzyl-3- (difluoromethyl) -1, 3-dihydro-2H-imidazole-2-thione Compound (R) represented by formula II1Is benzyl):
Figure BDA0002674838180000102
1-Benzylimidazole (0.4mmol), sulfur powder (S) were added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-24) as a pale yellow solid in m.p. 107.5-108.4 ℃ with a yield of 37%.
Example 4:
preparation of 2-benzyl-4- (difluoromethyl) -2, 4-dihydro-3H-1, 2, 4-triazole-3-thione Compound (R) represented by formula III1Is benzyl):
Figure BDA0002674838180000111
the synthesis steps of the 1-benzyl-1H-1, 2, 4-triazole comprise:
in an oven-dried 100 ml round flask, equipped with a magnetic stirrer to which was added 1,2, 4-triazole (5.0mmol), benzyl bromide (6.0mmol) and Cs2CO3(10.0 mmol). Reaction the mixture was stirred at 80 ℃ under reflux for 8 hours with acetonitrile. After the reaction was complete, the reaction mixture was cooled to room temperature. Acetonitrile was removed under vacuum and the residue was dissolved in dichloromethane and filtered to remove inorganic salts. The filtrate was concentrated in vacuo and the resulting residue was purified by flash column chromatography using petroleum and EtOAc as eluent in 65% isolated yield (0.517 g).
1-benzyl-1H-1, 2, 4-triazole (0.4mmol) and sulfur powder (S) were added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer8) (0.8mmol), bromodifluoroacetic acid ethyl esterEster (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-25) as a yellow solid in m.p. 74.2-74.8 ℃ with a yield of 41%.
Example 5:
preparation of 3- (difluoromethyl) -1-isobutyl-1, 3-dihydro-2H-imidazo [4,5-c ] of formula I]Quinoline-2-thione compounds (R)1Is isopropyl):
Figure BDA0002674838180000112
1-isobutyl-1H-imidazo [4,5-c ] was added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer]Quinoline (0.4mmol), Sulfur powder (S)8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-29) as a pale yellow solid in m.p.: 177.6-177.9 ℃ yield 33%.
Example 6:
preparation of 7-benzyl-6- (benzylamino) -9- (difluoromethyl) -7, 9-dihydro-8H-purine-8-thione Compound (R) of formula I1Is benzyl):
Figure BDA0002674838180000121
the synthesis of N, 7-dibenzyl-7H-purine-6-amine comprises the following steps:
in an oven dried 100 ml round flask, equipped with a magnetic stirrer to which was added N-benzyl-7H-purin-6-amine (5.0mmol), benzyl bromide (6.0mmol) and Cs2CO3(10.0 mmol). Reaction the mixture was stirred at 80 ℃ under reflux for 8 hours with acetonitrile. After the reaction was complete, the reaction mixture was cooled to room temperature. Acetonitrile was removed under vacuum and the residue was dissolved in dichloromethane and filtered to remove inorganic salts. The filtrate was concentrated in vacuo and the resulting residue was purified by flash column chromatography using petroleum and EtOAc as eluent in 35% isolated yield (0.552 g).
N, 7-dibenzyl-7H-purin-6-amine (0.4mmol) and sulfur powder (S) were added to an oven-dried 15mL sealed tube equipped with a magnetic stirrer and a tetrafluoroethylene cap8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-30) as a yellow solid in m.p. 116.8-117.9 ℃ with a yield of 13%.
Example 7:
preparing a 1- (2- ((4-chlorobenzyl) oxy) -2- (2, 4-dichlorophenyl) ethyl) -3- (difluoromethyl) -1, 3-dihydro-2H-imidazole-2-thione compound represented by formula I:
Figure BDA0002674838180000131
a tetrafluoroethylene cap with a magnetic stirrerThe oven dried 15mL sealed tube of (S) was charged with econazole (0.4mmol), sulfur powder (S)8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring plates gave the product (I-31) as a yellow solid in m.p. 89.0-89.9 ℃ with a yield of 48%.
Example 8:
preparing a 1- (4- (4- (((2R,4S) -2- (2, 4-dichlorophenyl) -2- ((3- (difluoromethyl) -2-thio-2, 3-dihydro-1H-imidazolepiperazin-1-yl) methyl) -1, 3-dioxolan-4-yl) methoxy) phenyl) piperazin-1-yl) ethan-1-one compound shown in formula I:
Figure BDA0002674838180000132
ketoconazole (0.4mmol), sulfur powder (S) were added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC spot plate gave the product (I-32) as a yellow oil in 43% yield.
Example 9:
preparing a 2,2' - (2- (2, 4-difluorophenyl) -2-hydroxypropane-1, 3-diyl) bis (4- (difluoromethyl) -2, 4-dihydro-3H-1, 2, 4-triazole-3-thione) compound shown in formula II:
Figure BDA0002674838180000141
fluconazole (0.4mmol) and sulfur powder (S) were added to an oven-dried 15mL sealed tube equipped with a magnetic stirrer and a tetrafluoroethylene cap8) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH)2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC spot plate gave the product (I-33) as a yellow oil in 25% yield.
Example 10:
preparing a 1-benzyl-3- (difluoromethyl) -1, 3-dihydro-2H-benzo [ d ] imidazole-2-selenone compound shown as a formula III:
Figure BDA0002674838180000142
1-Benzylbenzimidazole (0.4mmol), selenium powder (Se) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in sodium hydroxymethylsulfinate (HOCH) was added to an oven-dried 15mL sealed tube with a tetrafluoroethylene cap equipped with a magnetic stirrer2SO2Na) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) was stirred at 100 ℃ for 24 hours. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC monitoring spot plates to giveTo a pale yellow solid product (I-34), m.p.: 121.8-122.5 ℃, yield 54%.
Example 11:
preparing a 1- (2- ((4-chlorobenzyl) oxy) -2- (2, 4-dichlorophenyl) ethyl) -3- (difluoromethyl) -1, 3-dihydro-2H-imidazole-2-selenone compound shown as a formula II:
Figure BDA0002674838180000151
adding econazole (0.4mmol), selenium powder (Se) (0.8mmol), ethyl bromodifluoroacetate (1.0mmol) in anhydrous potassium carbonate (K) in an oven-dried 15mL sealed tube with a tetrafluoroethylene cap and a magnetic stirrer2CO3) (0.8mmol) as a catalyst in N, N-Dimethylacetamide (DMA) (2.0mL) for 24 hours at 100 ℃. After the reaction was completed, the reaction mixture was cooled to room temperature, the mixture was extracted with a saturated brine and ethyl acetate solvent, and the organic layers were combined and washed with anhydrous Na2SO4Dry and evaporate the solvent in vacuo on a rotary evaporator. Flash column chromatography using 300-400 mesh silica gel and purification of the crude mixture by preparative TLC spot plate gave the product (I-36) as a yellow oil in 55% yield.
Following the same procedure as in example 1, only R of the reaction formulae (1) to (7) was reacted1、R2、R3、R4Substitution is carried out as shown in Table 1 to obtain other corresponding products shown as formulas I-VII, which are numbered as I- (1-36). The appearance and yield of the above compounds are shown in Table 1, and the results of infrared, low resolution and nuclear magnetic hydrogen spectroscopy are shown in Table 2. As can be seen from the above, the compounds numbered sequentially as I- (1-36) have the correct structure and are all compounds represented by formulas I-VII.
TABLE 1 physical constants of the compounds of formulae I-III
Figure BDA0002674838180000152
Figure BDA0002674838180000161
Figure BDA0002674838180000171
Figure BDA0002674838180000181
Figure BDA0002674838180000191
Figure BDA0002674838180000201
Figure BDA0002674838180000211
Figure BDA0002674838180000221
TABLE 2 Infrared, Low resolution and NMR Hydrogen Spectroscopy data for Compounds of formulae I-III
Figure BDA0002674838180000222
Figure BDA0002674838180000231
Figure BDA0002674838180000241
Figure BDA0002674838180000251
Figure BDA0002674838180000261
Figure BDA0002674838180000271
Figure BDA0002674838180000281
Figure BDA0002674838180000291
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations, and simplifications are intended to be included in the scope of the present invention.

Claims (7)

1. A preparation method of N-difluoromethyl imidazole thiourea derivatives or N-difluoromethyl imidazole selenourea derivatives is characterized by comprising the following specific steps: weighing azole compound, elemental sulfur powder or selenium powder and catalyst, adding into a reaction vessel, adding organic solvent into the reaction vessel, adding BrCF2CO2Et, reacting under heating to obtain the compound; the azole compound refers to
Figure FDA0002674838170000011
Y ═ C or N;
the organic solvent is at least one selected from benzene, toluene, xylene, chlorobenzene, dichlorobenzene, dichloromethane, 1, 2-dichloroethane, chloroform, carbon tetrachloride, diethyl ether, diisopropyl ether, tetrahydrofuran, acetone, butanone, methyl isobutyl ketone, acetonitrile, propionitrile, butyronitrile, N-dimethylformamide, N-dimethylacetamide, N-methyl-formanilide, N-methylpyrrolidone, hexamethylphosphoric triamide, ethyl acetate, dimethyl sulfoxide, methanol, ethanol, N-propanol, isopropanol, ethylene glycol monomethyl ether and 1, 4-dioxane; the sulfinate is selected from at least one of sodium hydroxymethyl sulfinate, sodium dithionite, sodium bisulfite, sodium sulfite and sodium thiosulfate; the alkali is at least one selected from sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, potassium phosphate, potassium hydrogen phosphate, potassium dihydrogen phosphate, sodium hydroxide, potassium hydroxide and choline;
the reaction route is shown as the following formula:
Figure FDA0002674838170000012
y ═ C or N;
when Y is C, X is S or Se; r4Is various alkyl and various aryl groups with or without various functional groups, the carbon number of the alkyl carbon chain is 1-12, and the functional groups are phenyl, benzyl, ester group, alkyl, aryl, heteroaryl,
Figure FDA0002674838170000021
One or more of (1);
when Y is N, X is S; r4Is various alkyl and various aryl groups with or without various functional groups, the carbon number of the alkyl carbon chain is 1-12, and the functional groups are benzyl and
Figure FDA0002674838170000022
more than one of them.
2. The method for preparing an N-difluoromethyl imidazole thiourea derivative or an N-difluoromethyl imidazole selenourea derivative according to claim 1, wherein the organic solvent is at least one selected from the group consisting of N, N-dimethylformamide, tetrahydrofuran, N-methylpyrrolidone, acetonitrile and N, N-dimethylacetamide.
3. The method for preparing N-difluoromethyl imidazole thiourea derivatives or N-difluoromethyl imidazole selenourea derivatives according to claim 1, wherein the sulfinate is selected from at least one of sodium hydroxymethanesulfinate, sodium dithionite, sodium bisulfite and sodium thiosulfate; the alkali is at least one selected from sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate.
4. The method for preparing N-difluoromethyl imidazole thiourea derivative or N-difluoromethyl imidazole selenourea derivative according to claim 1, wherein in the reaction formula, the reaction temperature is 40-160 ℃; the reaction time is 12-24 hours.
5. The method for preparing N-difluoromethylimidazolium thiourea derivatives or N-difluoromethylimidazolium selenourea derivatives according to claim 4, wherein in the reaction formula, the reaction temperature is 80-120 ℃; the reaction time was 24 hours.
6. The method for preparing an N-difluoromethylimidazothiourea derivative or an N-difluoromethylimidazoselenourea derivative according to claim 1, wherein the molar ratio of azole compound to sulfur powder and halogenated hydrocarbon in the reaction formula is 1:1-3: 1-3.
7. The method for preparing an N-difluoromethylimidazothiourea derivative or an N-difluoromethylimidazoselenourea derivative according to claim 1, characterized in that, in the reaction formula, the molar ratio of azole compound to sulfur powder and halogenated hydrocarbon is 1:2: 2.5.
CN202010944657.9A 2018-11-30 2018-11-30 Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative Active CN112194634B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010944657.9A CN112194634B (en) 2018-11-30 2018-11-30 Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010944657.9A CN112194634B (en) 2018-11-30 2018-11-30 Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative
CN201811452050.8A CN109369538B (en) 2018-11-30 2018-11-30 N-difluoromethyl azole thiourea (selenium) derivative and preparation method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201811452050.8A Division CN109369538B (en) 2018-11-30 2018-11-30 N-difluoromethyl azole thiourea (selenium) derivative and preparation method thereof

Publications (2)

Publication Number Publication Date
CN112194634A true CN112194634A (en) 2021-01-08
CN112194634B CN112194634B (en) 2022-08-12

Family

ID=65376345

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202010944657.9A Active CN112194634B (en) 2018-11-30 2018-11-30 Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative
CN202010944659.8A Pending CN112047889A (en) 2018-11-30 2018-11-30 Preparation method of N-difluoromethyl heteroarene imidazole thiourea derivative
CN201811452050.8A Active CN109369538B (en) 2018-11-30 2018-11-30 N-difluoromethyl azole thiourea (selenium) derivative and preparation method thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202010944659.8A Pending CN112047889A (en) 2018-11-30 2018-11-30 Preparation method of N-difluoromethyl heteroarene imidazole thiourea derivative
CN201811452050.8A Active CN109369538B (en) 2018-11-30 2018-11-30 N-difluoromethyl azole thiourea (selenium) derivative and preparation method thereof

Country Status (1)

Country Link
CN (3) CN112194634B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978260B (en) * 2020-07-29 2022-06-14 华南农业大学 Benzimidazolone derivative or agriculturally and pharmaceutically acceptable salt and application thereof
CN112300079B (en) * 2020-11-05 2023-10-20 华南农业大学 N-difluoromethyl azole selenourea derivative or pharmaceutically acceptable salt and application thereof
CN115466228B (en) * 2021-07-12 2024-05-10 华南农业大学 N-difluoromethyl triazole selenourea compound with insecticidal, bactericidal and herbicidal functions and application thereof
CN114685495B (en) * 2022-03-31 2023-08-04 华南农业大学 N-difluoromethyl diazacyclo selenourea compound with insecticidal, bacteriostatic, herbicidal and anticancer effects and preparation and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499085A (en) * 1966-10-04 1970-03-03 Bayer Ag Fungicidal 1-acyl-benzimidazoline compositions and methods of use
US5990315A (en) * 1998-05-29 1999-11-23 E. I. Du Pont De Nemours And Company Process for the preparation of sulfentrazone
WO2004031175A2 (en) * 2002-09-30 2004-04-15 Banyu Pharmaceutical Co., Ltd. N-substituted-2-oxodihydropyridine derivatives as npy antagonists
US20110190122A1 (en) * 2008-10-07 2011-08-04 Basf Se Triazole and Imidazole Compounds, Use Thereof and Agents Containing Them
CN102503896A (en) * 2011-10-25 2012-06-20 西北农林科技大学 Methylacryloyl-benzimidazole (sulfur) ketone derivative and application of serving as antibacterial agent thereof
CN108675961A (en) * 2018-02-19 2018-10-19 温州医科大学 A kind of 1- methyl -2-(2,4,6- trimethylbenzene selenos)Benzimidazole compound and preparation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499085A (en) * 1966-10-04 1970-03-03 Bayer Ag Fungicidal 1-acyl-benzimidazoline compositions and methods of use
US5990315A (en) * 1998-05-29 1999-11-23 E. I. Du Pont De Nemours And Company Process for the preparation of sulfentrazone
WO2004031175A2 (en) * 2002-09-30 2004-04-15 Banyu Pharmaceutical Co., Ltd. N-substituted-2-oxodihydropyridine derivatives as npy antagonists
US20110190122A1 (en) * 2008-10-07 2011-08-04 Basf Se Triazole and Imidazole Compounds, Use Thereof and Agents Containing Them
CN102503896A (en) * 2011-10-25 2012-06-20 西北农林科技大学 Methylacryloyl-benzimidazole (sulfur) ketone derivative and application of serving as antibacterial agent thereof
CN108675961A (en) * 2018-02-19 2018-10-19 温州医科大学 A kind of 1- methyl -2-(2,4,6- trimethylbenzene selenos)Benzimidazole compound and preparation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAGDALENA RAPP ET AL.: "Reactions of trimethylsilyl fluoros ulfonyldifluo roacetate with purine and pyrimidin e nucl eosides", 《JOURNAL OF FLUORINE CHEMISTRY》 *
PASCAL S. ENGL ET AL.: "Exploiting and Understanding the Selectivity of Ru-N-Heterocyclic Carbene Metathesis Catalysts for the Ethenolysis of Cyclic Olefi ns to α,ω -Dienes", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
WEI XU ET AL.: "An Unexpected Reaction of Trimethylsilyl Fluorosulfonyldifluoroacetate (TFDA) with Imidazoles. Formation of N-Difluoromethylthioureas", 《ORAGANIC LETTERS》 *

Also Published As

Publication number Publication date
CN112047889A (en) 2020-12-08
CN109369538B (en) 2021-01-22
CN112194634B (en) 2022-08-12
CN109369538A (en) 2019-02-22

Similar Documents

Publication Publication Date Title
CN112194634B (en) Preparation method of N-difluoromethyl imidazole sulfur (selenium) urea derivative
WO2013119328A1 (en) Solid state forms of apixaban
Bharathiraja et al. Expedient synthesis of tetrasubstituted pyrroles via a copper-catalyzed cascade inter-/intramolecular cyclization of 1, 3-enynes carry a nitro group with amines
CN110437236A (en) A kind of indoles -1,2- and 1,4- benzodiazepine compounds and its synthetic method
Meshram et al. Synthesis, characterization, and antimicrobial activity of benzimidazole-derived chalcones containing 1, 3, 4-oxadiazole moiety
CN111606858A (en) Preparation method of imidazole sulfur (selenium) ketone derivative
Zhu et al. N2-Selective β-Thioalkylation of Benzotriazoles with Alkenes
CN106892921B (en) A method of synthesis spiral shell indenes pyrrolopyridines
CN106187897B (en) A kind of synthetic method of ring fused pyrazole class compound
US9802980B2 (en) Method for producing pyrazoles, novel pyrazoles and applications thereof
CN112321583A (en) Synthesis method of 1,2, 4-thiadiazole compound
Lee et al. Copper-catalyzed aerobic cascade reaction for the conversion of 3, 4-dihydropyrimidine-2 (1H)-thiones to arylthiopyrimidines
CN110028451A (en) A kind of full substituted pyrazole derivative preparation method
CN108218804B (en) 4-alkylthio-3-isoxazolone derivative and synthesis method thereof
CN112876416B (en) Diaryl formyl substituted pyrazole compound and preparation method thereof
US9315477B2 (en) Materials having electron deficient moieties and methods of synthesizing thereof
Yamamoto et al. New regiocontrolled syntheses of pyrrolopyrazinones and its application to the synthesis of peramine
CN109265403B (en) Synthesis method of benzimidazole and derivatives thereof
CN108299303A (en) A kind of new synthetic method of four arylpyrazoles compound
Man et al. New intra–intermolecular criss-cross cycloaddition of unsymmetrical allenylazines with alkynes leading to three fused five-membered heterocycles
US7678923B2 (en) Method for synthesizing 5-chloro-1-aryl-4-(4,5-dicyano-1h-imidazol-2-yl)-3-alkyl-1h-pyrazole derivatives
JP5112670B2 (en) Method for producing substituted amino acid Schiff base compound
CN110357866A (en) Benzo five-membered oxa- ring-benzimidazole salt compound and its synthetic method and application
JP6486717B2 (en) Triazine compound
WO2003027103A1 (en) Synthesis of key azole-antifungal intermediates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant