CN112152493A - 一种基于LC谐振与同步Boost的高增益升压电路 - Google Patents

一种基于LC谐振与同步Boost的高增益升压电路 Download PDF

Info

Publication number
CN112152493A
CN112152493A CN202010918226.5A CN202010918226A CN112152493A CN 112152493 A CN112152493 A CN 112152493A CN 202010918226 A CN202010918226 A CN 202010918226A CN 112152493 A CN112152493 A CN 112152493A
Authority
CN
China
Prior art keywords
circuit
voltage
capacitor
inductor
boost circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010918226.5A
Other languages
English (en)
Inventor
赵海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Changchun Railway Vehicles Co Ltd
Original Assignee
CRRC Changchun Railway Vehicles Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Changchun Railway Vehicles Co Ltd filed Critical CRRC Changchun Railway Vehicles Co Ltd
Priority to CN202010918226.5A priority Critical patent/CN112152493A/zh
Publication of CN112152493A publication Critical patent/CN112152493A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种基于LC谐振与同步Boost的高增益升压电路,包括桥式逆变电路、谐振升压电路、整流电路和Boost升压电路,所述谐振升压电路包括第一电感、第一电容、可调电阻,所述boost升压电路包括第二电感、第一MOS管、第二MOS管、第二电容;第一电感一端连接低压交流输入、另一端连接第一电容;所述整流电路输入端接在第一电容两端,输出接在第二电感一端和第一MOS管源极;第一MOS管漏极、第二MOS管漏极与第二电感连接,第二电容一端接第二MOS管源极。本发明通过在电路中对阻抗网络结构的改进,实现较大幅度直流升压的目的,不需要额外增加变压器,就实现很高的电压增益,而且电路简单、成本低且易于控制。

Description

一种基于LC谐振与同步Boost的高增益升压电路
技术领域
本发明属于轨道交通电气系统技术领域,尤其是涉及一种高增益升压电路。
背景技术
为了输出稳定的交、直流电压,轨道车辆储能系统需要加入直流升压电路以保证电压值足够高且恒定。目前的解决方案多为z源逆变器变换,然而,在实际应用中z源逆变器无法实现较大幅度直流升压,变压器型拓扑引入会产生漏抗而引起直流链电压尖峰。
发明内容
本发明的目的是通过在电路中对阻抗网络结构的改进,实现大幅度直流升压。
为实现上述发明目的,本发明提供一种基于LC谐振与同步Boost的高增益升压电路,其特征在于:包括桥式逆变电路、谐振升压电路、整流电路和Boost升压电路,所述谐振升压电路包括第一电感、第一电容、可调电阻,所述boost升压电路包括第二电感、第一MOS管、第二MOS管、第二电容;第一电感一端连接低压交流输入、另一端连接第一电容;所述整流电路输入端接在第一电容两端,输出接在第二电感一端和第一MOS管源极;第一MOS管漏极、第二MOS管漏极与第二电感连接,第二电容一端接第二MOS管源极。
优选地,桥式逆变电路模块由四个开关器件组成,其中两个一组串联后两组再并联,上下桥臂每次只开通一个,输入为低压直流电压,输出为交流电压。
优选地,整流电路模块由四个二极管构成,其中两个一组串联后两组再并联,输入谐振升压后的交流电,输出直流电。
优选地,AB两端逆变输出电压幅值为1V。
优选地,谐振升压电路输出电容端电压幅值为25V。
优选地,Boost升压电路输出电容端电压幅值为110V。
本发明通过在电路中对阻抗网络结构的改进,实现较大幅度直流升压的目的,本发明不需要额外增加变压器,可以实现很高的电压增益,而且电路结构简单、成本低且易于控制。
附图说明
图1是本发明设计的基于LC谐振与同步Boost的高增益升压电路结构图;
图2是本发明所设计桥式逆变电路模块的拓扑图;
图3是本发明所设计整流电路模块的拓扑图;
图4是是本发明桥式逆变电路逆变输出电压波形;
图5是本发明谐振升压电路电容两端电压波形;
图6是本发明boost升压电路电容C2两端电压波形。
具体实施方式
参照图1,本发明高增益升压电路由桥式逆变电路、谐振升压电路、整流电路和Boost升压电路组成。所述谐振升压电路包括电感L1、电容C1、可调电阻R,所述boost升压电路包括电感L2、MOS管Q1、MOS管Q2、电容C2;电感L1一端连接低压交流输入、另一端连接电容C1;所述整流电路输入端接在电容C1两端,输出接在电感L2一端和Q1源极;Q1漏极、Q2漏极与电感L2连接,电容C2一端接Q2源极。桥式逆变电路将低压直流变为交流,经谐振升压可以升为幅值更高的交流电,升压之后经整流电路变为直流,再经Boost升压电路升高为高压直流。
参照图2,桥式逆变电路模块由四个开关器件T1、T2、T3、T4组成,其中T1、T2一组串联,T3、T4一组串联,串联后的两组再并联。上下桥臂每次只开通一个,输入为低压直流电压VDC,输出为交流电压。桥式逆变电路的开关状态由加于其控制极的电压信号决定,当T1、T4打开而T2、T3关合时,VAB=VDC;相反,当T1、T4关合而T2、T3打开时,VAB=-VDC。于是当桥中各臂以控制极电压信号重复频率轮番通断时,输出电压将成为交变方波,其幅值为VDC。
参照图3,整流电路模块,由四个二极管构成,其中D1、D2一组串联,D3、D4一组串联,串联后的两组再并联。输入谐振升压后的交流电,输出直流电。
参照图2、图4,测试桥式逆变电路AB两端输出电压波形显示结果幅值为1V。
参照图5,测试谐振升压电路输出电容C1两端电压波形结果显示幅值为25V。
参照图6,测试Boost升压电路输出电容C2两端电压波形结果显示幅值为110V。
通过试验测试证明,本发明电路可以实现很高的电压增益。
工作原理:桥式逆变电路的开关状态由加于其控制极的电压信号决定,如图2所示,桥式电路的输入端加入直流电压VDC。当T1、T4打开而T2、T3关合时,VAB=VDC;相反,当T1、T4关合而T2、T3打开时,VAB=-VDC。于是当桥中各臂以频率f(由控制极电压信号重复频率决定)轮番通断时,输出电压将成为交变方波,其幅值为VDC。
输出交流电经过RLC谐振电路,当LC处于谐振状态时,输出电压将会达到最大,为输出电容端电压,可以通过调节电阻R调节。再经图3所示整流电路之后,得到直流电压VCD。稳定的直流电压,经过Boost升压电路,该电路充电时,电感L2吸收能量,放电时电感L2放出能量。如果电容C2量足够大,那么在输出端就可以在放电过程中保持一个持续的电流,如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

Claims (6)

1.一种高增益升压电路,其特征在于:包括桥式逆变电路、谐振升压电路、整流电路和Boost升压电路,所述谐振升压电路包括第一电感(L1)、第一电容(C1)、可调电阻(R),所述boost升压电路包括第二电感(L2)、第一MOS管(Q1)、第二MOS管(Q2)、第二电容(C2);第一电感(L1)一端连接低压交流输入、另一端连接第一电容(C1);所述整流电路输入端接在第一电容(C1)两端,输出接在第二电感(L2)一端和第一MOS管(Q1)源极;第一MOS管(Q1)漏极、第二MOS管(Q2)漏极与第二电感(L2)连接,第二电容(C2)一端接第二MOS管(Q2)源极。
2.根据权利要求1所述的一种高增益升压电路,其特征在于:桥式逆变电路模块由四个开关器件(T1-T4)组成,其中开关器件(T1)、(T2)串联,(T3)、(T4)串联,串联后的两组再并联,上下桥臂每次只开通一个,输入为低压直流电压,输出为交流电压。
3.根据权利要求1所述的一种高增益升压电路,其特征在于:整流电路模块由四个二极管(D1-D4)构成,其中(D1)、(D2)串联,(D3)、(D4)串联,串联后的两组再并联,输入谐振升压后的交流电,输出直流电。
4.根据权利要求2所述的一种高增益升压电路,其特征在于:桥式逆变电路两端逆变输出电压幅值为1V。
5.根据权利要求1所述的一种高增益升压电路,其特征在于:谐振升压电路输出电容(C1)端电压幅值为25V。
6.根据权利要求1所述的一种高增益升压电路,其特征在于:Boost升压电路输出电容(C2)端电压幅值为110V。
CN202010918226.5A 2020-09-04 2020-09-04 一种基于LC谐振与同步Boost的高增益升压电路 Pending CN112152493A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010918226.5A CN112152493A (zh) 2020-09-04 2020-09-04 一种基于LC谐振与同步Boost的高增益升压电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010918226.5A CN112152493A (zh) 2020-09-04 2020-09-04 一种基于LC谐振与同步Boost的高增益升压电路

Publications (1)

Publication Number Publication Date
CN112152493A true CN112152493A (zh) 2020-12-29

Family

ID=73889175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010918226.5A Pending CN112152493A (zh) 2020-09-04 2020-09-04 一种基于LC谐振与同步Boost的高增益升压电路

Country Status (1)

Country Link
CN (1) CN112152493A (zh)

Similar Documents

Publication Publication Date Title
US11088625B1 (en) Three-phase CLLC bidirectional DC-DC converter and a method for controlling the same
CN109921653B (zh) 一种单相电力电子变压器拓扑结构及其控制方法
CN105939126B (zh) 一种开关电感型混合准z源逆变器
CN110148960B (zh) 一种功率变换电路、逆变器及控制方法
CN104868746A (zh) 一种电磁发射机
CN111869084A (zh) 功率转换器
US10148196B2 (en) Inverter and control method thereof
CN112003467A (zh) 一种三开关管无桥型Cuk功率因数校正变换器
CN112448605A (zh) 一种基于耦合变压器的逆变电路
CN113839558A (zh) 变换装置
CN212875687U (zh) 一种基于LC谐振与同步Boost的高增益升压电路
CN112821748B (zh) 图腾柱无桥功率因数校正装置及电源
CN111835204B (zh) 谐振式双有源桥的零回流功率软开关调制方法及变换器
Xu et al. 7.2 kv/100kva solid state transformer based on half bridge llc resonant converter and 15kv sic ac switch
CN111884492A (zh) 开关控制电路及电源设备
CN112152493A (zh) 一种基于LC谐振与同步Boost的高增益升压电路
CN217931786U (zh) 一种相位补偿采样电路
CN110677027A (zh) 一种嵌位型升压功率变换电路
Gorji et al. Galvanically isolated switched-boost-based DC-DC converter
Jagan et al. Continuous input current configurations of enhanced-boost Quasi-Z-source inverters
Jagan et al. Switched impedance enhanced-boost quasi-Z-source inverter
CN214544145U (zh) 一种调幅高频脉冲电源
CN111130376A (zh) 三相脉宽调制整流电路及其预充电方法
US11855530B1 (en) Resonant converter with multiple resonant tank circuits
CN116614003B (zh) 一种隔离式双向dc/dc变换电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination