CN112162090B - 纳米氧化石墨烯改性沥青混合料自修复性能评价方法 - Google Patents

纳米氧化石墨烯改性沥青混合料自修复性能评价方法 Download PDF

Info

Publication number
CN112162090B
CN112162090B CN202011087419.7A CN202011087419A CN112162090B CN 112162090 B CN112162090 B CN 112162090B CN 202011087419 A CN202011087419 A CN 202011087419A CN 112162090 B CN112162090 B CN 112162090B
Authority
CN
China
Prior art keywords
self
repairing
asphalt mixture
test piece
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011087419.7A
Other languages
English (en)
Other versions
CN112162090A (zh
Inventor
许涛
徐蕙玉
谭凌智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202011087419.7A priority Critical patent/CN112162090B/zh
Publication of CN112162090A publication Critical patent/CN112162090A/zh
Application granted granted Critical
Publication of CN112162090B publication Critical patent/CN112162090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/42Road-making materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6488Aspects related to microwave heating combined with other heating techniques combined with induction heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0064Initiation of crack

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Road Paving Structures (AREA)
  • Road Repair (AREA)

Abstract

本发明提供一种纳米氧化石墨烯改性沥青混合料自修复性能评价方法,属于沥青路面自修复技术领域,解决目前传统沥青混合料自修复效率低,且加热自修复评价体系难以揭示沥青混合料的自修复行为随化学成分和温度梯度分布变化规律的问题。本发明首先将纳米氧化石墨烯改性后的沥青混合料制成半圆柱体试件;然后基于温度梯度分布特性将半圆弯曲破坏后的试件分别用微波和感应加热方式进行加热自修复;最后基于宏微观两个层面采用不同自修复指标来评价沥青混合料自修复性能,确定纳米氧化石墨烯的最佳掺量和最优自修复加热方式。本发明提供的方法能提高沥青路面自修复性能,节约路面养护人力物力资源,提高沥青路面使用寿命,促进沥青路面可持续发展建设。

Description

纳米氧化石墨烯改性沥青混合料自修复性能评价方法
技术领域
本发明是一种纳米氧化石墨烯改性沥青混合料自修复性能评价方法,属于沥青路面自修复技术领域。
背景技术
我国绝大部分路面采用沥青路面,沥青路面具有许多优点,比如:足够的力学性能,可以承受重载交通;表面平整无接缝,行车舒适安全,平稳且降噪;有一定的弹塑性变形能力,适应性强;表面不扬尘,易清洗打扫。但是,在使用过程中,由于荷载的反复作用以及环境因素的综合影响,沥青路面会逐渐产生疲劳开裂,这些损伤往往存在于沥青路面材料内部,如果不能被及时发现并进行修复,就会造成路面材料和结构的不连续和应力分布不均,从而加快沥青路面破坏速度,缩短了沥青路面材料的使用寿命。为了维持沥青路面的使用性能,需要投入大量人力和物力来进行沥青路面损害检测和修护工作,这种工作往往比较复杂且耗时,会造成资源浪费并影响交通。因此,寻找一种简便且高效的沥青路面修复方法十分迫切。
有研究结果表明,沥青材料具有自修复特性,即在荷载间歇期,沥青混合料中小于阈值尺度的微裂纹会自动自修复,使其模量和强度得到恢复。但是,沥青材料因其独特的黏弹性与温度敏感性,在低温状况下自修复能力有限且耗时较长,温度较高时自修复性能和效果则大大改善。所以沥青的自修复性能高度依赖于其温度,一些研究人员也就利用这一特性来提高沥青混合料的自修复性能。
近年来,人们提出并研究了几种沥青混合料的自修复方法,使其能够在不中断交通的情况下立即进行局部修复,并对旧路面进行循环利用,包括微胶囊法、感应加热法和微波加热法。其中,微胶囊法虽具有较好的自修复率,但面临成本较高,对胶囊性能施工技术要求高,且只具备单次自修复功能等关键问题,无法实现持续性循环修复。感应加热是通过焦耳效应使材料升温的,因此,用于感应加热法治愈的材料应该满足两个要求:(1)必须具有导电性;(2)导电填料或纤维必须在闭环电路中连接。目前沥青混合料感应加热自修复评价均是基于整体强度恢复和整体平均温度的水平,而关于加热距离对温度分布的影响规律和加热次数对自修复效率的影响效果的研究较少,难以揭示沥青混合料的自修复行为随温度梯度分布变化规律。此外,在实际应用中,沥青混合料的感应热自修复性能还存在过热和温度分布不均匀等问题亟待解决。
与感应加热类似,微波加热也被认为是一种很有前途的促进复合材料自修复的技术。其原理是由于交变磁场的作用,微波加热使极性分子的取向发生变化,分子的运动受到干扰和阻碍,从而使温度上升。微波加热与传统的烘箱加热相比,加热速度优势显著,且微波加热加热均匀,对混合料高温稳定性、水稳定性及老化影响较小,采用微波加热沥青混合料是今后的主要趋势,并且用于开发环境可持续的新沥青路面,并且微波加热后沥青试样的平均表面温度高于感应加热后的平均表面温度,说明微波辐射对沥青混合料的加热效率更高。
纳米氧化石墨烯具有表面积大、水分散性高、胶体稳定性好、易表面改性、生物相容性好、独特的两亲性和优异的力学性能等特点,通过一种简单而低成本的方法制备的,使用的石墨来源丰富,价格便宜。两亲性使得纳米氧化石墨烯很容易分散在许多常见的溶剂中,包括水、乙二醇和离子液体。有学者研究表明,当纳米氧化石墨烯在沥青混合料中分散时,纳米薄片由于表面官能团的去质子化而获得负电荷。带相反电荷的离子被吸引到表面,形成带电荷的扩散层。该层与表面电荷一起构成电双层,通过电泳迁移率大力促进纳米氧化石墨烯的导电导热性能。可见,目前存在传统沥青混合料自修复效率低,且加热自修复评价体系只是基于整体强度和平均温度水平,难以揭示沥青混合料的自修复行为随化学成分和温度梯度分布变化规律的问题。
因此,本发明根据沥青本身自修复特性,采用纳米氧化石墨烯对沥青混合料进行改性,在提高其导电导热特性的前提下,运用感应加热和微波加热的方式提高沥青混合料的自修复效率,并且基于温度梯度分布特性,对纳米氧化石墨烯改沥青混合料的自修复性能进行评价,提高沥青路面使用寿命,节约路面养护的人力物力资源,对于促进建设绿色可持续发展的沥青路面具有重要的现实意义。
发明内容
(1)技术问题
本发明目的是提供一种纳米氧化石墨烯改性沥青混合料自修复性能评价方法,解决目前传统沥青混合料自修复效率低,且加热自修复评价体系只是基于整体强度和平均温度水平,难以揭示沥青混合料的自修复行为随化学成分和温度梯度分布变化规律的问题。
(2)技术方案
鉴于目前沥青路面养护成本高,传统沥青混合料自修复效率低的问题,本发明根据沥青本身自修复特性,基于温度梯度分布特性,采用感应加热和微波加热的方式对纳米氧化石墨烯改沥青混合料的自修复性能进行评价,提供一种纳米氧化石墨烯改性沥青混合料自修复性能评价方法,从而减少沥青路面裂纹的产生,提高沥青路面使用寿命,节约路面养护的人力物力资源。本发明技术方案如下:首先,将纳米氧化石墨烯改性后的沥青混合料制成半圆柱体试件;然后,基于温度梯度分布特性,将半圆弯曲破坏后的试件分别用微波和感应加热方式进行加热自修复,并形成三个自修复周期;最后,基于宏观和微观两个层面,采用不同的自修复指标来评价沥青混合料自修复性能,确定纳米氧化石墨烯的最佳掺量和最优加热方式,提高沥青路面的使用寿命。
(3)有益效果
随着我国交通运输行业的迅速发展,为了维持沥青路面的使用性能,需要不断投入人力和物力对路面进行复杂且耗时损害检测和修护工作,造成资源浪费并影响交通。本发明根据沥青本身自修复特性,提供一种纳米氧化石墨烯改性沥青混合料自修复性能评价方法,在提高其导电导热特性的前提下,基于温度梯度分布特性,分别从宏观和微观层面上采用不同的指标对纳米氧化石墨烯改沥青混合料的自修复性能进行评价。
根据本发明提供的专利技术,积极与相关企业开展合作,有益于提高沥青混合料的自修复效率。当前加热自修复评价体系只是基于整体强度和平均温度水平,如果引入本发明专利技术,有益于揭示沥青混合料的自修复行为随化学成分和温度梯度分布变化规律的问题,完善当前自修复评价体系,并且减少沥青路面开裂,提高沥青路面使用寿命,节约路面养护的人力物力资源,对于促进建设绿色可持续发展的沥青路面具有重要的现实意义。
具体实施方式
本发明提供一种纳米氧化石墨烯改性沥青混合料自修复性能评价方法,具体实施步骤如下:
(1)确定细粒式沥青混合料级配和最佳油石比,并用纳米氧化石墨烯取代部分矿粉,用击实法制备标准马歇尔试件,不同纳米氧化石墨烯掺量的试件各制备2个,利用切割机将马歇尔试件均匀切成直径为101.6mm、高度为40mm半圆柱体试件;
(2)在纳米氧化石墨烯改性沥青混合料半圆柱试件两端中心位置贴上应变片,封胶,并将半圆柱试件静置在空旷处,干燥12小时;
(3)将半圆柱试件放置于劈裂试验机上,压条和支座与对应的试件上的标记对准,将静态电阻应变仪调零,并与连接应变片的导线相连,在45秒内以50mm/min的速率加载,直至半圆柱试件开裂,记录试件开裂时的荷载和应变仪的读数;
(4)将开裂的半圆柱试件在频率为2.45GHz下进行微波加热修复,用红外温度计测量试件表面温度,在加热时间为20s、40s、60s、80s、100s、120s时各测一次,共六次,同样地,并采用功率为350kHz、功率为700W的感应加热发电机对另一开裂试件进行感应加热修复,与微波加热自修复形成对照;
(5)再重复步骤(3),形成一个完整的“开裂-自修复-开裂”循环周期,共进行三个循环周期,将各循环下的破坏强度与初始破坏强度的比值作为自修复率来进行自修复性能的评价;
(6)采用傅里叶变换红外光谱测试半圆柱试件开裂处修复前后沥青中饱和烃与芳香烃相对含量之比作为自修复指标来评价化学成分对自修复能力的影响,增强沥青混合料沥青中微裂纹的自修复,同时,将亚甲基与甲基相对含量之比作为分子扩散速率的指标来评价自修复的效率;
(7)综合比较加热方式和自修复效果,确定纳米氧化石墨烯的最佳掺量和最优自修复加热方式,提高沥青混合料的自修复性能。

Claims (1)

1.一种纳米氧化石墨烯改性沥青混合料自修复性能评价方法,其特征在于该方法的具体步骤如下:
(1)确定细粒式沥青混合料级配和最佳油石比,并用纳米氧化石墨烯取代部分矿粉,用击实法制备标准马歇尔试件,不同纳米氧化石墨烯掺量的试件各制备2个,利用切割机将马歇尔试件均匀切成直径为101.6mm、高度为40mm半圆柱体试件;
(2)在纳米氧化石墨烯改性沥青混合料半圆柱试件两端中心位置贴上应变片,封胶,并将半圆柱试件静置在空旷处,干燥12小时;
(3)将半圆柱试件放置于劈裂试验机上,压条和支座与对应的试件上的标记对准,将静态电阻应变仪调零,并与连接应变片的导线相连,在45秒内以50mm/min的速率加载,直至半圆柱试件开裂,记录试件开裂时的荷载和应变仪的读数;
(4)将开裂的半圆柱试件在频率为2.45GHz下进行微波加热修复,用红外温度计测量试件表面温度,在加热时间为20s、40s、60s、80s、100s、120s时各测一次,共六次,同样地,并采用功率为350kHz、功率为700W的感应加热发电机对另一开裂试件进行感应加热修复,与微波加热自修复形成对照;
(5)再重复步骤(3),形成一个完整的“开裂-自修复-开裂”循环周期,共进行三个循环周期,将各循环下的破坏强度与初始破坏强度的比值作为自修复率来进行自修复性能的评价;
(6)采用傅里叶变换红外光谱测试半圆柱试件开裂处修复前后沥青中饱和烃与芳香烃相对含量之比作为自修复指标来评价化学成分对自修复能力的影响,增强沥青混合料沥青中微裂纹的自修复,同时,将亚甲基与甲基相对含量之比作为分子扩散速率的指标来评价自修复的效率;
(7)综合比较加热方式和自修复效果,确定纳米氧化石墨烯的最佳掺量和最优自修复加热方式,提高沥青混合料的自修复性能。
CN202011087419.7A 2020-10-12 2020-10-12 纳米氧化石墨烯改性沥青混合料自修复性能评价方法 Active CN112162090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011087419.7A CN112162090B (zh) 2020-10-12 2020-10-12 纳米氧化石墨烯改性沥青混合料自修复性能评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011087419.7A CN112162090B (zh) 2020-10-12 2020-10-12 纳米氧化石墨烯改性沥青混合料自修复性能评价方法

Publications (2)

Publication Number Publication Date
CN112162090A CN112162090A (zh) 2021-01-01
CN112162090B true CN112162090B (zh) 2023-03-03

Family

ID=73866583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011087419.7A Active CN112162090B (zh) 2020-10-12 2020-10-12 纳米氧化石墨烯改性沥青混合料自修复性能评价方法

Country Status (1)

Country Link
CN (1) CN112162090B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945729B (zh) * 2021-02-02 2022-09-16 中南大学 预测石墨烯/铝纳米复合材料球磨相关拉伸强度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819915A (zh) * 2014-02-26 2014-05-28 西安理工大学 一种氧化石墨烯改性沥青及其制备方法
CN107353657A (zh) * 2017-08-25 2017-11-17 南京林业大学 一种提高沥青形状记忆性能的改性方法
CN107421820A (zh) * 2017-08-25 2017-12-01 南京林业大学 基于形状记忆性能的沥青胶浆自修复性能评价方法
CN108559289A (zh) * 2018-05-14 2018-09-21 重庆路维康交通科技有限公司 一种纳米改性乳化沥青及其制备和使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819915A (zh) * 2014-02-26 2014-05-28 西安理工大学 一种氧化石墨烯改性沥青及其制备方法
CN107353657A (zh) * 2017-08-25 2017-11-17 南京林业大学 一种提高沥青形状记忆性能的改性方法
CN107421820A (zh) * 2017-08-25 2017-12-01 南京林业大学 基于形状记忆性能的沥青胶浆自修复性能评价方法
CN108559289A (zh) * 2018-05-14 2018-09-21 重庆路维康交通科技有限公司 一种纳米改性乳化沥青及其制备和使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt;Zeng,Wenbo等;《Materials》;20170107;第48卷(第10期);全文 *
氧化石墨烯改性沥青性能评价及其OGFC混合料路用性能;刘克非等;《长安大学学报(自然科学版)》;20200115;第40卷(第01期);全文 *

Also Published As

Publication number Publication date
CN112162090A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
García et al. Induction heating of mastic containing conductive fibers and fillers
Liu et al. Induction heating of electrically conductive porous asphalt concrete
Wang et al. Accelerated healing in asphalt concrete via laboratory microwave heating
CN112162090B (zh) 纳米氧化石墨烯改性沥青混合料自修复性能评价方法
CN110453562B (zh) 基于纳米碳纤维提高冷拌沥青混合料自愈合的方法
Karimi et al. Induced heating-healing of conductive asphalt concrete as a sustainable repairing technique: A review
CN107560954B (zh) 具有形状记忆性能的含砂雾封层自愈合效果测试方法
Liu et al. Investigation on the piezoresistive response of carbon fiber-graphite modified asphalt mixtures
Li et al. Effect of moisture conditioning on mechanical and healing properties of inductive asphalt concrete
Lou et al. Improved microwave heating uniformity and self-healing properties of steel slag asphalt containing ferrite filler
Wang et al. Performance evaluation of desulfurized rubber asphalt based on rheological and environmental effects
Zhu et al. Evaluation of self-healing performance of asphalt concrete for macrocracks via microwave heating
Liu et al. Characterization of the material from the induction healing porous asphalt concrete trial section
Yang et al. Prefabricated flexible conductive composite overlay for active deicing and snow melting
Cao et al. Electric energy output model of a piezoelectric transducer for pavement application under vehicle load excitation
CN112285142B (zh) 废沥青温拌条件下再生剂-旧沥青界面融合性评价方法
Liu et al. Healing of porous asphalt concrete via induction heating
Das et al. Polyaniline-based multifunctional glass fiber reinforced conductive composite for strain monitoring
Wei et al. Mechanical and electrothermal properties of conductive ethylene–propylene–diene monomer rubber composite for active deicing and snow melting
Ma et al. Compression constitutive model and elastic durability study of active snow-melting conductive rubber composites
Wei et al. Durability of conductive ethylene–propylene–diene monomer rubber composite with active deicing and snow melting under vehicle load
Zhang et al. Microwave heating moment, thermal characteristics, and structural variations of different steel slag asphalt mixtures suffered from freeze-thaw damage
CN115286290A (zh) 一种可快速修复沥青路面裂缝的吸波沥青混合料及其制备方法
CN112162116B (zh) 环氧乳化沥青与冷再生集料上旧沥青的相融机制表征方法
Li et al. Effect of the self-healing properties of asphalt mixture on the interlayer shear performance of bridge deck pavement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant