CN112179879B - 一种左多巴纳米颗粒的制备方法及其生物传感应用 - Google Patents

一种左多巴纳米颗粒的制备方法及其生物传感应用 Download PDF

Info

Publication number
CN112179879B
CN112179879B CN201910597070.2A CN201910597070A CN112179879B CN 112179879 B CN112179879 B CN 112179879B CN 201910597070 A CN201910597070 A CN 201910597070A CN 112179879 B CN112179879 B CN 112179879B
Authority
CN
China
Prior art keywords
levodopa
concentration
fam
dna
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910597070.2A
Other languages
English (en)
Other versions
CN112179879A (zh
Inventor
刘金华
邹昌鹏
张承武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910597070.2A priority Critical patent/CN112179879B/zh
Publication of CN112179879A publication Critical patent/CN112179879A/zh
Application granted granted Critical
Publication of CN112179879B publication Critical patent/CN112179879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及一种左多巴纳米颗粒的制备方法及其生物传感应用,属于纳米生物传感技术领域。使用左多巴(L‑DA)作为唯一的前体在室温条件下合成左多巴纳米颗粒(L‑PDANs),形成的L‑PDANs通过静电作用能够快速有效的淬灭染料标记的寡核苷酸荧光探针(FAM‑DNA)。再通过互补脱氧核糖核酸(cDNA)或三磷酸腺苷(ATP)与荧光探针竞争结合,使得荧光恢复,从而构建了一种有效的探测生物分子的传感平台。此外,该传感平台还能够在复杂体系中(人体血清)对三磷酸腺苷进行高灵敏度和选择性检测。本发明中所合成的左多巴纳米颗粒过程简单环保,对细胞和生物体毒副作用较低,且对染料标记的寡核苷酸具有很强的淬灭作用,大大降低了背景荧光,提高了信噪比。

Description

一种左多巴纳米颗粒的制备方法及其生物传感应用
技术领域
本发明涉及一种左多巴纳米颗粒的制备方法及其生物传感应用,属于纳米生物传感技术领域。
背景技术
核酸适配体是人工寡核苷酸(DNA或RNA),能与多种目标物质高特异性、高选择性地结合,因此被广泛应用于生物传感器领域。当核酸适配体与目标物质发生特异性结合时,核酸适配体自身的构型会随之发生变化。迄今为止,已经开发了许多方法来探测生物分子相互作用。常见的方法有:Taqman,分子信标,荧光信号适配体和利用基于溶液的荧光杂交。这些探针的选择性是通过生物分子高度特异的分子识别能力来实现的,如:抗体抗原结合和DNA碱基配对。然而,它们的有效性高度依赖于将识别事件转化可测量荧光信号的能力,在与目标相互作用时,有几个变量会影响信号变化的增量。主要包括:(1)染料猝灭剂性能的选择,(2)染料猝灭剂基团的附着方法,(3)不可识别的靶结合位点,和(4)未预见的构象变化。因此,荧光探针常用于分子相互作用研究和超灵敏生物分析,这对医学诊断、疾病预防和药物研发至关重要。
碳纳米颗粒是一类新型碳基纳米材料,具有化学稳定性好、生物兼容性高和细胞毒性低等特点。碳纳米材料独特的结构特征,且对生物分子的高度特异性的识别能力,已被用于创建生物分析中的许多新型工具,特别是对于生物传感器,由于碳纳米颗粒同时具有碳材料性质和纳米尺寸效应,与具有平面结构的染料分子作用较强,并且可以通过电子转移或能量转移等过程引起荧光猝灭。因此,利用碳纳米颗粒作为纳米猝灭剂,将为生物分子荧光识别提供潜在平台。Yang等人构建了一种单壁碳纳米管与单链DNA非共价键共组装形成的新型的荧光生物传感器,能够探测和识别生物分子相互作用。Lu等人开发了水溶性氧化石墨烯(GO)传感平台,对DNA和蛋白质的检测具有高灵敏度、高选择性的特点。相比于碳纳米管,低成本和GO的大生产规模使其成为设计生物传感器的有前途的材料。
这里我们合成了新型的树枝状左多巴纳米颗粒,具有合成过程简单环保、生物相容性好、细胞毒性低和对染料标记的寡核苷酸有强淬灭作用等特点。左多巴纳米颗粒作为淬灭剂,大大降低了背景荧光,从而构建了一种有效的探测生物分子的传感平台。(背景写得很乱,没有条理)
发明内容
本发明的目的在于:提出了一种左多巴纳米颗粒的制备方法及生物传感应用。所述方法可以利用价格低廉的原料和简单环保的制备工艺过程,得到左多巴纳米颗粒,所制备的左多巴纳米颗粒具有独特的树枝状结构,对染料标记的寡核苷酸具有很强的淬灭作用,并且具有很好的生物兼容性对细胞和生物体较低的毒副作用。
本发明的技术方案之一是,左多巴纳米颗粒的制备方法,其特征在于:室温下,使用左多巴作为唯一的前体,配置不同浓度的水溶液,放置一段时间,溶液颜色由无色变成棕褐色表明聚多巴胺量子点的形成。制备的左多巴纳米颗粒定期通过紫外可见分光光度计测量并绘制吸收光谱曲线,监控左多巴纳米颗粒的行成。利用所制备的左多巴纳米颗粒的高效猝灭性能,构建了一种有效的探测生物分子的传感平台。
以下对本发明做出进一步说明。
室温下,取0.03~1.48g的左多巴和15mL去离子水配置成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为0.01~0.5M,暗室放置九个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成。每隔一段时间对形成左多巴纳米颗粒进行紫外吸收光谱测试。实时监控左多巴纳米颗粒的形成。
本发明的技术方案之二是,基于左多巴纳米颗粒作为高淬灭剂的生物传感应用。其特征在于:向FAM-DNA存在的Tris-HCl缓冲溶液中加入所述的左多巴纳米颗粒,使FAM-DNA荧光淬灭,再加入互补脱氧核糖核酸
(cDNA),使缓冲溶液中FAM-DNA荧光恢复,通过荧光分光光度计进行测试。
以下对本发明做出进一步说明。
基于左多巴纳米颗粒作为高淬灭剂的生物传感应用,所述Tris-HCl缓冲溶液的pH为7.4,浓度为10mM,NaCl的浓度为50mM,MgCl2的浓度为20mM;
在400μL Tris-HCl缓冲溶液中加入37.5nM的FAM-DNA,再加入浓度为135μM的左多巴纳米颗粒溶液,震荡摇匀,反应15min,再依次加入0-200nM的不同浓度的互补脱氧核糖核酸(cDNA)溶液,震荡摇匀,反应5min后,通过荧光光谱仪测量绘制荧光强度图,记录加互补脱氧核糖核酸(cDNA)前后荧光强度变化情况。(浓度写一个范围)
本发明的技术方案之三是,基于左多巴纳米颗粒作为高淬灭剂的生物传感应用,其特征在于:在包含FAM-DNA的Tris-HCl缓冲溶液中,加入所述的左多巴纳米颗粒,使FAM-DNA荧光淬灭,再加入三磷酸腺苷(ATP),使缓冲溶液中FAM-DNA荧光恢复。
以下对本发明做出进一步说明。
基于左多巴纳米颗粒作为高淬灭剂的生物传感应用,所述Tris-HCl缓冲溶液的pH为7.4,浓度为10mM,NaCl的浓度为50mM,MgCl2的浓度为20mM;
在400μL Tris-HCl缓冲溶液中加入37.5nM的FAM-DNA,再加入浓度为135μM的左多巴纳米颗粒溶液,震荡摇匀,反应15min,再依次加入0-200μM的不同浓度的三磷酸腺苷(ATP)溶液,震荡摇匀,反应5min后,通过荧光光谱仪测量绘制荧光强度图,记录加三磷酸腺苷(ATP)前后荧光强度变化情况。
本发明的技术方案之四是,基于左多巴纳米颗粒构建的生物传感平台在复杂环境中的应用,其特征在于:在包含FAM-DNA的缓冲溶液中一定量的人体血清,再加入所述的左多巴纳米颗粒,使FAM-DNA的荧光淬灭,最后加入三磷酸腺苷(ATP),使FAM-DNA的荧光恢复,通过荧光分光光度计进行测试。
以下对本发明做出进一步说明。
基于左多巴纳米颗粒构建的生物传感平台在复杂环境中的应用,所述Tris-HCl缓冲溶液的pH为7.4,浓度为10mM,NaCl的浓度为50mM,MgCl2的浓度为20mM;
在Tris-HCl缓冲溶液中加入0.05-1%的人体血清,加入浓度为20-100nM的FAM-DNA,再加入浓度为50-200μM的左多巴纳米颗粒溶液,震荡摇匀,反应5-20min,再依次加入0-100μM的不同浓度的三磷酸腺苷(ATP)溶液,震荡摇匀,反应5-10min后,通过荧光光谱仪测量绘制荧光强度图,记录加三磷酸腺苷(ATP)前后荧光强度变化情况。
本发明的有益效果:
本发明的方法为使用左多巴作为唯一的前体在室温条件下合成聚左多巴纳米颗粒(L-PDANs),形成的L-PDANs能够快速有效的淬灭染料标记的寡核苷酸荧光探针(FAM-DNA),大大降低了背景荧光,构建了一种有效的探测生物分子的传感平台。此外,该传感平台还能够在复杂环境体系中实现对三磷酸腺苷(ATP)的检测。本发明中合成的左多巴纳米颗粒为独特树枝状结构,具有合成过程简单环保、生物相容性好、细胞毒性低和对染料标记的寡核苷酸有强淬灭作用等特点,可用做对相关染料进行荧光猝灭的高猝灭剂。
附图说明:
下面结合附图对本发明的实施例作进一步说明。
图1为实施例1中制得的左多巴纳米颗粒的紫外可见吸收光谱图;
图2为实施例2中制得的左多巴纳米颗粒的紫外可见吸收光谱图;
图3为实施例3中制得的左多巴纳米颗粒的紫外可见吸收光谱图;
图4为实施例4中制得的左多巴纳米颗粒的紫外可见吸收光谱图;
图5为实施例5中制得的左多巴纳米颗粒的红外光谱图;
图6为实施例5中制得的左多巴纳米颗粒的紫外可见吸收光谱图;
图7为实施例6中制得的左多巴纳米颗粒淬灭FAM-DNA探针后的荧光发射光谱图;
图8为实施例7中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入互补脱氧核糖核酸后的荧光发射光谱图;
图9为实施例8中制得的不同浓度的左多巴纳米颗粒淬灭FAM-DNA探针的荧光发射光谱图;
图10为实施例8中制得的不同浓度的左多巴纳米颗粒淬灭FAM-DNA探针的荧光相对强度散点图;
图11为实施例8中制得的不同浓度的左多巴纳米颗粒淬灭FAM-DNA探针的标准曲线图;
图12为实施例9中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入互补脱氧核糖核酸后的荧光发射光谱图;
图13为实施例9中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入互补脱氧核糖核酸后的荧光相对强度散点图;
图14为实施例9中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入互补脱氧核糖核酸后的标准曲线图;
图15为实施例10中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入三磷酸腺苷后的荧光发射光谱图;
图16为实施例10中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入三磷酸腺苷后的荧光相对强度散点图;
图17为实施例10中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入三磷酸腺苷后的标准曲线图;
图18为实施例11中制得的左多巴纳米颗粒淬灭FAM-DNA探针后加入不同高能磷酸化合物后的荧光相对强度变化柱状图;
图19为实施例12中制得的左多巴纳米颗粒在人体血清中淬灭FAM-DNA探针后加入不同浓度三磷酸腺苷后的荧光发射光谱图;
图20为实施例12中制得的左多巴纳米颗粒在人体血清中淬灭FAM-DNA探针后加入不同浓度三磷酸腺苷后的荧光相对强度散点图;
图21为实施例12中制得的左多巴纳米颗粒在人体血清中淬灭FAM-DNA探针后加入不同浓度三磷酸腺苷后的标准曲线;
图22为基于左多巴纳米颗粒构建生物传感平台的示意图。
具体实施方式
以下结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和过程,但本发明的保护范围不限于下述实施例。
实施例1:室温下,取0.02957g的左多巴和15mL去离子水配置成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为10mM暗室放置1个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成。通过紫外可见分光光度计测量绘制吸收光谱曲线,如图1。
实施例2:室温下,取0.02957g的左多巴和15mL去离子水配置成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为10mM暗室放置3个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成。通过紫外可见分光光度计测量绘制吸收光谱曲线,如图2。
实施例3:室温下,取0.02957g的左多巴和15mL去离子水配置成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为0.01M暗室放置6个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成。通过紫外可见分光光度计测量绘制吸收光谱曲线,如图3。
实施例4:室温下,取0.02957g的左多巴和15mL去离子水配置成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为10mM暗室放置9个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成。通过紫外可见分光光度计测量绘制吸收光谱曲线,如图4。
实施例5:室温下,取0.02957g的左多巴和15mL去离子水配置成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为10mM暗室放置9个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成。制备的左多巴纳米颗粒冷冻干燥,取一定量的左多巴纳米颗粒,使用红外光谱(FT-IR)表征,再通过紫外可见分光光度计测量绘制吸收光谱曲线,如图5和图6。
实施例6:室温下,取400μL的Tris-HCl缓冲溶液,加入37.5nM的FAM-DNA,再加入135μM的左多巴纳米颗粒,震荡摇匀,反应15min。通过荧光光谱仪对FAM-DNA探针进行荧光强度检测,绘制荧光发射光谱图,如图7。
实施例7:室温下,取400μL的Tris-HCl缓冲溶液,加入37.5nM的FAM-DNA,再加入135μM的左多巴纳米颗粒,震荡摇匀,反应15min,最后加入200nM互补脱氧核糖核酸(cDNA),震荡摇匀,反应5min。通过荧光光谱仪进行荧光强度检测,绘制荧光发射光谱图,如图8。
实施例8:室温下,取400μL的Tris-HCl缓冲溶液,加入37.5nM的FAM-DNA,再加入0-200μM不同浓度的左多巴纳米颗粒,震荡摇匀,反应15min。通过荧光光谱仪进行荧光强度检测,绘制荧光发射光谱图、荧光相对强度散点图和标准曲线图,如图9、图10和图11。
实施例9:室温下,取400μL的Tris-HCl缓冲溶液,加入37.5nM的FAM-DNA,再加入135μM的左多巴纳米颗粒,震荡摇匀,反应15min,最后加入0-200nM不同浓度互补脱氧核糖核酸(cDNA),震荡摇匀,反应5min。通过荧光光谱仪进行荧光强度检测,绘制荧光发射光谱图、荧光相对强度散点图和标准曲线图,如图12、图13和图14。
实施例10:室温下,取400μL的Tris-HCl缓冲溶液,加入37.5nM的FAM-DNA,再加入135μM的左多巴纳米颗粒,震荡摇匀,反应15min,最后加入0-200μM不同浓度三磷酸腺苷(ATP),震荡摇匀,反应5min。通过荧光光谱仪进行荧光强度检测,绘制荧光发射光谱图、荧光相对强度散点图和标准曲线图,如图15、图16和图17。
实施例11:室温下,取400μL的Tris-HCl缓冲溶液,加入37.5nM的FAM-DNA,再加入135μM的左多巴纳米颗粒,震荡摇匀,反应15min。向混合溶液中分别加入150μM的4种不同的高能磷酸化合物:1,Blank;2,ATP;3,CTP;4,GTP;5,UTP,震荡摇匀,反应5min。通过荧光光谱仪进行荧光强度检测,绘制荧光相对强度柱状图,如图18。
实施例12:室温下,取400μL的Tris-HCl缓冲溶液,加入0.1%的人体血清,再加入37.5nM的FAM-DNA。在制备好的探针溶液中加入135μM的左多巴纳米颗粒,震荡摇匀,反应15min,再加入0-100μM不同浓度三磷酸腺苷(ATP),震荡摇匀,反应5min。通过荧光光谱仪进行荧光强度检测,绘制荧光发射光谱图、荧光相对强度散点图和标准曲线图,如图19、图20和图21。
本发明的不局限于上述实施例所述的具体技术方案,凡采用等同替换形成的技术方案均为本发明要求的保护范围。

Claims (5)

1.一种左多巴纳米颗粒的生物传感应用,其中左多巴纳米颗粒制备方法如下:室温下,取0.03~1.48g的左多巴和15mL去离子水配制成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为0.01~0.5M,暗室放置1-9个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成,每隔一段时间对形成的左多巴纳米颗粒进行吸收光谱测试;其特征在于:向寡核苷酸荧光探针(FAM-DNA)存在的Tris-HCl缓冲溶液中加入所述的左多巴纳米颗粒,使得寡核苷酸荧光探针(FAM-DNA)的荧光淬灭,再加入互补脱氧核糖核酸(cDNA),使缓冲溶液中寡核苷酸荧光探针(FAM-DNA)荧光恢复,通过荧光分光光度计测试荧光信号的变化,其中缓冲溶液中包含NaCl和MgCl2
2.根据权利要求1所述的一种左多巴纳米颗粒的生物传感应用,其特征在于:所述Tris-HCl缓冲溶液浓度为5-30mM,pH为7.4,NaCl的浓度为20-50mM,MgCl2的浓度为5-20mM;寡核苷酸荧光探针(FAM-DNA)的浓度为20-100nM,左多巴纳米颗粒溶液的浓度为5-20mM,互补脱氧核糖核酸(cDNA)的浓度为0-300nM,探针与淬灭剂的反应时间为5-20min。
3.一种左多巴纳米颗粒的生物传感应用,其中左多巴纳米颗粒制备方法如下:室温下,取0.03~1.48g的左多巴和15mL去离子水配制成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为0.01~0.5M,暗室放置1-9个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成,每隔一段时间对形成的左多巴纳米颗粒进行吸收光谱测试;其特征在于:向包含寡核苷酸荧光探针(FAM-DNA)的Tris-HCl缓冲溶液中加入所述的左多巴纳米颗粒,使寡核苷酸荧光探针(FAM-DNA)荧光淬灭,再加入三磷酸腺苷(ATP),缓冲溶液中寡核苷酸荧光探针(FAM-DNA)荧光恢复,通过荧光分光光度计测试荧光信号的变化,其中缓冲溶液中包含NaCl和MgCl2
4.根据权利要求3所述的一种左多巴纳米颗粒的生物传感应用,其特征在于:所述Tris-HCl缓冲溶液浓度为10mM,pH为7.4,NaCl的浓度为50mM,MgCl2的浓度为20mM;寡核苷酸荧光探针(FAM-DNA)的浓度为37.5nM,左多巴纳米颗粒溶液的浓度为10mM,三磷酸腺苷(ATP)的浓度为0-200μM,探针与淬灭剂的反应时间为5-20min。
5.一种左多巴纳米颗粒的生物传感应用,其中左多巴纳米颗粒制备方法如下:室温下,取0.03~1.48g的左多巴和15mL去离子水配制成混合溶液置于20mL玻璃瓶中,使混合溶液中左多巴浓度为0.01~0.5M,暗室放置1-9个月,溶液颜色由无色变成棕褐色表明左多巴纳米颗粒的形成,每隔一段时间对形成的左多巴纳米颗粒进行吸收光谱测试;其特征在于:向包含寡核苷酸荧光探针(FAM-DNA)的复杂样品中加入所述的左多巴纳米颗粒,寡核苷酸荧光探针(FAM-DNA)的荧光随着左多巴纳米颗粒浓度的增加而减弱,再加入三磷酸腺苷(ATP),寡核苷酸荧光探针(FAM-DNA)的荧光随着三磷酸腺苷(ATP)浓度的增加而增强,从而构建了一种有效的检测ATP的传感平台,所述复杂样品为人的血清,尿液。
CN201910597070.2A 2019-07-02 2019-07-02 一种左多巴纳米颗粒的制备方法及其生物传感应用 Active CN112179879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910597070.2A CN112179879B (zh) 2019-07-02 2019-07-02 一种左多巴纳米颗粒的制备方法及其生物传感应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910597070.2A CN112179879B (zh) 2019-07-02 2019-07-02 一种左多巴纳米颗粒的制备方法及其生物传感应用

Publications (2)

Publication Number Publication Date
CN112179879A CN112179879A (zh) 2021-01-05
CN112179879B true CN112179879B (zh) 2023-07-21

Family

ID=73915697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910597070.2A Active CN112179879B (zh) 2019-07-02 2019-07-02 一种左多巴纳米颗粒的制备方法及其生物传感应用

Country Status (1)

Country Link
CN (1) CN112179879B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798377B (zh) * 2021-01-29 2023-03-17 四川大学华西医院 一种荧光淬灭恢复剂及其应用
CN113607702B (zh) * 2021-07-21 2022-09-23 南京工业大学 一种基于锰离子诱导的比率型荧光反应检测碱性磷酸酶、心肌钙蛋白活性的方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196967A (zh) * 2013-03-21 2013-07-10 上海师范大学 一种多巴胺类聚合物/贵金属纳米粒子电化学传感器及其制备方法和应用
CN108007987A (zh) * 2017-12-02 2018-05-08 广西民族大学 一种甲基多巴分子印迹电化学传感器的制备方法
CN108593612B (zh) * 2018-04-25 2021-12-14 南京工业大学 一种基于聚多巴胺量子点荧光增强型检测二氧化硫衍生物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Simple and rapid detection of l-dopa based on in situ formation ofpolylevodopa nanoparticles;nanoparticlesM. Reza Hormozi-Nezhad 等;《Sensors and Actuators B》;20161212;第715-720页 *

Also Published As

Publication number Publication date
CN112179879A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
Sargazi et al. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review
Zhang et al. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique
Wang et al. Facile and sensitive paper-based chemiluminescence DNA biosensor using carbon dots dotted nanoporous gold signal amplification label
An et al. Carbon dots-based dual-emission ratiometric fluorescence sensor for dopamine detection
Freire et al. NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification
Ban et al. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine
Jin et al. Enzyme-free fluorescence microarray for determination of hepatitis B virus DNA based on silver nanoparticle aggregates-assisted signal amplification
Wang et al. Integration of nanomaterials with nucleic acid amplification approaches for biosensing
Malhotra Biosensors: fundamentals and applications
Wu et al. Target-triggered and T7 exonuclease-assisted cascade recycling amplification strategy for label-free and ultrasensitive fluorescence detection of aflatoxin B1
Sohrabi et al. Self-assembled monolayer-assisted label-free electrochemical genosensor for specific point-of-care determination of Haemophilus influenzae
Pina-Coronado et al. Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures for sensitive and selective SARS-CoV-2 sensing
CN112179879B (zh) 一种左多巴纳米颗粒的制备方法及其生物传感应用
Yang et al. Molecularly imprinted polymers-isolated AuNP-enhanced CdTe QD fluorescence sensor for selective and sensitive oxytetracycline detection in real water samples
Wu et al. Ratiometric fluorescence sensor for the sensitive detection of Bacillus thuringiensis transgenic sequence based on silica coated supermagnetic nanoparticles and quantum dots
Fu et al. A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of Group B Streptococci with improved stability and accuracy
CN109187470B (zh) 一种用适配体介导掺银碳点催化h2o2与tmb反应荧光光谱测定铅的方法
Gholami et al. A new nano biosensor for maitotoxin with high sensitivity and selectivity based fluorescence resonance energy transfer between carbon quantum dots and gold nanoparticles
Pedro et al. A novel nucleic acid fluorescent sensing platform based on nanostructured films of intrinsically conducting polymers
Zhu et al. A rotating paper-based microfluidic sensor array combining Michael acceptors and carbon quantum dots for discrimination of biothiols
Tang et al. Luminescent lanthanide coordination polymer as a platform for DNA colorimetric detection
Song et al. Multiplexed detection of SARS-CoV-2 based on upconversion luminescence nanoprobe/MXene biosensing platform for COVID-19 point-of-care diagnostics
Sui et al. Ultrasensitive detection of Hg (II) through metal-enhanced fluorescence and hybridization chain reaction
Li et al. Visual microarray detection for human IgE based on silver nanoparticles
Xie et al. A dual-mode of electrochemical-colorimetric biosensing platform for kanamycin detection based on self-sacrifice beacon and magnetic separation technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant