CN112149691A - 用于双目视觉匹配的神经网络搜索方法及设备 - Google Patents
用于双目视觉匹配的神经网络搜索方法及设备 Download PDFInfo
- Publication number
- CN112149691A CN112149691A CN202011076376.2A CN202011076376A CN112149691A CN 112149691 A CN112149691 A CN 112149691A CN 202011076376 A CN202011076376 A CN 202011076376A CN 112149691 A CN112149691 A CN 112149691A
- Authority
- CN
- China
- Prior art keywords
- network
- training data
- matching
- level
- operations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 31
- 238000000605 extraction Methods 0.000 claims abstract description 28
- 230000008569 process Effects 0.000 claims abstract description 18
- 230000000717 retained effect Effects 0.000 claims abstract description 13
- 230000000007 visual effect Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000005457 optimization Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011076376.2A CN112149691B (zh) | 2020-10-10 | 2020-10-10 | 用于双目视觉匹配的神经网络搜索方法及设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011076376.2A CN112149691B (zh) | 2020-10-10 | 2020-10-10 | 用于双目视觉匹配的神经网络搜索方法及设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112149691A true CN112149691A (zh) | 2020-12-29 |
CN112149691B CN112149691B (zh) | 2021-10-15 |
Family
ID=73952807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011076376.2A Active CN112149691B (zh) | 2020-10-10 | 2020-10-10 | 用于双目视觉匹配的神经网络搜索方法及设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112149691B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113221871A (zh) * | 2021-05-31 | 2021-08-06 | 支付宝(杭州)信息技术有限公司 | 一种文字识别方法、装置、设备及介质 |
CN113781542A (zh) * | 2021-09-23 | 2021-12-10 | Oppo广东移动通信有限公司 | 模型生成方法、深度估计方法、装置以及电子设备 |
CN118447065A (zh) * | 2024-07-08 | 2024-08-06 | 海纳云物联科技有限公司 | 双目立体匹配模型训练、预测方法及介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130311450A1 (en) * | 2003-01-25 | 2013-11-21 | Karthik Ramani | Methods, systems, and data structures for performing searches on three dimensional objects |
CN105930382A (zh) * | 2016-04-14 | 2016-09-07 | 严进龙 | 一种用2d图片搜索3d模型的方法 |
US20170094253A1 (en) * | 2015-09-25 | 2017-03-30 | Disney Enterprises, Inc. | Photometric three-dimensional facial capture and relighting |
CN110148181A (zh) * | 2019-04-25 | 2019-08-20 | 青岛康特网络科技有限公司 | 一种通用双目立体匹配方法 |
CN110298886A (zh) * | 2019-07-01 | 2019-10-01 | 中国科学技术大学 | 一种基于四级卷积神经网络的灵巧手抓取规划方法 |
CN110659690A (zh) * | 2019-09-25 | 2020-01-07 | 深圳市商汤科技有限公司 | 神经网络的构建方法及装置、电子设备和存储介质 |
CN110751267A (zh) * | 2019-09-30 | 2020-02-04 | 京东城市(北京)数字科技有限公司 | 神经网络的结构搜索方法、训练方法、装置及存储介质 |
US20200302272A1 (en) * | 2019-03-19 | 2020-09-24 | Cisco Technology, Inc. | Systems and methods for auto machine learning and neural architecture search |
CN111753964A (zh) * | 2020-06-29 | 2020-10-09 | 北京百度网讯科技有限公司 | 神经网络的训练方法和装置 |
-
2020
- 2020-10-10 CN CN202011076376.2A patent/CN112149691B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130311450A1 (en) * | 2003-01-25 | 2013-11-21 | Karthik Ramani | Methods, systems, and data structures for performing searches on three dimensional objects |
US20170094253A1 (en) * | 2015-09-25 | 2017-03-30 | Disney Enterprises, Inc. | Photometric three-dimensional facial capture and relighting |
CN105930382A (zh) * | 2016-04-14 | 2016-09-07 | 严进龙 | 一种用2d图片搜索3d模型的方法 |
US20200302272A1 (en) * | 2019-03-19 | 2020-09-24 | Cisco Technology, Inc. | Systems and methods for auto machine learning and neural architecture search |
CN110148181A (zh) * | 2019-04-25 | 2019-08-20 | 青岛康特网络科技有限公司 | 一种通用双目立体匹配方法 |
CN110298886A (zh) * | 2019-07-01 | 2019-10-01 | 中国科学技术大学 | 一种基于四级卷积神经网络的灵巧手抓取规划方法 |
CN110659690A (zh) * | 2019-09-25 | 2020-01-07 | 深圳市商汤科技有限公司 | 神经网络的构建方法及装置、电子设备和存储介质 |
CN110751267A (zh) * | 2019-09-30 | 2020-02-04 | 京东城市(北京)数字科技有限公司 | 神经网络的结构搜索方法、训练方法、装置及存储介质 |
CN111753964A (zh) * | 2020-06-29 | 2020-10-09 | 北京百度网讯科技有限公司 | 神经网络的训练方法和装置 |
Non-Patent Citations (3)
Title |
---|
KONSTANTINOS BATSOS.ET AL: ""RecResNet: A Recurrent Residual CNN Architecture for Disparity Map"", 《2018 INTERNATIONAL CONFERENCE ON 3D VISION》 * |
李涛: ""神经网络搜索综述"", 《电脑知识与技术》 * |
肖进胜: ""基于深度卷积神经网络的双目立体视觉匹配算法"", 《光学学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113221871A (zh) * | 2021-05-31 | 2021-08-06 | 支付宝(杭州)信息技术有限公司 | 一种文字识别方法、装置、设备及介质 |
CN113221871B (zh) * | 2021-05-31 | 2024-02-02 | 支付宝(杭州)信息技术有限公司 | 一种文字识别方法、装置、设备及介质 |
CN113781542A (zh) * | 2021-09-23 | 2021-12-10 | Oppo广东移动通信有限公司 | 模型生成方法、深度估计方法、装置以及电子设备 |
CN118447065A (zh) * | 2024-07-08 | 2024-08-06 | 海纳云物联科技有限公司 | 双目立体匹配模型训练、预测方法及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112149691B (zh) | 2021-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112149691B (zh) | 用于双目视觉匹配的神经网络搜索方法及设备 | |
Huang et al. | M3VSNet: Unsupervised multi-metric multi-view stereo network | |
CN111553480B (zh) | 图像数据处理方法、装置、计算机可读介质及电子设备 | |
CN110427968A (zh) | 一种基于细节增强的双目立体匹配方法 | |
CN111190981A (zh) | 一种三维语义地图的构建方法、装置、电子设备及存储介质 | |
CN108510058B (zh) | 神经网络中的权重存储方法以及基于该方法的处理器 | |
CN109005398B (zh) | 一种基于卷积神经网络的立体图像视差匹配方法 | |
Nguyen et al. | GraphX-convolution for point cloud deformation in 2D-to-3D conversion | |
CN111476835A (zh) | 多视角图像一致性的无监督深度预测方法、系统、装置 | |
CN110852199A (zh) | 一种基于双帧编码解码模型的前景提取方法 | |
JP2021096850A (ja) | 視差推定システムと方法、電子機器及びコンピュータ可読記憶媒体 | |
CN116228792A (zh) | 一种医学图像分割方法、系统及电子装置 | |
CN112381208A (zh) | 一种深度渐进且逐步寻优的神经网络架构搜索方法与系统 | |
Loni et al. | Densedisp: Resource-aware disparity map estimation by compressing siamese neural architecture | |
CN115730631A (zh) | 联邦学习的方法和装置 | |
CN115439507A (zh) | 基于多层次互增强与相关金字塔的三维视频目标跟踪方法 | |
Wang et al. | 3d point-voxel correlation fields for scene flow estimation | |
CN113256793A (zh) | 一种三维数据处理方法及系统 | |
CN108986210A (zh) | 三维场景重建的方法和设备 | |
Zheng et al. | Diffuvolume: Diffusion model for volume based stereo matching | |
KR20190048597A (ko) | 딥 러닝을 이용한 이종 센서 정보 융합 장치 및 방법 | |
CN114626284A (zh) | 一种模型处理方法及相关装置 | |
CN117553807B (zh) | 基于激光雷达的自动驾驶导航方法及系统 | |
CN111507203A (zh) | 可变车道检测模型的构建方法、电子设备及存储介质 | |
CN115617054B (zh) | 路径规划方法和系统、电子设备及可读存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210713 Address after: 100083 room 21, 4th floor, building 2, national defense science and Technology Park, beipolytechnic, Haidian District, Beijing Applicant after: Beijing Yingtong Technology Development Co.,Ltd. Applicant after: SHANGHAI EAGLEVISION MEDICAL TECHNOLOGY Co.,Ltd. Address before: 200030 room 01, 8 building, 1 Yizhou Road, Xuhui District, Shanghai, 180 Applicant before: SHANGHAI EAGLEVISION MEDICAL TECHNOLOGY Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Cheng Xuelian Inventor after: Liu Congxin Inventor after: Ge Zongyuan Inventor after: Zhao Xin Inventor after: He Chao Inventor after: Zhang Dalei Inventor before: Chen Xuelian Inventor before: Liu Congxin Inventor before: Ge Zongyuan Inventor before: Zhao Xin Inventor before: He Chao Inventor before: Zhang Dalei |