CN112172129A - 3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法 - Google Patents

3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法 Download PDF

Info

Publication number
CN112172129A
CN112172129A CN202011054535.9A CN202011054535A CN112172129A CN 112172129 A CN112172129 A CN 112172129A CN 202011054535 A CN202011054535 A CN 202011054535A CN 112172129 A CN112172129 A CN 112172129A
Authority
CN
China
Prior art keywords
fuzzy
temperature
control
value
spray head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011054535.9A
Other languages
English (en)
Inventor
田成元
孙晓微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GANSU VOCATIONAL AND TECHNICAL COLLEGE OF COMMUNICATIONS
Original Assignee
GANSU VOCATIONAL AND TECHNICAL COLLEGE OF COMMUNICATIONS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GANSU VOCATIONAL AND TECHNICAL COLLEGE OF COMMUNICATIONS filed Critical GANSU VOCATIONAL AND TECHNICAL COLLEGE OF COMMUNICATIONS
Priority to CN202011054535.9A priority Critical patent/CN112172129A/zh
Publication of CN112172129A publication Critical patent/CN112172129A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种3D打印机喷头温度自适应Fuzzy‑PID控制系统的操作方法,包括以下步骤:1)建立温度响应模型:a、选择打印丝材;b、喷头加热过程结束,3D打印机开始打印任务;c、在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号,原始温度为,设定采样周期,通过温度传感器对喷头温度数据进行采集,根据实验获得结果作出阶跃响应曲线,并结合拟合曲线求取传递函数的具体参数数值,将实验数据绘制表格;d、使用MATLAB拟合工具将上表中的数据进行拟合,得到近似S形阶跃响应曲线;2)通过齐格勒‑尼科尔斯经验整定公式可求解以上传递函数的比例系数、惯性常数、纯延迟时间常数;3)Fuzzy‑PID控制系统;在MATLAB/Simulink仿真环境中使用Fuzzy工具箱设计模糊控制器。

Description

3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法
技术领域
本发明涉及一种3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法。
背景技术
不同的3D打印成型技术,其过程控制系统也存在差异,在熔融沉积型过程控制系统中,喷头温度和送丝机构控制作为其关键的过程控制参数,应以稳定的熔融状态和丝材挤出速度来保证模型成型精度,故对喷头的温度控制等级要求较高,喷头在工作过程中,温度需要保持在能够使丝材达到可流动的黏稠状态。如果喷头内温度过高,将会导致丝材发生碳化分解反应堵住喷头,影响正常工作;如果喷头内温度过低,将无法使丝材达到熔融的可流动状态,进而无法从喷头流出。此外还要求将热床控制在适当的温度才可使得熔融的丝材附着,因此在整个过程控制系统中对于温度的控制等级与精度要求较高。
发明内容
本发明要解决的技术问题是提供一种3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,能够有效控制3D打印系统的喷头温度,并具有较高的可靠性。
为了实现上述发明目的,本发明采用下述技术方案:
本发明提出了一种3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,所述3D打印机包括加热管、热床和喷头;其特征在于包括以下步骤:
1)建立温度响应模型:
a、选择打印丝材;
b、所述喷头、温度传感器、第一A/D转换模块、温度控制板、第二A/D转换模块和加热管电连接;开通电源,使得加热管对热床和喷头持续加热后使其温度上升,其相对应的热敏电阻阻值发生变化,端电压也发生改变,热敏电阻两端的电压经过分压电阻后,由温度控制板采集端口读取热床和喷头的热敏电阻端电压,并通过第一A/D转换模块获取实时电压值,当获取的电压值与设定数值相同时,则喷头加热过程结束,3D打印机开始打印任务;
c、喷头加热结束后,3D打印机开始打印任务,在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号230℃,原始温度为185℃,以10s为一采样周期,通过温度传感器对喷头温度数据进行采集,根据实验获得结果作出阶跃响应曲线,并结合拟合曲线求取传递函数的具体参数数值,将实验数据绘制表格;
d、使用MATLAB拟合工具将上表中的数据进行拟合,得到近似S形阶跃响应曲线;所述S形阶跃响应曲线适用带纯延迟的一阶惯性环节,因此上述数学模型能作为喷头模块的温度传递函数;
2)通过齐格勒-尼科尔斯经验整定公式可求解以上传递函数的比例系数、惯性常数、纯延迟时间常数,由科恩-库恩公式可得:
Figure BDA0002710531540000021
其中,ΔC为控制系统的输出响应;ΔM为控制系统的阶跃输入;t0.632为喷头温度升高到0.632ΔC时所用时长;t0.28为喷头温度升高到0.28ΔC时所用时长;
解得:k=45/230=0.196,T=1.5*(55-39)=24,τ=20.7。
求得传递函数:
Figure BDA0002710531540000022
以上确定3D打印机喷头原始温度响应曲线,给定目标温度值,绘制温度变化曲线图;
3)Fuzzy-PID控制系统
e、PID控制系统
在3D打印喷头温度控制系统中,通过热电偶实时采集到的温度值与目标值作差比较,两者差值即为PID控制器的输入量;
PID控制器根据系统设定值r(t)与实际采样数据c(t)求出控制偏差值e(t),三者关系如式3所示:
e(t)=r(t)-c(t) (3)
将偏差值经过比例、积分与微分处理后,并通过线性组合得到控制量,控制规律的表达式为:
Figure BDA0002710531540000023
积分时间常数Ti
f、模糊控制系统
在模糊控制器中输入温度偏差值与偏差变化率,通过模糊控制规则判断输出PID控制器参数值实现对3D打印机喷头温度的实时控制;
在MATLAB/Simulink仿真环境中使用Fuzzy工具箱设计模糊控制器,选用Mamdani型模糊控制器二维控制结构,即输入信号为实际采样值与设定值的偏差量e和偏差变化率ec,输出信号为模糊控制器计算得到PID参数修正值kp、ki和kd,在PID控制器中输入信号参数修正值到,从而实现Fuzzy-PID控制。
作为本发明进一步的改进:所述喷头、温度传感器、第一A/D转换模块、温度控制板、第二A/D转换模块和加热管串联连接。
作为本发明进一步的改进:步骤4)在模糊处理过程中,输入量与输出量的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB},根据喷头温度控制要求,参数kp、ki和kd在不同e和ec下自动整定时需符合以下调整规则:
(1)当误差e较大时,为保证系统具有快速响应能力,无论误差如何变化均应取较大的kp和较小的kd,此外为防止系统响应超调量过大,还需削弱积分作用,即ki取较小值;
(2)当误差e取中间值时,为防止超调量过大,kp需要设定较小数值,同时为了提高响应速度,ki和kd取中等值,此时系统响应取决于kd的取值;
(3)当误差e取较小值时,为维持系统的稳定性,kp和ki应取较大值,此外为防止系统在目标值周围发生连续波动、增强系统抵抗外界干扰能力,当ec较小时,kd应取较大值;当ec较大时,kd应取较小值;
根据以上控制规律,将模糊控制规则整理为表,形成对应的输出信号kp、ki和kd的模糊规则表;在MATLAB模糊逻辑工具箱中,按表在模糊规则编辑界面中设置控制规则,在MATLAB/Simulink中选用模糊推理系统编辑器和隶属函数编辑器,根据控制规则设定输入量e和ec的论域为{-3,-2,-1,0,1,2,3},设定输出量kp、ki和kd的论域为{0,0.5,1,1.5,2,2.5,3},按照三角均匀分布型隶属度函数对输入数据进行模糊化处理,模糊控制器选用二维Mamdani控制器,模糊控制决策使用Max-Min,选用重心法解模糊,设定完成。
作为本发明进一步的改进:还包括验证阶段:
在3D打印系统中,规定喷头起始温度为,目标温度为,量化因子e,ec取,比例因子kp、ki和kd,根据控制规则,整定PID控制中kp、ki和kd的数值,绘制仿真结果响应曲线;
将Fuzzy-PID模型与PID控制、模糊控制模型进行整合图绘制,及各控制方式的控制响应曲线图,绘制控制结果对比表。
作为本发明进一步的改进:在实际成型工作中,3D打印机喷头温度控制系统可采用以上模糊控制规则实现对PID参数的实时自动调整,持续检测e和ec,并迅速推理出PID控制参数与e和ec的对应关系,实现参数在线自动整定使得Fuzzy-PID控制性能优于PID控制与模糊控制。
作为本发明进一步的改进:在3D打印系统中,规定喷头起始温度为0℃,目标温度为180℃,量化因子e为0.4,ec取0.6,比例因子kp、ki和kd均取1。
作为本发明进一步的改进:所述3D打印丝材包括ABS类材料和PLA类材料,选用ABS类材料时,热床与喷头温度应分别达到110℃、230℃,选用PLA类材料时,热床和喷头温度应达到60℃、190℃。
作为本发明进一步的改进:c、喷头加热结束后,3D打印机开始打印任务,在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号230℃,原始温度为185℃,以10s为一采样周期。
本发明提供的一种3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,Fuzzy-PID控制系统在3D打印机喷头温度控制系统中具有动态响应快、调整速度迅速、稳态性能高、抗干扰能力强、超调量小等优势,适合于工况变化频繁的工作系统,能够有效控制3D打印系统的喷头温度,并具有较高的可靠性。
附图说明
图1为本发明的温度控制系统框图。
图2为阶跃响应曲线。
图3为原始温度响应曲线。
图4为PID控制系统原理框图。
图5为Fuzzy-PID控制系统原理框图。
图6为模糊控制规则。
图7为模糊推理系统。
图8为Fuzzy-PID控制仿真图。
图9为Fuzzy-PID控制响应曲线。
图10为控制系统仿真模型整合图。
图11为控制响应曲线。
具体实施方式
以下通过具体实施例对本发明提供的一种3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法做进一步更详细的说明:
一、实验内容
1、利用MATLAB/Simulink仿真软件,在3D打印系统中引入Fuzzy-PID控制器实现对喷头温度响应模型的精确控制,借助仿真工具对比观察传统PID控制器、模糊控制器与Fuzzy-PID控制器对3D打印机喷头温度的控制效果。
2、温度响应模型
丝材类型决定了喷头的工作温度,常见的3D打印丝材有ABS类材料和PLA类材料,选用ABS类材料时,热床与喷头温度应分别达到110℃、230℃,选用PLA类材料时,热床和喷头温度应达到60℃、190℃。加热管对热床和喷头持续加热后使其温度上升,其相对应的热敏电阻阻值发生变化,端电压也发生改变。热敏电阻两端的电压经过分压电阻后,由温度控制板采集端口读取热床和喷头的热敏电阻端电压,并通过A/D转换(片内A/D模块)获取实时电压值。当获取的电压值与设定数值相同时,则喷头加热过程结束,3D打印机开始打印任务,喷头温度控制系统框图如图1所示。在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号230℃,原始温度为185℃,以10s为一采样周期,通过温度传感器对喷头温度数据进行采集,根据实验获得结果作出阶跃响应曲线,并结合拟合曲线求取传递函数的具体参数数值,实验数据如表1所示。
表1阶跃响应实验数据
Figure BDA0002710531540000051
使用MATLAB拟合工具将上表数据进行拟合,得到相应阶跃响应曲线,如图2所示。由图2可知,喷头温度阶跃响应曲线近似为S形状曲线,由齐格勒-尼科尔斯法则(反应曲线法)可得,S形阶跃响应曲线适用带纯延迟的一阶惯性环节,因此上述数学模型可作为喷头模块的温度传递函数。通过齐格勒-尼科尔斯经验整定公式可求解以上传递函数的比例系数、惯性常数、纯延迟时间常数,由科恩-库恩公式可得:
Figure BDA0002710531540000052
其中,ΔC为控制系统的输出响应;ΔM为控制系统的阶跃输入;t0.632为喷头温度升高到0.632ΔC时所用时长;t0.28为喷头温度升高到0.28ΔC时所用时长。
解得:k=45/230=0.196,T=1.5*(55-39)=24,τ=20.7。
求得传递函数:
Figure BDA0002710531540000053
以上确定3D打印机喷头原始温度响应曲线,给定目标温度值为180℃,温度变化曲线如图3所示。
3、Fuzzy-PID控制系统设计及验证
PID控制为使用领域较广的传统控制策略之一,目前仍在广泛应用,当控制对象可表示为准确的数学模型时,使用PID控制可获得较好的控制效果。但在实际工程应用过程中,当控制目标的参数值出现改变时,PID控制无法修改参数,只能按照固定控制规律进行调节。此外,由于大多数被控过程运行原理较为繁杂,控制目标模型很难创建,致使PID控制效果并不理想,系统状态的改变会引起控制效果发生波动。
而模糊控制将输入的参数数值按照给定规则进行模糊化整合后会引起系统控制误差增大、响应速度降低,经分析发现PID控制与模糊控制本身均存在较大的缺陷,故本实验利用Fuzzy-PID控制方式对3D打印机喷头温度进行控制,在MATLAB中搭建仿真模型进行仿真实验,并与采用传统控制方式的控制效果进行对比,Fuzzy-PID控制通过PID参数整定规则实时设置模糊控制器的输出量,从而使PID控制器参数根据输入值的变化进行自动调整,使系统对模型的敏感度降低,能够获得较好的控制效果,具有良好的静态与动态特性。
3.1PID控制系统
PID控制算法针对设定数值与实时数值的偏差进行比例、积分和微分处理,经过线性组合将处理后的数值作为控制量,对目标对象实施控制以降低偏差。在3D打印喷头温度控制系统中,将通过热电偶实时采集到的温度值与目标值作差比较,两者差值即为PID控制器的输入量。PID控制系统原理框图如图4所示。
PID控制器根据系统设定值r(t)与实际采样数据c(t)求出控制偏差值e(t),三者关系如式3所示:
e(t)=r(t)-c(t) (3)
将偏差值经过比例、积分与微分处理后,并通过线性组合得到控制量,控制规律的表达式为:
Figure BDA0002710531540000061
比例环节:使用比例环节能够实时成比例地显示控制系统的偏差信号e(t),较快地发挥控制作用,逐渐降低偏差值。稳定误差随着比例系数kp增大而降低,同时会导致动态稳定性降低,系统振荡严重,超调量升高。
积分环节:在PID控制中加入积分环节以降低静态误差值,即当闭环系统运行稳定时,PID控制输出值和控制偏差值保持不变。积分时间常数Ti确定了积分作用的效果,时间常数取值越大积分效果越弱,反之则效果越强。随着积分时间常数Ti的减小,静态误差减小,但较小的积分常数又会使系统振动幅度加大,稳定性降低。
微分环节:在PID控制中增加微分环节用以提高系统稳定性、增大动态响应速度,能够判断系统发展方向,预判出偏差信号的变化方向,并能在偏差信号值变大前,输入适当的前期补偿信号,从而提高系统响应速度,缩短控制周期。
3.2模糊控制系统
在3D打印机喷头温度控制过程中,通过温度传感器检测各个时刻的喷头温度值,同时与设定温度值进行对比计算出此时温度偏差值,通过对时间积分获得偏差变化率,在模糊控制器中输入温度偏差值与偏差变化率,通过模糊控制规则判断输出PID控制器参数值实现对3D打印机喷头温度的实时控制。
在MATLAB/Simulink仿真环境中使用Fuzzy工具箱设计模糊控制器,选用Mamdani型模糊控制器二维控制结构,即输入信号为实际采样值与设定值的偏差量e和偏差变化率ec,输出信号为模糊控制器计算得到PID参数修正值kp、ki和kd,在PID控制器中输入信号参数修正值到,从而实现Fuzzy-PID控制,Fuzzy-PID控制器原理图如图5所示:
在模糊处理过程中,模糊控制规则是该过程中的关键部分,输入量与输出量的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB},根据喷头温度控制要求,参数kp、ki和kd在不同e和ec下自动整定时需符合以下调整规则:
(1)当误差e较大时,为保证系统具有快速响应能力,无论误差如何变化均应取较大的kp和较小的kd,此外为防止系统响应超调量过大,还需削弱积分作用,即ki取较小值;
(2)当误差e取中间值时,为防止超调量过大,kp需要设定较小数值,同时为了提高响应速度,ki和kd取中等值,此时系统响应取决于kd的取值;
(3)当误差e取较小值时,为维持系统的稳定性,kp和ki应取较大值,此外为防止系统在目标值周围发生连续波动、增强系统抵抗外界干扰能力,当ec较小时,kd应取较大值;当ec较大时,kd应取较小值。
根据以上控制规律,按照“if…then…”(即如果…则)语言格式,将模糊控制规则整理为如下49条控制规则:
rule1:if(e is PB)and(ec is PB)then(kp is NB)(ki is PB)(kd is PB)
rule49:if(e is NB)and(ec is NB)then(kp is PB)(ki is NB)(kd is PS)
对应的输出信号kp、ki和kd的模糊规则分别为表2-4所示。
表2 kp模糊控制规则表
Figure BDA0002710531540000071
表3 ki模糊控制规则表
Tab3 Fuzzy control rules table of ki
Figure BDA0002710531540000072
Figure BDA0002710531540000081
表4 kd模糊控制规则表
Tab4 Fuzzy control rules table of kd
Figure BDA0002710531540000082
在MATLAB模糊逻辑工具箱中,按表2-4所示在模糊规则编辑界面中设置控制规则,如图6所示。
在MATLAB/Simulink中选用模糊推理系统编辑器和隶属函数编辑器,根据控制规则设定输入量e和ec的论域为{-3,-2,-1,0,1,2,3},设定输出量kp、ki和kd的论域为{0,0.5,1,1.5,2,2.5,3},按照三角均匀分布型隶属度函数对输入数据进行模糊化处理,模糊控制器选用二维Mamdani控制器,模糊控制决策使用Max-Min,选用重心法解模糊,设定完成后的界面如图7所示。
在实际成型工作中,3D打印机喷头温度控制系统可采用以上模糊控制规则实现对PID参数的实时自动调整,持续检测e和ec,并迅速推理出PID控制参数与e和ec的对应关系,实现参数在线自动整定使得Fuzzy-PID控制性能优于PID控制与模糊控制。
3.3 Fuzzy-PID控制系统及验证
在3D打印系统中,规定喷头起始温度为0℃,目标温度为180℃,量化因子e为0.4,ec取0.6,比例因子kp、ki和kd均取1,根据控制规则,整定PID控制中kp、ki和kd的数值。如图8所示,仿真结果响应曲线如图9所示。
为了更清晰地比较出Fuzzy-PID控制的控制能力,将Fuzzy-PID模型与PID控制、模糊控制模型进行整合,如图10所示,各控制方式的控制响应曲线如图11所示,控制结果对比表见表5。
表5控制结果对比表
Figure BDA0002710531540000083
Figure BDA0002710531540000091
Fuzzy-PID控制在传统模糊控制与PID控制的基础上加入了PID参数值的动态调整功能,通过仿真验证表明,与PID控制、模糊控制相比,采用Fuzzy-PID控制时,调控时间分别降低37.83%、19.51%,超调量分别降低94.79%、75%,稳态误差分别降低22.58%、64.71%。Fuzzy-PID控制具有良好的控制适应能力与非线性逼近能力,满足3D打印机喷头温度控制系统实时控制的要求,Fuzzy-PID控制具有调整时间短和稳态性能好等多种优点,充分体现了Fuzzy-PID参数自整定控制的优势。针对3D打印机喷头温度控制系统,引入参数自整定Fuzzy-PID控制,使用MATLAB模糊逻辑模块及仿真模块建立系统仿真图,通过仿真曲线获取优化参数。经分析表明,与模糊控制系统及PID控制系统相比较,自整定Fuzzy-PID控制系统在3D打印机喷头温度控制系统中具有动态响应快、调整速度迅速、稳态性能高、抗干扰能力强、超调量小等优势,适合于工况变化频繁的工作系统,能够有效控制3D打印系统的喷头温度,并具有较高的可靠性。
实施例1
本实施例的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,所述3D打印机包括加热管、热床和喷头;包括以下步骤:
1)建立温度响应模型:
a、选择打印丝材;
b、所述喷头、温度传感器、第一A/D转换模块、温度控制板、第二A/D转换模块和加热管电连接;开通电源,使得加热管对热床和喷头持续加热后使其温度上升,其相对应的热敏电阻阻值发生变化,端电压也发生改变,热敏电阻两端的电压经过分压电阻后,由温度控制板采集端口读取热床和喷头的热敏电阻端电压,并通过第一A/D转换模块获取实时电压值,当获取的电压值与设定数值相同时,则喷头加热过程结束,3D打印机开始打印任务;
c、喷头加热结束后,3D打印机开始打印任务,在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号230℃,原始温度为185℃,以10s为一采样周期,通过温度传感器对喷头温度数据进行采集,根据实验获得结果作出阶跃响应曲线,并结合拟合曲线求取传递函数的具体参数数值,将实验数据绘制表格;
d、使用MATLAB拟合工具将上表中的数据进行拟合,得到近似S形阶跃响应曲线;所述S形阶跃响应曲线适用带纯延迟的一阶惯性环节,因此上述数学模型能作为喷头模块的温度传递函数;
2)通过齐格勒-尼科尔斯经验整定公式可求解以上传递函数的比例系数、惯性常数、纯延迟时间常数,由科恩-库恩公式可得:
Figure BDA0002710531540000101
其中,ΔC为控制系统的输出响应;ΔM为控制系统的阶跃输入;t0.632为喷头温度升高到0.632ΔC时所用时长;t0.28为喷头温度升高到0.28ΔC时所用时长;
解得:k=45/230=0.196,T=1.5*(55-39)=24,τ=20.7。
求得传递函数:
Figure BDA0002710531540000102
以上确定3D打印机喷头原始温度响应曲线,给定目标温度值,绘制温度变化曲线图;
3)Fuzzy-PID控制系统
e、PID控制系统
在3D打印喷头温度控制系统中,通过热电偶实时采集到的温度值与目标值作差比较,两者差值即为PID控制器的输入量;
PID控制器根据系统设定值r(t)与实际采样数据c(t)求出控制偏差值e(t),三者关系如式3所示:
e(t)=r(t)-c(t) (3)
将偏差值经过比例、积分与微分处理后,并通过线性组合得到控制量,控制规律的表达式为:
Figure BDA0002710531540000103
积分时间常数Ti
f、模糊控制系统
在模糊控制器中输入温度偏差值与偏差变化率,通过模糊控制规则判断输出PID控制器参数值实现对3D打印机喷头温度的实时控制;
在MATLAB/Simulink仿真环境中使用Fuzzy工具箱设计模糊控制器,选用Mamdani型模糊控制器二维控制结构,即输入信号为实际采样值与设定值的偏差量e和偏差变化率ec,输出信号为模糊控制器计算得到PID参数修正值kp、ki和kd,在PID控制器中输入信号参数修正值到,从而实现Fuzzy-PID控制。
所述喷头、温度传感器、第一A/D转换模块、温度控制板、第二A/D转换模块和加热管串联连接。
步骤4)在模糊处理过程中,输入量与输出量的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB},根据喷头温度控制要求,参数kp、ki和kd在不同e和ec下自动整定时需符合以下调整规则:
(1)当误差e较大时,为保证系统具有快速响应能力,无论误差如何变化均应取较大的kp和较小的kd,此外为防止系统响应超调量过大,还需削弱积分作用,即ki取较小值;
(2)当误差e取中间值时,为防止超调量过大,kp需要设定较小数值,同时为了提高响应速度,ki和kd取中等值,此时系统响应取决于kd的取值;
(3)当误差e取较小值时,为维持系统的稳定性,kp和ki应取较大值,此外为防止系统在目标值周围发生连续波动、增强系统抵抗外界干扰能力,当ec较小时,kd应取较大值;当ec较大时,kd应取较小值;
根据以上控制规律,将模糊控制规则整理为表,形成对应的输出信号kp、ki和kd的模糊规则表;在MATLAB模糊逻辑工具箱中,按表在模糊规则编辑界面中设置控制规则,在MATLAB/Simulink中选用模糊推理系统编辑器和隶属函数编辑器,根据控制规则设定输入量e和ec的论域为{-3,-2,-1,0,1,2,3},设定输出量kp、ki和kd的论域为{0,0.5,1,1.5,2,2.5,3},按照三角均匀分布型隶属度函数对输入数据进行模糊化处理,模糊控制器选用二维Mamdani控制器,模糊控制决策使用Max-Min,选用重心法解模糊,设定完成。
还包括验证阶段:
在3D打印系统中,规定喷头起始温度为,目标温度为,量化因子e,ec取,比例因子kp、ki和kd,根据控制规则,整定PID控制中kp、ki和kd的数值,绘制仿真结果响应曲线;
将Fuzzy-PID模型与PID控制、模糊控制模型进行整合图绘制,及各控制方式的控制响应曲线图,绘制控制结果对比表。
在实际成型工作中,3D打印机喷头温度控制系统可采用以上模糊控制规则实现对PID参数的实时自动调整,持续检测e和ec,并迅速推理出PID控制参数与e和ec的对应关系,实现参数在线自动整定使得Fuzzy-PID控制性能优于PID控制与模糊控制。
在3D打印系统中,规定喷头起始温度为0℃,目标温度为180℃,量化因子e为0.4,ec取0.6,比例因子kp、ki和kd均取1。
所述3D打印丝材包括ABS类材料和PLA类材料,选用ABS类材料时,热床与喷头温度应分别达到110℃、230℃,选用PLA类材料时,热床和喷头温度应达到60℃、190℃。
c、喷头加热结束后,3D打印机开始打印任务,在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号230℃,原始温度为185℃,以10s为一采样周期。
应当理解,这些实施例的用途仅用于说明本发明而非意欲限制本发明的保护范围。此外,也应理解,在阅读了本发明的技术内容之后,本领域技术人员可以对本发明作各种改动、修改和/或变型,所有的这些等价形式同样落于本申请所附权利要求书所限定的保护范围之内。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (8)

1.3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,所述3D打印机包括加热管、热床和喷头;其特征在于包括以下步骤:
1)建立温度响应模型:
a、选择打印丝材;
b、所述喷头、温度传感器、第一A/D转换模块、温度控制板、第二A/D转换模块和加热管电连接;开通电源,使得加热管对热床和喷头持续加热后使其温度上升,其相对应的热敏电阻阻值发生变化,端电压也发生改变,热敏电阻两端的电压经过分压电阻后,由温度控制板采集端口读取热床和喷头的热敏电阻端电压,并通过第一A/D转换模块获取实时电压值,当获取的电压值与设定数值相同时,则喷头加热过程结束,3D打印机开始打印任务;
c、喷头加热结束后,3D打印机开始打印任务,在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号,原始温度为,设置采样周期,通过温度传感器对喷头温度数据进行采集,根据实验获得结果作出阶跃响应曲线,并结合拟合曲线求取传递函数的具体参数数值,将实验数据绘制表格;
d、使用MATLAB拟合工具将上表中的数据进行拟合,得到近似S形阶跃响应曲线;所述S形阶跃响应曲线适用带纯延迟的一阶惯性环节,因此上述数学模型能作为喷头模块的温度传递函数;
2)通过齐格勒-尼科尔斯经验整定公式可求解以上传递函数的比例系数、惯性常数、纯延迟时间常数,由科恩-库恩公式可得:
Figure RE-FDA0002793653460000011
其中,ΔC为控制系统的输出响应;ΔM为控制系统的阶跃输入;t0.632为喷头温度升高到0.632ΔC时所用时长;t0.28为喷头温度升高到0.28ΔC时所用时长;
解得:k=45/230=0.196,T=1.5*(55-39)=24,τ=20.7。
求得传递函数:
Figure RE-FDA0002793653460000012
以上确定3D打印机喷头原始温度响应曲线,给定目标温度值,绘制温度变化曲线图;
3)Fuzzy-PID控制系统
e、PID控制系统
在3D打印喷头温度控制系统中,通过热电偶实时采集到的温度值与目标值作差比较,两者差值即为PID控制器的输入量;
PID控制器根据系统设定值r(t)与实际采样数据c(t)求出控制偏差值e(t),三者关系如式3所示:
e(t)=r(t)-c(t) (3)
将偏差值经过比例、积分与微分处理后,并通过线性组合得到控制量,控制规律的表达式为:
Figure RE-FDA0002793653460000021
积分时间常数Ti
f、模糊控制系统
在模糊控制器中输入温度偏差值与偏差变化率,通过模糊控制规则判断输出PID控制器参数值实现对3D打印机喷头温度的实时控制;
在MATLAB/Simulink仿真环境中使用Fuzzy工具箱设计模糊控制器,选用Mamdani型模糊控制器二维控制结构,即输入信号为实际采样值与设定值的偏差量e和偏差变化率ec,输出信号为模糊控制器计算得到PID参数修正值kp、ki和kd,在PID控制器中输入信号参数修正值到,从而实现Fuzzy-PID控制。
2.根据权利要求1所述的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,其特征在于:
所述喷头、温度传感器、第一A/D转换模块、温度控制板、第二A/D转换模块和加热管串联连接。
3.根据权利要求1所述的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,其特征在于:
步骤4)在模糊处理过程中,输入量与输出量的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB},根据喷头温度控制要求,参数kp、ki和kd在不同e和ec下自动整定时需符合以下调整规则:
(1)当误差e较大时,为保证系统具有快速响应能力,无论误差如何变化均应取较大的kp和较小的kd,此外为防止系统响应超调量过大,还需削弱积分作用,即ki取较小值;
(2)当误差e取中间值时,为防止超调量过大,kp需要设定较小数值,同时为了提高响应速度,ki和kd取中等值,此时系统响应取决于kd的取值;
(3)当误差e取较小值时,为维持系统的稳定性,kp和ki应取较大值,此外为防止系统在目标值周围发生连续波动、增强系统抵抗外界干扰能力,当ec较小时,kd应取较大值;当ec较大时,kd应取较小值;
根据以上控制规律,将模糊控制规则整理为表,形成对应的输出信号kp、ki和kd的模糊规则表;在MATLAB模糊逻辑工具箱中,按表在模糊规则编辑界面中设置控制规则,在MATLAB/Simulink中选用模糊推理系统编辑器和隶属函数编辑器,根据控制规则设定输入量e和ec的论域为{-3,-2,-1,0,1,2,3},设定输出量kp、ki和kd的论域为{0,0.5,1,1.5,2,2.5,3},按照三角均匀分布型隶属度函数对输入数据进行模糊化处理,模糊控制器选用二维Mamdani控制器,模糊控制决策使用Max-Min,选用重心法解模糊,设定完成。
4.根据权利要求1所述的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,其特征在于:还包括验证阶段:
在3D打印系统中,规定喷头起始温度为,目标温度为,量化因子e,ec取,比例因子kp、ki和kd,根据控制规则,整定PID控制中kp、ki和kd的数值,绘制仿真结果响应曲线;
将Fuzzy-PID模型与PID控制、模糊控制模型进行整合图绘制,及各控制方式的控制响应曲线图,绘制控制结果对比表。
5.根据权利要求4所述的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,其特征在于:
在实际成型工作中,3D打印机喷头温度控制系统可采用以上模糊控制规则实现对PID参数的实时自动调整,持续检测e和ec,并迅速推理出PID控制参数与e和ec的对应关系,实现参数在线自动整定使得Fuzzy-PID控制性能优于PID控制与模糊控制。
6.根据权利要求5所述的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,其特征在于:
在3D打印系统中,规定喷头起始温度为0℃,目标温度为180℃,量化因子e为0.4,ec取0.6,比例因子kp、ki和kd均取1。
7.根据权利要求1所述的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,其特征在于:
所述3D打印丝材包括ABS类材料和PLA类材料,选用ABS类材料时,热床与喷头温度应分别达到110℃、230℃,选用PLA类材料时,热床和喷头温度应达到60℃、190℃。
8.根据权利要求1所述的3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法,其特征在于:
c、喷头加热结束后,3D打印机开始打印任务,在3D打印工作过程处于稳定运行状态时,向系统输入温度控制信号230℃,原始温度为185℃,以10s为一采样周期。
CN202011054535.9A 2020-09-30 2020-09-30 3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法 Pending CN112172129A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011054535.9A CN112172129A (zh) 2020-09-30 2020-09-30 3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011054535.9A CN112172129A (zh) 2020-09-30 2020-09-30 3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法

Publications (1)

Publication Number Publication Date
CN112172129A true CN112172129A (zh) 2021-01-05

Family

ID=73946024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011054535.9A Pending CN112172129A (zh) 2020-09-30 2020-09-30 3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法

Country Status (1)

Country Link
CN (1) CN112172129A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960922A (zh) * 2021-12-23 2022-01-21 深圳市晨北科技有限公司 Pid控制参数整定方法、装置、设备及存储介质
CN116627028A (zh) * 2023-07-21 2023-08-22 阳谷新太平洋电缆有限公司 交联电缆生产线控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170239721A1 (en) * 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
CN111124018A (zh) * 2019-12-31 2020-05-08 浙江大学 基于多传感器的宠物监护仓智能温度控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170239721A1 (en) * 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
CN111124018A (zh) * 2019-12-31 2020-05-08 浙江大学 基于多传感器的宠物监护仓智能温度控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
唐庆瑞等: ""FDM 成型系统喷头温度控制方法研究"", 《机械研究与应用》 *
张鹏飞等: ""基于自适应模糊PID的注塑机温度控制及仿真"", 《中国塑料》 *
高斌等: ""自适应模糊 PID 控制的遥测方舱温度调节方法"", 《电子制作》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960922A (zh) * 2021-12-23 2022-01-21 深圳市晨北科技有限公司 Pid控制参数整定方法、装置、设备及存储介质
CN113960922B (zh) * 2021-12-23 2022-03-11 深圳市晨北科技有限公司 Pid控制参数整定方法、装置、设备及存储介质
CN116627028A (zh) * 2023-07-21 2023-08-22 阳谷新太平洋电缆有限公司 交联电缆生产线控制方法
CN116627028B (zh) * 2023-07-21 2023-09-29 阳谷新太平洋电缆有限公司 交联电缆生产线控制方法

Similar Documents

Publication Publication Date Title
US5173224A (en) Fuzzy inference thermocontrol method for an injection molding machine with a pid control
CN104890205B (zh) 一种注塑机料筒温度控制方法
CN112172129A (zh) 3D打印机喷头温度自适应Fuzzy-PID控制系统的操作方法
CA2053625C (en) Thermocontrol method for an injection molding machine
KR100511670B1 (ko) 제어 장치, 온도 조절기 및 열처리 장치
US4430698A (en) Three-mode process control
US5149472A (en) Fuzzy inference thermocontrol method for an injection molding machine
DE69028054T2 (de) Adaptives Prozessregelungssystem, insbesondere zur Temperaturregelung für strömende Flüssigkeiten
CA2033223C (en) Compound control method for controlling a system
CN108508870B (zh) 一种锅炉汽包水位控制系统性能评估及参数优化的方法
Tsoi et al. Control of injection velocity using a fuzzy logic rule‐based controller for thermoplastics injection molding
Joseph A tutorial on inferential control and its applications
WO2008019469A1 (en) Control schema of molding-system process, amongst other things
CN112711282B (zh) 一种燃料电池的水温控制方法及系统
US5355938A (en) Temperature control device
Kim et al. An application of min–max generalized predictive control to sintering processes
Tsai et al. Fuzzy supervisory predictive PID control of a plastics extruder barrel
CN102455718A (zh) 一种催化剂生产装置中的温度控制系统及其方法和应用
CN112114517A (zh) 3d打印温度控制算法
Huang et al. Neural-network-based predictive learning control of ram velocity in injection molding
CN113204253B (zh) 一种滴丸机滴盘液位的模糊控制方法和系统
Ravi et al. Design and development of a microcontroller based neuro fuzzy temperature controller
Veligorskyi et al. Variable structure controller for plastic injection moulding system
Dormeier Extruder control
Meng et al. A novel discrete sliding mode controller for MIMO complex nonlinear systems with uncertainty

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210105

RJ01 Rejection of invention patent application after publication