CN112149351A - Microwave circuit physical dimension estimation method based on deep learning - Google Patents
Microwave circuit physical dimension estimation method based on deep learning Download PDFInfo
- Publication number
- CN112149351A CN112149351A CN202011000929.6A CN202011000929A CN112149351A CN 112149351 A CN112149351 A CN 112149351A CN 202011000929 A CN202011000929 A CN 202011000929A CN 112149351 A CN112149351 A CN 112149351A
- Authority
- CN
- China
- Prior art keywords
- microwave circuit
- layer
- neural network
- network model
- deep learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000013135 deep learning Methods 0.000 title claims abstract description 21
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 61
- 238000012549 training Methods 0.000 claims abstract description 26
- 238000003062 neural network model Methods 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims description 42
- 238000011176 pooling Methods 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 12
- 238000010586 diagram Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 9
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 238000011478 gradient descent method Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 238000005549 size reduction Methods 0.000 claims description 4
- 238000010200 validation analysis Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 2
- 238000012937 correction Methods 0.000 claims 2
- 230000009466 transformation Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 description 10
- 238000003860 storage Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000002945 steepest descent method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Geometry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Abstract
本发明公开了一种基于深度学习的微波电路物理尺寸估算方法,包括:步骤一、采集多组微波电路的S参数和所述多组微波电路参数的物理尺寸,作为初始数据集,并根据所述初始数据集构建训练样本集;步骤二、根据所述训练样本集对卷积神经网络模型进行训练,得到微波电路尺寸估算神经网络模型;步骤三、采集目标微波电路的S参数作为输入参数,输入所述微波电路尺寸估算神经网络模型,得到所述目标微波电路的物理尺寸。本发明提供的基于深度学习的微波电路物理尺寸估算方法,自动化程度高且估算准确率高,能够有效减少微波电路物理尺寸参数估算的中间环节和人工干预,应用成本和复杂程度,有效提高微波电路物理尺寸参数估算的准确性和实时性。
The invention discloses a method for estimating the physical size of a microwave circuit based on deep learning. The initial data set is used to construct a training sample set; step 2, the convolutional neural network model is trained according to the training sample set to obtain a neural network model for microwave circuit size estimation; step 3, the S parameters of the target microwave circuit are collected as input parameters, Input the neural network model for estimating the size of the microwave circuit to obtain the physical size of the target microwave circuit. The method for estimating the physical size of a microwave circuit based on deep learning provided by the invention has a high degree of automation and a high estimation accuracy, can effectively reduce the intermediate links and manual intervention in the estimation of the physical size parameters of the microwave circuit, application cost and complexity, and effectively improve the microwave circuit Accuracy and real-time performance of physical dimension parameter estimation.
Description
技术领域technical field
本发明属于微波电路设计仿真技术领域,特别涉及一种基于深度学习的微波电路物理尺寸估算方法。The invention belongs to the technical field of microwave circuit design simulation, and particularly relates to a method for estimating the physical size of a microwave circuit based on deep learning.
背景技术Background technique
近些年来,训练神经网络以对无源和有源组件/电路的电性能进行建模用于高级仿真和设计,为任务提供快速解答渐渐成为了一种方法。当今业界微波电路设计的常规方法,例如数值建模方法,可能在计算上是昂贵的,而分析上的新设备可能很难获得的方法,例如经验模型,其范围和准确性可能是有限的。因此神经网络技术已被广泛使用于各种微波应用,例如嵌入式无源器件,传输线组件,共面波导(CPW)组件,螺旋电感器,FET。In recent years, training neural networks to model the electrical properties of passive and active components/circuits for advanced simulation and design to provide quick answers to tasks has become an approach. Conventional methods of microwave circuit design in the industry today, such as numerical modeling methods, can be computationally expensive, and analytically new equipment that may be difficult to obtain, such as empirical models, may be limited in scope and accuracy. Therefore, neural network technology has been widely used in various microwave applications, such as embedded passive devices, transmission line components, coplanar waveguide (CPW) components, spiral inductors, FETs.
当前业界微波电路的设计手段主要是根据理论建模,通过理论仿真后得到大致的电路尺寸参数,通过实际仿真软件在一定的参数范围区间进行仿真,最后通过对仿真结果的对比选择效果最为接近理论仿真结果所对应的微波电路尺寸参数,但此种方案存在效率低,工作量大,没有理论指导等问题,不能满足当今业界的效率需求。At present, the design method of microwave circuits in the industry is mainly based on theoretical modeling. After theoretical simulation, the approximate circuit size parameters are obtained. The actual simulation software is used to simulate within a certain parameter range. Finally, the comparison of the simulation results is used to select the effect that is closest to theory The size parameters of the microwave circuit corresponding to the simulation results, but this scheme has problems such as low efficiency, large workload, and no theoretical guidance, which cannot meet the efficiency requirements of today's industry.
发明内容SUMMARY OF THE INVENTION
本发明的目的是一种基于深度学习的微波电路物理尺寸估算方法,通过深度学习技术,对计算理论电学参数与电路尺寸参数的对应关系进行回归分析,能够实现快速准确的得到微波电路的尺寸参数。The purpose of the present invention is a method for estimating the physical size of a microwave circuit based on deep learning. Through the deep learning technology, a regression analysis is performed on the corresponding relationship between the calculated theoretical electrical parameters and the circuit size parameters, so that the size parameters of the microwave circuit can be quickly and accurately obtained. .
本发明提供的技术方案为:The technical scheme provided by the present invention is:
一种基于深度学习的微波电路物理尺寸估算方法,包括如下步骤:A method for estimating the physical size of a microwave circuit based on deep learning, comprising the following steps:
步骤一、采集多组微波电路的S参数和所述多组微波电路参数的物理尺寸,作为初始数据集,并根据所述初始数据集构建训练样本集;Step 1, collecting the S parameters of multiple groups of microwave circuits and the physical dimensions of the multiple groups of microwave circuit parameters as an initial data set, and constructing a training sample set according to the initial data set;
步骤二、根据所述训练样本集对卷积神经网络模型进行训练,得到微波电路尺寸估算神经网络模型;Step 2, training the convolutional neural network model according to the training sample set to obtain a neural network model for microwave circuit size estimation;
步骤三、采集目标微波电路的S参数作为输入参数,输入所述微波电路尺寸估算神经网络模型,得到所述目标微波电路的物理尺寸。Step 3: Collect the S parameters of the target microwave circuit as input parameters, input the size estimation neural network model of the microwave circuit, and obtain the physical size of the target microwave circuit.
优选的是,在所述步骤二中,通过梯度下降法对所述卷积神经网络模型进行训练,得到所述微波电路尺寸估算神经网络模型。Preferably, in the second step, the convolutional neural network model is trained by a gradient descent method to obtain the microwave circuit size estimation neural network model.
优选的是,在所述步骤一中,根据所述初始数据集构建训练样本集,包括:Preferably, in the first step, a training sample set is constructed according to the initial data set, including:
将所述微波电路的S参数的尺寸经转换调整到3×3×1格式;以及采用数据增强方法对所述初始数据集的数据量进行扩充,取所述扩充后的初始数据集的一部分作为训练样本集。The size of the S-parameter of the microwave circuit is converted and adjusted to a 3×3×1 format; and a data enhancement method is used to expand the data amount of the initial data set, and a part of the expanded initial data set is taken as training sample set.
优选的是,所述扩充后的初始数据集中的数据分为三个部分,包括:Preferably, the data in the expanded initial data set is divided into three parts, including:
训练样本集60%,验证数据集20%以及测试数据集20%。The training sample set is 60%, the validation data set is 20%, and the test data set is 20%.
优选的是,所述微波电路尺寸估算神经网络模型包括依次连接的:输入层、处理模块、Dropout层、全连接层和回归预测输出层。Preferably, the microwave circuit size estimation neural network model includes an input layer, a processing module, a dropout layer, a fully connected layer and a regression prediction output layer which are connected in sequence.
优选的是,所述处理模块至少包括依次连接的四个处理单元,其中,Preferably, the processing module includes at least four processing units connected in sequence, wherein,
第一个处理单元至第三个处理单元中均包括依次连接的卷积层、批标准化BN层、修正线性单元ReLU层和池化层,第四个处理单元包括依次连接的卷积层、批标准化BN层、修正线性单元ReLU层。The first to third processing units include sequentially connected convolution layers, batch normalized BN layers, modified linear units ReLU layers and pooling layers, and the fourth processing unit includes sequentially connected convolution layers, batch Normalized BN layer, modified linear unit ReLU layer.
优选的是,所述四个处理单元的卷积层中的卷积核的尺寸均为2×2;四个处理单元的卷积核的个数按照连接顺序依次增加。Preferably, the size of the convolution kernels in the convolutional layers of the four processing units is all 2×2; the number of the convolution kernels of the four processing units increases in order of connection.
优选的是,在所述步骤三中,得到所述目标微波电路的物理尺寸,包括如下步骤:Preferably, in the third step, obtaining the physical size of the target microwave circuit includes the following steps:
步骤1、所述处理模块中的四个处理单元中基于梯度下降算法依次对输入数据进行处理和传递,直到所述四个处理单元中输出目标特征图;Step 1. The four processing units in the processing module sequentially process and transmit the input data based on the gradient descent algorithm, until the target feature map is output in the four processing units;
步骤2、所述全连接层将所述目标特征图转化为一维向量;Step 2, the fully connected layer converts the target feature map into a one-dimensional vector;
步骤3、所述回归预测输出层根据所述一维向量输出所述目标微波电路的物理尺寸估算结果。Step 3: The regression prediction output layer outputs the estimation result of the physical size of the target microwave circuit according to the one-dimensional vector.
优选的是,在所述步骤1中,包括:Preferably, in the step 1, including:
所述卷积层根据如下公式提取所述输入数据的特征图;The convolution layer extracts the feature map of the input data according to the following formula;
式中,为卷积神经网络模型中第j个卷积层的第i个输出的特征图;m为卷积神经网络模型中第j个卷积层输入特征图的数量;In the formula, is the feature map of the ith output of the jth convolutional layer in the convolutional neural network model; m is the number of input feature maps of the jth convolutional layer in the convolutional neural network model;
所述批标准化BN层对所述特征图进行归一化处理;The batch normalization BN layer normalizes the feature map;
所述ReLU层所述归一化处理后的特征图进行非线性转化;The normalized feature map of the ReLU layer is nonlinearly transformed;
所述池化层根据如下公式对接收的非线性转化后的特征图进行尺寸减小处理;The pooling layer performs size reduction processing on the received nonlinear transformed feature map according to the following formula;
式中,为降采样函数;F为降采样滤波器大小;S为降采样步长。In the formula, is the downsampling function; F is the downsampling filter size; S is the downsampling step size.
优选的是,在所述步骤3中,全连接层根据如下公式将所述目标特征图转化为一维向量;Preferably, in the step 3, the fully connected layer converts the target feature map into a one-dimensional vector according to the following formula;
vj=f(wjvj-1+bj);v j =f(w j v j-1 +b j );
式中,vj为第j个全连接层的输出一维向量;wj为第j个全连接层的权值矩阵;bj第j个全连接层的偏置项;f(·)为非线性激活函数。In the formula, v j is the output one-dimensional vector of the j-th fully-connected layer; w j is the weight matrix of the j-th fully-connected layer; b j is the bias term of the j-th fully-connected layer; f( ) is Nonlinear activation function.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明提供的基于深度学习的微波电路物理尺寸估算方法,自动化程度高且估算准确率高,能够有效减少微波电路物理尺寸参数估算的中间环节和人工干预,应用成本和复杂程度,有效提高微波电路物理尺寸参数估算的准确性和实时性。The method for estimating the physical size of a microwave circuit based on deep learning provided by the invention has a high degree of automation and a high estimation accuracy, can effectively reduce the intermediate links and manual intervention in the estimation of the physical size parameters of the microwave circuit, application cost and complexity, and effectively improve the microwave circuit Accuracy and real-time performance of physical dimension parameter estimation.
附图说明Description of drawings
图1为本发明所述的基于卷积神经网络的微波电路物理尺寸参数估算方法流程图。FIG. 1 is a flowchart of the method for estimating physical size parameters of microwave circuits based on a convolutional neural network according to the present invention.
图2为本发明所述的建立卷积神经网络模型的流程图。FIG. 2 is a flow chart of establishing a convolutional neural network model according to the present invention.
图3为本发明所述的卷积神经网络模型的结构示意图。FIG. 3 is a schematic structural diagram of the convolutional neural network model according to the present invention.
图4为本发明所述的基于卷积神经网络的微波电路物理尺寸参数估算方法的流程图。FIG. 4 is a flowchart of the method for estimating physical size parameters of microwave circuits based on a convolutional neural network according to the present invention.
图5为本发明实施例1的流程示意图。FIG. 5 is a schematic flowchart of Embodiment 1 of the present invention.
图6为本发明实施例1中基于卷积神经网络的微波电路物理尺寸参数估算系统的结构框图。FIG. 6 is a structural block diagram of a microwave circuit physical size parameter estimation system based on a convolutional neural network in Embodiment 1 of the present invention.
图7为本发明实施例1中电子设备的结构示意图。FIG. 7 is a schematic structural diagram of an electronic device in Embodiment 1 of the present invention.
图8为理论上的微波电路的物理尺寸参数仿真结果与实施例1得到的微波电路的物理尺寸参数仿真结果的对比图。FIG. 8 is a comparison diagram of the simulation results of the physical size parameters of the microwave circuit in theory and the simulation results of the physical size parameters of the microwave circuit obtained in Example 1. FIG.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。The present invention will be further described in detail below with reference to the accompanying drawings, so that those skilled in the art can implement it with reference to the description.
如图1所示,本发明提供了一种基于深度学习的微波电路物理尺寸估算方法,包括:As shown in Figure 1, the present invention provides a method for estimating the physical size of a microwave circuit based on deep learning, including:
步骤101,连续采集目标微波电路的电学参数,并根据所述目微波电路的电学参数构建对应的输入数据集。In
在步骤101中,所述基于卷积神经网络的微波电路物理尺寸参数估算系统中的微波电路电学参数采集单元自动接收采集到的目标微波电路的电学参数,且采集目标微波电路电学参数的具体方式可以通过MATLAB调用电磁仿真软件Sonnet提供的运算接口进行运算自动采集,并将采集到的电学参数发送至所述微波电路电学参数采集单元。In
步骤102,将所述输入数据集输入训练好的卷积神经网络模型,得到所述目标微波电路物理尺寸参数的估算结果;其中,所述训练好的卷积神经网络模型是以训练数据集为输入,利用梯度下降法训练得到的。
在步骤102中,所述微波电路电学参数采集单元在自动接收采集到的目标微波电路的电学参数数据后,将目标微波电路的电学参数数据均发送至所述基于卷积神经网络的微波电路物理尺寸参数估算系统中的卷积神经网络模型建立单元,所述卷积神经网络模型建立单元接收所述微波电路的电学参数,并将所述微波电路电学参数对应的输入数据集作为模型的输入,根据输入数据集的尺寸等特性,建立专门用于估算所述目标微波电路物理尺寸参数的卷积神经网络模型。可以理解的是,所述卷积神经网络模型除了依次连接的输入层、全连接层和输出层外,连接在输入层和全连接层之间的卷积层(convolutionallayer)和池化层(pooling layer)的设置方式及层数取决于所述微波电学参数数据对应的输入数据集的尺寸等特性。可以理解的是,卷积神经网络CNN(ConvolutionalNeuralNetwork)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元。In
另一方面,本实施例中还提供了一种基于卷积神经网络的微波电路物理尺寸参数估算系统,包括:On the other hand, this embodiment also provides a microwave circuit physical size parameter estimation system based on a convolutional neural network, including:
微波电路电学参数与物理尺寸参数采集单元,用于连续采集目标微波电路的并根据所述目标微波电路的电学参数构建对应的输入数据集;a microwave circuit electrical parameter and physical size parameter acquisition unit, configured to continuously collect the target microwave circuit and construct a corresponding input data set according to the electrical parameters of the target microwave circuit;
参数估算单元,用于将所述输入数据集输入训练好的卷积神经网络模型,得到所述目标微波电路物理尺寸参数的估算结果;其中,所述训练好的卷积神经网络模型是以训练数据集为输入,利用梯度下降法训练得到的。A parameter estimation unit, used for inputting the input data set into a trained convolutional neural network model to obtain an estimation result of the physical size parameter of the target microwave circuit; wherein, the trained convolutional neural network model is based on training The data set is the input and is trained by gradient descent.
本实施例还包括处理器、通信接口、存储器和总线,其中,处理器,通信接口,存储器通过总线完成相互间的通信,处理器可以调用存储器中存放的深度学习训练模型,以执行第一方面提供的基于卷积神经网络的微波电路物理尺寸参数估算方法。This embodiment further includes a processor, a communication interface, a memory, and a bus, wherein the processor, the communication interface, and the memory communicate with each other through the bus, and the processor can call the deep learning training model stored in the memory to execute the first aspect Provides a method for estimating physical size parameters of microwave circuits based on convolutional neural networks.
同时,本实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行第一方面提供的基于卷积神经网络的微波电路物理尺寸参数估算方法。Meanwhile, this embodiment also provides a non-transitory computer-readable storage medium, where the non-transitory computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to execute the convolution-based method provided in the first aspect. Microwave circuit physical size parameter estimation method based on neural network.
所述基于卷积神经网络的微波电路物理尺寸参数估算系统中的微波电路物理尺寸参数的估算单元根据梯度下降算法和所述测试数据集对所述卷积神经网络模型进行模型训练、验证和测试,得到对所述目标微波电路物理尺寸参数估算结果。The estimation unit of the microwave circuit physical size parameter in the microwave circuit physical size parameter estimation system based on the convolutional neural network performs model training, verification and testing on the convolutional neural network model according to the gradient descent algorithm and the test data set , to obtain the estimation result of the physical size parameter of the target microwave circuit.
可以理解的是,所述梯度下降算法是一个最优化算法,通常也称为最速下降法。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。It can be understood that the gradient descent algorithm is an optimization algorithm, also commonly referred to as the steepest descent method. The steepest descent method uses the negative gradient direction as the search direction. The closer the steepest descent method is to the target value, the smaller the step size and the slower the progress.
在本实施例中,如图2所示,在将所述输入数据集输入训练好的卷积神经网络模型,得到所述目标微波电路物理尺寸参数的估算结果之前,还包括:In this embodiment, as shown in FIG. 2 , before the input data set is input into the trained convolutional neural network model, and the estimation result of the physical size parameter of the target microwave circuit is obtained, the method further includes:
步骤201,将所述目标微波电路的电学参数对应的输入数据集作为所述卷积神经网络的输入层的输入;Step 201, using the input data set corresponding to the electrical parameters of the target microwave circuit as the input of the input layer of the convolutional neural network;
步骤202,根据所述输入数据集中的数据的尺寸建立所述卷积神经网络模型的处理模块;Step 202, establishing a processing module of the convolutional neural network model according to the size of the data in the input data set;
步骤203,依次连接所述输入层、处理模块、用于防止所述处理模块的输出过拟合的Dropout层、用于将所述处理模块的输出转化为一维向量的全连接层和用于输出所述目标微波电路物理尺寸参数估算结果的回归预测输出层,完成所述卷积神经网络模型的建立。Step 203: Connect the input layer, the processing module, the Dropout layer for preventing overfitting of the output of the processing module, the fully connected layer for converting the output of the processing module into a one-dimensional vector, and the layer for A regression prediction output layer that outputs the estimation results of the physical size parameters of the target microwave circuit, and completes the establishment of the convolutional neural network model.
在上述步骤201至203中,所述卷积神经网络模型的整体构架如图3所示,所述处理模块中至少包括依次连接的四个处理单元,且第一个处理单元至第三个处理单元中均包括依次连接的卷积层、批标准化层(Batch Normalization Layer,BN层)、修正线性单元ReLU层和池化层,第四个处理单元包括连接的所述卷积层、批标准化BN层、修正线性单元ReLU层;In the above steps 201 to 203, the overall architecture of the convolutional neural network model is shown in FIG. 3, the processing module includes at least four processing units connected in sequence, and the first processing unit to the third processing unit The units include successively connected convolution layers, batch normalization layers (BN layers), modified linear units ReLU layers and pooling layers, and the fourth processing unit includes the connected convolution layers, batch normalization BN layers layer, modified linear unit ReLU layer;
其中,依次连接的四个处理单元中的各卷积层中的卷积核的尺寸不变、且卷积核的数量依次递增。Among them, the size of the convolution kernels in each convolutional layer in the sequentially connected four processing units is unchanged, and the number of convolution kernels increases sequentially.
从上述描述可知,本实施例提供的基于卷积神经网络的微波电路物理尺寸参数估算方法,提供了一种用于估算微波电路物理尺寸参数的卷积神经网络模型的有效且可靠的建立方法,其中的用于微波电路物理尺寸参数的卷积神经网络模型的结构准确且针对性强,能够较为准确估算微波电路物理尺寸参数。It can be seen from the above description that the method for estimating physical size parameters of microwave circuits based on convolutional neural networks provided in this embodiment provides an effective and reliable method for establishing a convolutional neural network model for estimating physical size parameters of microwave circuits, Among them, the convolutional neural network model used for the physical size parameters of the microwave circuit has an accurate structure and strong pertinence, and can more accurately estimate the physical size parameters of the microwave circuit.
在本实施例中,如图4所示,将所述输入数据集输入训练好的卷积神经网络模型,得到所述目标微波电路物理尺寸参数的估算结果,具体包括:In this embodiment, as shown in FIG. 4 , the input data set is input into the trained convolutional neural network model, and the estimation result of the physical size parameter of the target microwave circuit is obtained, which specifically includes:
步骤401,所述处理模块中的四个处理单元中基于梯度下降算法依次对所述输入数据集进行处理和传递,直到所述的四个处理单元中输出目标特征图;其中,所述处理模块中的所述卷积层提取接收的所述输入数据集的特征图;所述BN层对接收到的所述特征图进行归一化处理;所述ReLU层对接收到的所述归一化处理后的特征图进行非线性转化;所述池化层对接收的非线性转化后的特征图进行尺寸减小处理。
在步骤401中,所述处理模块中的所述卷积层提取接收的所述输入数据集的特征图,包括:In
所述卷积层根据公式一提取接收的所述输入数据集的特征图:The convolutional layer extracts the received feature map of the input data set according to formula 1:
在公式(1)中,为卷积神经网络模型中第j个卷积层的第i个输出的特征图;m为卷积神经网络模型中第j个卷积层输入特征图的数量;In formula (1), is the feature map of the ith output of the jth convolutional layer in the convolutional neural network model; m is the number of input feature maps of the jth convolutional layer in the convolutional neural network model;
为第j个卷积层的第i个偏置项;f(·)为非线性激活函数; is the i-th bias term of the j-th convolutional layer; f( ) is the nonlinear activation function;
相对应的,所述池化层对接收的非线性转化后的特征图进行尺寸减小处理,包括:Correspondingly, the pooling layer performs size reduction processing on the received nonlinear transformed feature map, including:
所述池化层根据公式二将接收的非线性转化后的特征图进行尺寸减小处理:The pooling layer reduces the size of the received nonlinearly transformed feature map according to formula 2:
在公式(2)中,为降采样函数;F为降采样滤波器大小;S为降采样步长。In formula (2), is the downsampling function; F is the downsampling filter size; S is the downsampling step size.
步骤402,所述全连接层将所述目标特征图转化为一维向量,包括:
所述全连接层根据公式三将所述目标特征图转化为一维向量:The fully connected layer converts the target feature map into a one-dimensional vector according to formula 3:
vj=f(wjvj-1+bj)#(3)v j =f(w j v j-1 +b j )#(3)
在公式(3)中,vj为第j个全连接层的输出一维向量;wj为第j个全连接层的权值矩阵;bj第j个全连接层的偏置项;f(·)为非线性激活函数。In formula (3), v j is the output one-dimensional vector of the j-th fully-connected layer; w j is the weight matrix of the j-th fully-connected layer; b j is the bias term of the j-th fully-connected layer; f ( ) is a nonlinear activation function.
步骤403,所述回归预测层根据所述一维向量输出所述目标微波电路的物理尺寸参数估算结果。
实施例1Example 1
为进一步的说明本方案,本发明还提供了一种基于卷积神经网络的微波电路物理尺寸参数估算方法的应用实例,参见图5,具体包括如下内容:To further illustrate this solution, the present invention also provides an application example of a method for estimating physical size parameters of microwave circuits based on convolutional neural networks, see FIG. 5 , and specifically includes the following contents:
501、获取微波电路电学参数数据,并对所述数据进行预处理;501. Obtain electrical parameter data of the microwave circuit, and preprocess the data;
具体地,所述预处理包括调整所述微波电路电学参数数据的尺寸,例如调整到3×3×1格式。所述预处理后的微波电路的电学参数构建初始数据集,采用数据增强方法,对所述初始数据集的数据量进行扩充;Specifically, the preprocessing includes adjusting the size of the microwave circuit electrical parameter data, for example, adjusting to a 3×3×1 format. The electrical parameters of the preprocessed microwave circuit construct an initial data set, and a data enhancement method is used to expand the data volume of the initial data set;
将数据集分为训练数据集、验证数据集和测试数据集3部分。The dataset is divided into three parts: training dataset, validation dataset and test dataset.
502、构建卷积神经网络模型结构,根据所述扩充后的数据集和梯度下降方法,对所述卷积神经网络模型进行训练、验证和测试;502. Build a convolutional neural network model structure, and train, verify and test the convolutional neural network model according to the expanded data set and gradient descent method;
具体地,本发明卷积神经网络模型以微波电路的电学参数作为输入,以估算的微波电路物理尺寸参数作为输出,共包括五个模块。第一个模块至第四个模块均包括1个卷积层,1个BN层,1个RELU层和1个池化层。卷积层的卷积核大小为2×2,用于获取输入图像的特征。RELU层将卷积层生成的特征图进行非线性转化,实现网络的稀疏,减少参数的相互依存关系,缓解过拟合问题的发生。RELU层不会改变特征图的尺寸大小。池化层的卷积核大小为2×2,步长为1,均为最大池化,将特征图尺寸减小为原来的1/2。四个模块卷积层中卷积核的数量逐渐增加,依次为32、64、128、256。第五个模块卷积核的尺寸和各层的功能与前四个模块相同,包括1个卷积层,1个BN层,1个RELU层,卷积层中卷积核个数为512。最后一个模块包括2个全连接层、1个回归输出层,2个全连接层中第一个全连接层含有500个神经元,第二个全连接层含有1个神经元。回归输出层估算的为微波电路的物理尺寸参数。Specifically, the convolutional neural network model of the present invention takes the electrical parameters of the microwave circuit as input, and takes the estimated physical size parameters of the microwave circuit as the output, and includes five modules in total. The first to fourth modules all include 1 convolutional layer, 1 BN layer, 1 RELU layer and 1 pooling layer. The kernel size of the convolutional layer is 2×2, which is used to obtain the features of the input image. The RELU layer non-linearly transforms the feature map generated by the convolutional layer to realize the sparseness of the network, reduce the interdependence of parameters, and alleviate the overfitting problem. The RELU layer does not change the size of the feature map. The size of the convolution kernel of the pooling layer is 2 × 2, and the stride is 1, both of which are maximum pooling, and the size of the feature map is reduced to 1/2 of the original. The number of convolution kernels in the four modular convolutional layers gradually increases, which are 32, 64, 128, 256 in turn. The size of the convolution kernel of the fifth module and the functions of each layer are the same as those of the first four modules, including 1 convolution layer, 1 BN layer, and 1 RELU layer. The number of convolution kernels in the convolution layer is 512. The last module includes 2 fully-connected layers and 1 regression output layer. The first fully-connected layer of the 2 fully-connected layers contains 500 neurons, and the second fully-connected layer contains 1 neuron. The regression output layer estimates the physical size parameters of the microwave circuit.
503、根据所述卷积神经网络模型,对输入的微波电路数据集进行物理尺寸参数估算;503. Perform physical size parameter estimation on the input microwave circuit data set according to the convolutional neural network model;
本发明提供的基于卷积神经网络的微波电路物理尺寸参数估算方法,能够以微波电路电学参数直接作为估算模型的输入,通过数据增强扩充输入数据量,构建卷积神经网络模型并进行训练、验证和测试,实现对微波电路物理尺寸参数的快速估算,提高估算的准确性,实现了微波电路物理尺寸参数估算方法的实际应用。The method for estimating the physical size parameters of a microwave circuit based on a convolutional neural network provided by the present invention can directly use the electrical parameters of the microwave circuit as the input of the estimation model, expand the amount of input data through data enhancement, and construct a convolutional neural network model for training and verification. And test, realize the rapid estimation of the physical size parameters of the microwave circuit, improve the accuracy of the estimation, and realize the practical application of the method for estimating the physical size parameters of the microwave circuit.
如图6所示,基于卷积神经网络的微波电路物理尺寸参数估算系统包括:微波电路电学参数采集单元601和微波电路物理尺寸参数估算单元602。其中:As shown in FIG. 6 , the microwave circuit physical size parameter estimation system based on the convolutional neural network includes: a microwave circuit electrical
微波电路电学参数采集单元601用于连续采集目标微波电路的电学参数,并根据所述目标微波电路的电学参数构建对应的输入数据集。微波电路物理尺寸参数估算单元602用于将所述输入数据集输入训练好的卷积神经网络模型,得到所述目标微波电路物理尺寸参数的估算结果;其中,所述训练好的卷积神经网络模型是以训练数据集为输入,利用梯度下降法训练得到的。The microwave circuit electrical
具体地,采集单元601可以获取微波电路电学参数数据,并对所述微波电学参数数据进行预处理,所述预处理包括调整所述输入数据的尺寸。Specifically, the
进一步地,根据预处理后的数据构建初始数据集,采用数据增强方法,扩充初始数据集的大小。将数据集分为训练数据集、验证数据集和测试数据集3部分,比例分别为:60%,20%和20%。Further, an initial data set is constructed according to the preprocessed data, and a data enhancement method is used to expand the size of the initial data set. The data set is divided into three parts: training data set, validation data set and test data set, the proportions are: 60%, 20% and 20% respectively.
微波电路物理尺寸参数估算单元602用于构建本发明卷积神经网络结构。本发明卷积神经网络模型以微波电路的电学参数数据作为输入,以估算的微波电路物理尺寸参数作为输出,共包括5个模块。第一个模块至第四个模块均包括1个卷积层,1个BN层,1个RELU层和1个池化层。卷积层的卷积核大小为2×2,用于获取输入图像的特征。RELU层将卷积层生成的特征图进行非线性转化,实现网络的稀疏,减少参数的相互依存关系,缓解过拟合问题的发生。RELU层不会改变特征图的尺寸大小。池化层的卷积核大小为2×2,步长为2,均为最大池化,将特征图尺寸减小为原来的1/2。四个模块卷积层中卷积核的数量逐渐增加,依次为32、64、128、256。第五个模块卷积核的尺寸和各层的功能与前四个模块相同,包括1个卷积层,1个BN层,1个RELU层,卷积层的卷积核个数为512。最后一个模块包括2个dropout层、2个全连接层、1个回归输出层,2个dropout层丢弃率均为0.5,2个全连接层中第一个全连接层含有500个神经元,第二个全连接测含有1个神经元。回归输出层估算微波电路物理尺寸参数。所述微波电路物理尺寸参数估算单元602基于扩充后的数据集和梯度下降算法,进行卷积神经网络的训练、验证和测试,以及基于测试后的卷积神经网络模型,对输入的微波电路的电学参数进行微波电路物理尺寸参数的估算。The microwave circuit physical size
从上述描述可知,本发明的实施例提供的基于卷积神经网络的微波电路物理尺寸参数估算,能够以微波电路电学参数直接作为识别模型的输入,通过数据增强扩充输入数据量,构建卷积神经网络模型并进行训练、验证和测试,实现微波电路物理尺寸参数的估算,提高了估算的准确性,实现了微波电路物理尺寸参数估算的实际应用。It can be seen from the above description that the estimation of the physical size parameters of a microwave circuit based on a convolutional neural network provided by the embodiments of the present invention can directly use the electrical parameters of the microwave circuit as the input of the recognition model, expand the input data volume through data enhancement, and construct a convolutional neural network. The network model is trained, verified and tested to realize the estimation of the physical size parameters of the microwave circuit, which improves the accuracy of the estimation and realizes the practical application of the estimation of the physical size parameters of the microwave circuit.
如图7所示,电子设备包括:处理器(processor)、通信接口(CommunicationsInterface)、存储器(memory)和总线,其中,处理器,通信接口,存储器通过总线完成相互间的通信。处理器可以调用存储器中的逻辑指令,以执行如下方法,例如包括:连续采集目标微波电路的电学参数,并根据所述目标微波电路的电学参数构建对应的输入数据集;将所述输入数据集输入训练好的卷积神经网络模型,得到所述目标微波电路物理尺寸参数的估算结果;其中,所述训练好的卷积神经网络模型是以训练数据集为输入,利用梯度下降法训练得到的。As shown in FIG. 7 , the electronic device includes: a processor, a communication interface (CommunicationsInterface), a memory (memory), and a bus, wherein the processor, the communication interface, and the memory communicate with each other through the bus. The processor can invoke the logic instructions in the memory to perform the following method, for example, including: continuously collecting electrical parameters of the target microwave circuit, and constructing a corresponding input data set according to the electrical parameters of the target microwave circuit; Input the trained convolutional neural network model to obtain the estimation result of the physical size parameter of the target microwave circuit; wherein, the trained convolutional neural network model takes the training data set as input, and is obtained by using the gradient descent method to train .
上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The above-mentioned logic instructions in the memory can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product. Based on this understanding, the technical solution of the present invention can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: U disk, removable hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。All or part of the steps of implementing the above method embodiments can be completed by program instructions related to hardware, the aforementioned program can be stored in a computer-readable storage medium, and when the program is executed, it executes the steps including the above method embodiments; The aforementioned storage medium includes various media that can store program codes, such as ROM, RAM, magnetic disk, or optical disk.
以上所描述的通信设备等实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。The above-described embodiments of communication devices and the like are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分的方法。From the description of the above embodiments, those skilled in the art can clearly understand that each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware. Based on this understanding, the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic Disks, optical discs, etc., include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods of various embodiments or portions of embodiments.
如表1所示,为实施例1中采用基于深度学习微波电路物理尺寸参数估算方法在与其他回归预测方法如linear Regression、SVM RF Regression进行精度对比所得到的结果表格,可以看到的是在MSE,MAE,R2这三项回归分析所常用的评估标准上,本方法都具有着更高的精度及回归曲线拟合度更好等特性。As shown in Table 1, it is the result table obtained by comparing the accuracy of the microwave circuit physical size parameter estimation method based on deep learning with other regression prediction methods such as linear Regression and SVM RF Regression in Example 1. It can be seen that in MSE, MAE, and R 2 are the three commonly used evaluation criteria for regression analysis.
表1不同方法估算得到的微波电路物理尺寸结果的精确性对比表Table 1. Accuracy comparison table of microwave circuit physical size results estimated by different methods
图8为理论上的电路物理尺寸参数仿真结果与本方法所预测的物理尺寸参数仿真得到的结果对比图,可以看到的是在等波纹处两者已经基本吻合,这意味着该电路以本方法所预测的物理尺寸参数而制备可以得到近乎于理论计算所得到的性能。Figure 8 is a comparison diagram of the theoretical simulation results of the physical size parameters of the circuit and the results obtained by the simulation of the physical size parameters predicted by this method. It can be seen that the two are basically consistent at the equal ripple, which means that the circuit is based on this method. Preparations based on the physical size parameters predicted by the method can obtain properties that are close to those obtained by theoretical calculations.
综上所述,本发明提供的估算方法包括自动采集目标微波电路电学参数,并构建输入数据集;将所述目标微波电路电学参数对应的输入数据集为模型的输入,建立用于估算所述目标微波电路物理尺寸参数的卷积神经网络模型;以及根据梯度下降算法和测试数据集对所述卷积神经网络模型进行模型训练、验证和测试,得到对所述目标微波电路物理尺寸参数的估算结果。本发明自动化程度高且估算准确率高,能够有效减少微波电路设计仿真的中间环节和人工不确定性,降低微波电路设计的应用成本和复杂程度,有效提高微波电路物理尺寸参数估算的准确性。To sum up, the estimation method provided by the present invention includes automatically collecting the electrical parameters of the target microwave circuit, and constructing an input data set; A convolutional neural network model of the physical size parameters of the target microwave circuit; and performing model training, verification and testing on the convolutional neural network model according to a gradient descent algorithm and a test data set, to obtain an estimate of the physical size parameters of the target microwave circuit result. The invention has a high degree of automation and high estimation accuracy, can effectively reduce the intermediate links and artificial uncertainty of microwave circuit design simulation, reduce the application cost and complexity of microwave circuit design, and effectively improve the accuracy of microwave circuit physical size parameter estimation.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。Although the embodiment of the present invention has been disclosed as above, it is not limited to the application listed in the description and the embodiment, and it can be applied to various fields suitable for the present invention. For those skilled in the art, it can be easily Therefore, the invention is not limited to the specific details and illustrations shown and described herein without departing from the general concept defined by the appended claims and the scope of equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011000929.6A CN112149351B (en) | 2020-09-22 | 2020-09-22 | Microwave circuit physical dimension estimation method based on deep learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011000929.6A CN112149351B (en) | 2020-09-22 | 2020-09-22 | Microwave circuit physical dimension estimation method based on deep learning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112149351A true CN112149351A (en) | 2020-12-29 |
CN112149351B CN112149351B (en) | 2023-04-18 |
Family
ID=73893658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011000929.6A Expired - Fee Related CN112149351B (en) | 2020-09-22 | 2020-09-22 | Microwave circuit physical dimension estimation method based on deep learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112149351B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117454756A (en) * | 2023-10-23 | 2024-01-26 | 广州航海学院 | Microstrip antenna modeling method, device, electronic equipment and medium |
EP4421671A1 (en) * | 2023-02-23 | 2024-08-28 | RTX Corporation | Method for designing architecture for microwave communication and power networks |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040239452A1 (en) * | 2001-11-02 | 2004-12-02 | Fred Bassali | Circuit board microwave filters |
CN101539137A (en) * | 2009-04-17 | 2009-09-23 | 北京航空航天大学 | Residual life gray prediction method of aerospace hydraulic pump based on delta filter |
CN106528975A (en) * | 2016-11-01 | 2017-03-22 | 电子科技大学 | Fault prognostics and health management method applied to circuits and systems |
CN106560691A (en) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | Identification method for producing area of Wuyi rock tea and with deep learning function |
CN107645287A (en) * | 2017-05-24 | 2018-01-30 | 南京大学 | A kind of size based on 6 parallel rapid finite impact response filter cascade structures can configure convolution hardware and realize |
CN109670509A (en) * | 2019-01-04 | 2019-04-23 | 中国农业大学 | Winter wheat seedling stage growing way parameter evaluation method and system based on convolutional neural networks |
CN110765704A (en) * | 2019-11-28 | 2020-02-07 | 北京工业大学 | A Novel Deep Neural Network Automatic Modeling Method for Microwave Devices |
-
2020
- 2020-09-22 CN CN202011000929.6A patent/CN112149351B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040239452A1 (en) * | 2001-11-02 | 2004-12-02 | Fred Bassali | Circuit board microwave filters |
CN101539137A (en) * | 2009-04-17 | 2009-09-23 | 北京航空航天大学 | Residual life gray prediction method of aerospace hydraulic pump based on delta filter |
CN106560691A (en) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | Identification method for producing area of Wuyi rock tea and with deep learning function |
CN106528975A (en) * | 2016-11-01 | 2017-03-22 | 电子科技大学 | Fault prognostics and health management method applied to circuits and systems |
CN107645287A (en) * | 2017-05-24 | 2018-01-30 | 南京大学 | A kind of size based on 6 parallel rapid finite impact response filter cascade structures can configure convolution hardware and realize |
CN109670509A (en) * | 2019-01-04 | 2019-04-23 | 中国农业大学 | Winter wheat seedling stage growing way parameter evaluation method and system based on convolutional neural networks |
CN110765704A (en) * | 2019-11-28 | 2020-02-07 | 北京工业大学 | A Novel Deep Neural Network Automatic Modeling Method for Microwave Devices |
Non-Patent Citations (3)
Title |
---|
G.L. CREECH等: "Artificial neural networks for accurate microwave CAD applications", 《1996 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST》 * |
JING JIN 等: "Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters", 《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》 * |
张淑娥 等: "遗传神经网络在腔体滤波器结构参数优化中的应用", 《中国新通信》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4421671A1 (en) * | 2023-02-23 | 2024-08-28 | RTX Corporation | Method for designing architecture for microwave communication and power networks |
CN117454756A (en) * | 2023-10-23 | 2024-01-26 | 广州航海学院 | Microstrip antenna modeling method, device, electronic equipment and medium |
Also Published As
Publication number | Publication date |
---|---|
CN112149351B (en) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113486578B (en) | Method for predicting residual life of equipment in industrial process | |
EP4163831A1 (en) | Neural network distillation method and device | |
US20230095606A1 (en) | Method for training classifier, and data processing method, system, and device | |
CN111860588A (en) | Training method for graph neural network and related equipment | |
CN116415654A (en) | Data processing method and related equipment | |
WO2020062299A1 (en) | Neural network processor, data processing method and related device | |
US20210312261A1 (en) | Neural network search method and related apparatus | |
CN111275007A (en) | Bearing fault diagnosis method and system based on multi-scale information fusion | |
US20240135174A1 (en) | Data processing method, and neural network model training method and apparatus | |
CN107403188A (en) | A kind of quality evaluation method and device | |
CN113065633A (en) | Model training method and associated equipment | |
WO2020192523A1 (en) | Translation quality detection method and apparatus, machine translation system, and storage medium | |
CN117501245A (en) | Neural network model training method and device, and data processing method and device | |
CN110765704A (en) | A Novel Deep Neural Network Automatic Modeling Method for Microwave Devices | |
CN112149351B (en) | Microwave circuit physical dimension estimation method based on deep learning | |
CN115965864A (en) | A Lightweight Attention Mechanism Network for Crop Disease Recognition | |
CN116739154A (en) | Fault prediction method and related equipment thereof | |
WO2022227024A1 (en) | Operational method and apparatus for neural network model and training method and apparatus for neural network model | |
CN117217280A (en) | Neural network model optimization method and device and computing equipment | |
CN114677545A (en) | Lightweight image classification method based on similarity pruning and efficient module | |
WO2024239927A1 (en) | Model training method and related device | |
CN115115016A (en) | Method and device for training neural network | |
CN117557595A (en) | Target tracking method based on lightweight twin neural network | |
CN116051861A (en) | An Anchor-Free Object Detection Method Based on Reparameterization | |
CN116227556A (en) | Method, device, computer equipment and storage medium for obtaining target network model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230418 |
|
CF01 | Termination of patent right due to non-payment of annual fee |