CN112146755A - Device and method for generating ultra-broadband terahertz dual-optical comb based on non-resonant radio frequency injection - Google Patents
Device and method for generating ultra-broadband terahertz dual-optical comb based on non-resonant radio frequency injection Download PDFInfo
- Publication number
- CN112146755A CN112146755A CN202010876302.0A CN202010876302A CN112146755A CN 112146755 A CN112146755 A CN 112146755A CN 202010876302 A CN202010876302 A CN 202010876302A CN 112146755 A CN112146755 A CN 112146755A
- Authority
- CN
- China
- Prior art keywords
- quantum cascade
- cascade laser
- terahertz quantum
- radio frequency
- terahertz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title claims abstract description 37
- 239000007924 injection Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000001228 spectrum Methods 0.000 claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 12
- 238000000295 emission spectrum Methods 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 4
- 238000001831 conversion spectrum Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 abstract description 4
- 238000010168 coupling process Methods 0.000 abstract description 4
- 238000005859 coupling reaction Methods 0.000 abstract description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 12
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 5
- 210000001520 comb Anatomy 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000035559 beat frequency Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2803—Investigating the spectrum using photoelectric array detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3401—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种基于非共振射频注入产生超宽带太赫兹双光梳装置,包括处于真空环境下的第一太赫兹量子级联激光器和第二太赫兹量子级联激光器,其中,所述第一太赫兹量子级联激光器和第二太赫兹量子级联激光器放置在同一高度上,且两者之间具有一定距离,第一太赫兹量子级联激光器的光通过抛物面镜进入第二太赫兹量子级联激光器,并在所述第二太赫兹量子级联激光器的谐振腔内进行光耦合。本发明还涉及一种基于非共振射频注入产生超宽带太赫兹双光梳方法。本发明能够使得产生的双光梳光谱更宽。
The invention relates to an ultra-wideband terahertz double optical comb device based on non-resonant radio frequency injection, comprising a first terahertz quantum cascade laser and a second terahertz quantum cascade laser in a vacuum environment, wherein the first terahertz quantum cascade laser The terahertz quantum cascade laser and the second terahertz quantum cascade laser are placed at the same height with a certain distance between them, and the light of the first terahertz quantum cascade laser enters the second terahertz quantum level through a parabolic mirror A cascaded laser, and optical coupling is performed in the resonant cavity of the second terahertz quantum cascade laser. The invention also relates to a method for generating an ultra-wideband terahertz double optical comb based on non-resonant radio frequency injection. The present invention enables the resulting dual-comb spectrum to be wider.
Description
技术领域technical field
本发明涉及半导体光电器件应用技术领域,特别是涉及一种基于非共振射频注入产生超宽带太赫兹双光梳装置及方法。The invention relates to the technical field of semiconductor optoelectronic device applications, in particular to a device and method for generating ultra-wideband terahertz double optical combs based on non-resonant radio frequency injection.
背景技术Background technique
具有相等间隔和低相位噪声频率线的宽带双光梳光源对于高分辨率光谱学和计量学非常重要。在太赫兹频率范围内,有着高输出功率,良好的远场光束质量和宽频率覆盖范围的电泵浦量子级联激光器(Quantum Cascade Lasers,QCL)能够产生光频梳。但是,由于群速度色散的关系,自由运行的太赫兹QCL(Terahertz QCL,THz QCL)通常显示出有限的光频梳的双光梳带宽,这远小于激光器的增益带宽。目前,虽然在激光往返频率上进行共振射频注入锁定已广泛应用于THz QCL的发射光谱展宽,但由于共振注入(注入频率等于谐振腔的往返频率)引起的大相位噪声和非理想的微波电路,仍然很难显著展宽光频梳和双光梳带宽。Broadband dual-comb light sources with equally spaced and low phase noise frequency lines are important for high-resolution spectroscopy and metrology. In the terahertz frequency range, electrically pumped Quantum Cascade Lasers (QCLs) with high output power, good far-field beam quality and wide frequency coverage can generate optical frequency combs. However, due to the group velocity dispersion, free-running THz QCLs (Terahertz QCLs, THz QCLs) generally show a limited dual-comb bandwidth of optical frequency combs, which is much smaller than the gain bandwidth of the laser. At present, although resonant RF injection locking at the laser round-trip frequency has been widely used for emission spectrum broadening of THz QCLs, due to the large phase noise and non-ideal microwave circuits caused by resonant injection (the injection frequency is equal to the round-trip frequency of the resonator), It is still difficult to significantly broaden the bandwidth of optical frequency combs and dual optical combs.
与传统的傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱和时域光谱(Time-domain Spectroscopy)相比,双光梳光谱(即利用两个THz QCL形成的多外差光谱)是将对THz波段的分析转到射频波段,以便于更好的信号分辨和处理。除此之外,双光梳外差光谱系统由于其紧凑的系统结构,不需要任何移动部件就能够实现快速高分辨率的光谱,并且其噪声特性优于FTIR光谱和时域光谱,能够探测到更宽的光谱范围。Compared with traditional Fourier Transform Infrared (FTIR) spectroscopy and time-domain spectroscopy (Time-domain Spectroscopy), dual-comb spectroscopy (i.e., multi-heterodyne spectroscopy using two THz QCLs) Analysis in the THz band is transferred to the RF band for better signal resolution and processing. In addition, the dual-comb heterodyne spectroscopy system can achieve fast and high-resolution spectroscopy without any moving parts due to its compact system structure, and its noise characteristics are superior to FTIR spectroscopy and time-domain spectroscopy. wider spectral range.
在现有技术中,已经实现的THz QCL双光梳光谱有片上双光梳和紧凑型分离式双光梳。对于片上双光梳系统,两个激光器被制作在同一衬底上。正是因为这种结构,THz QCL之间通过衬底或者激光介质进行光耦合,导致这种系统不能够满足光谱检测。而对于紧凑型分离式双光梳系统,虽然两个THz QCL没有共用同一衬底,但由于两者相隔很近,很难进行体积较大或者样品较复杂的快速检测。In the prior art, the THz QCL dual-comb spectrum that has been realized includes an on-chip dual-comb and a compact split dual-comb. For the on-chip dual-comb system, both lasers are fabricated on the same substrate. It is precisely because of this structure that the THz QCLs are optically coupled through the substrate or the laser medium, which makes this system unable to meet the spectral detection requirements. For the compact split dual-comb system, although the two THz QCLs do not share the same substrate, due to the close distance between the two, it is difficult to perform rapid detection with large volumes or complex samples.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种基于非共振射频注入产生超宽带太赫兹双光梳装置及方法,使得产生的双光梳光谱更宽。The technical problem to be solved by the present invention is to provide a device and method for generating an ultra-wideband terahertz double-comb based on non-resonant radio frequency injection, so that the spectrum of the generated double-comb is wider.
本发明解决其技术问题所采用的技术方案是:提供一种基于非共振射频注入产生超宽带太赫兹双光梳装置,包括处于真空环境下的第一太赫兹量子级联激光器和第二太赫兹量子级联激光器,所述第一太赫兹量子级联激光器和第二太赫兹量子级联激光器独立工作,所述第一太赫兹量子级联激光器与第一T型偏置器相连,所述第一T型偏置器与第一射频源相连,所述第一太赫兹量子级联激光器和第一T型偏置器分别与第一直流源相连;所述第二太赫兹量子级联激光器与第二T型偏置器相连,所述第二T型偏置器分别与第二射频源和频谱分析仪相连,所述第二太赫兹量子级联激光器和第二T型偏置器分别与第二直流源相连,所述第一太赫兹量子级联激光器和第二太赫兹量子级联激光器放置在同一高度上,且两者之间具有一定距离,其中第一太赫兹量子级联激光器的光通过抛物面镜进入第二太赫兹量子级联激光器,并在所述第二太赫兹量子级联激光器的谐振腔内进行光耦合;所述第一太赫兹量子级联激光器和第二太赫兹量子级联激光器的直流偏置电流不同,并且所述第一太赫兹量子级联激光器和第二太赫兹量子级联激光器的发射频谱重叠但是其频率不同。The technical solution adopted by the present invention to solve the technical problem is: to provide an ultra-wideband terahertz double-comb device based on non-resonant radio frequency injection, including a first terahertz quantum cascade laser and a second terahertz quantum cascade laser in a vacuum environment Quantum cascade laser, the first terahertz quantum cascade laser and the second terahertz quantum cascade laser work independently, the first terahertz quantum cascade laser is connected to the first T-type biaser, the first terahertz quantum cascade laser A T-type biaser is connected to the first radio frequency source, the first terahertz quantum cascade laser and the first T-type biaser are respectively connected to the first DC source; the second terahertz quantum cascade laser connected with a second T-type biaser, the second T-type biaser is respectively connected with a second radio frequency source and a spectrum analyzer, the second terahertz quantum cascade laser and the second T-type biaser are respectively Connected to the second DC source, the first terahertz quantum cascade laser and the second terahertz quantum cascade laser are placed at the same height with a certain distance between them, wherein the first terahertz quantum cascade laser The light enters the second terahertz quantum cascade laser through a parabolic mirror, and is optically coupled in the resonant cavity of the second terahertz quantum cascade laser; the first terahertz quantum cascade laser and the second terahertz quantum cascade laser The DC bias currents of the quantum cascade lasers are different, and the emission spectra of the first and second terahertz quantum cascade lasers overlap but their frequencies are different.
所述第一太赫兹量子级联激光器和第二太赫兹量子级联激光器之间的间距为15~30cm。The distance between the first terahertz quantum cascade laser and the second terahertz quantum cascade laser is 15-30 cm.
所述第一太赫兹量子级联激光器后端面2~5mm位置处放置有用于阻抗匹配的第一微带线;所述第二太赫兹量子级联激光器后端面2~5mm位置处放置有用于阻抗匹配的第二微带线。A first microstrip line for impedance matching is placed at a position of 2 to 5 mm on the rear face of the first terahertz quantum cascade laser; and a position of 2 to 5 mm on the rear face of the second terahertz quantum cascade laser is placed for impedance matching. matching the second microstrip line.
所述第一太赫兹量子级联激光器的上电极分别通过金线引线与陶瓷片键合,所述陶瓷片与所述第一直流源的正极一端连接,所述第一太赫兹量子级联激光器的下电极与第一直流源的负极连接;所述第二太赫兹量子级联激光器的上电极通过金线引线与陶瓷片键合,所述陶瓷片与所述第二直流源的正极一端连接,所述第二太赫兹量子级联激光器的下电极与所述第二直流源的负极连接。The upper electrodes of the first terahertz quantum cascade laser are respectively bonded to the ceramic sheet through gold wire leads, the ceramic sheet is connected to the positive end of the first DC source, and the first terahertz quantum cascade The lower electrode of the laser is connected to the negative electrode of the first DC source; the upper electrode of the second terahertz quantum cascade laser is bonded to the ceramic sheet through a gold wire lead, and the ceramic sheet is connected to the positive electrode of the second DC source One end is connected, and the lower electrode of the second terahertz quantum cascade laser is connected to the negative electrode of the second DC source.
所述第一太赫兹量子级联激光器的上电极分别通过金线引线与第一微带线键合;所述第二太赫兹量子级联激光器的上电极通过金线引线与第二微带线键合。The upper electrode of the first terahertz quantum cascade laser is respectively bonded to the first microstrip line through the gold wire lead; the upper electrode of the second terahertz quantum cascade laser is connected to the second microstrip line through the gold wire lead. Bond.
所述第一T型偏置器具有一个直流偏置端口、一个射频端口和一个射频与直流混合端口,所述直流偏置端口与所述第一直流源连接,所述射频端口与所述第一射频源连接,所述混合端口通过第一高频同轴线缆与所述第一太赫兹量子级联激光器连接;所述第二T型偏置器具有一个直流偏置端口、一个射频端口和一个射频与直流混合端口,所述直流偏置端口与所述第二直流源连接,所述射频端口分别与所述第二射频源和所述频谱分析仪连接,所述混合端口通过第二高频同轴线缆与所述第二太赫兹量子级联激光器连接。The first T-type biaser has a DC bias port, a radio frequency port and a mixed radio frequency and DC port, the DC bias port is connected to the first DC source, and the radio frequency port is connected to the The first radio frequency source is connected, and the hybrid port is connected to the first terahertz quantum cascade laser through a first high frequency coaxial cable; the second T-type biaser has a DC bias port, a radio frequency port and a radio frequency and DC hybrid port, the DC bias port is connected to the second DC source, the radio frequency port is respectively connected to the second radio frequency source and the spectrum analyzer, the hybrid port is connected to the Two high-frequency coaxial cables are connected to the second terahertz quantum cascade laser.
本发明解决其技术问题所采用的技术方案是:提供一种基于非共振射频注入产生超宽带太赫兹双光梳方法,采用上述的基于非共振射频注入产生超宽带太赫兹双光梳装置,包括以下步骤:The technical solution adopted by the present invention to solve the technical problem is to provide a method for generating an ultra-wideband terahertz dual optical comb based on non-resonant radio frequency injection, and adopting the above-mentioned device for generating an ultra-wideband terahertz dual optical comb based on non-resonant radio frequency injection, comprising: The following steps:
(1)两个直流源分别同时给所述第一太赫兹量子级联激光器和第二太赫兹量子级联激光器供电;(1) The two DC sources supply power to the first terahertz quantum cascade laser and the second terahertz quantum cascade laser respectively at the same time;
(2)所述第一射频源向所述第一太赫兹量子级联激光器注入射频信号,注入的射频信号频率接近所述第一太赫兹量子级联激光器的腔内往返频率,此时所述第二太赫兹量子级联激光器不进行射频注入,在所述频谱分析仪上观察到下转换光谱;(2) The first radio frequency source injects a radio frequency signal into the first terahertz quantum cascade laser, and the frequency of the injected radio frequency signal is close to the intra-cavity round-trip frequency of the first terahertz quantum cascade laser. The second terahertz quantum cascade laser does not perform radio frequency injection, and a down-conversion spectrum is observed on the spectrum analyzer;
(3)逐渐增加注入的射频信号的功率,同时根据频谱分析仪上双光梳光谱的变化改变注入的射频信号的频率,产生比共振注入情况下更宽的双光梳谱;(3) Gradually increase the power of the injected radio frequency signal, and at the same time change the frequency of the injected radio frequency signal according to the change of the dual-comb spectrum on the spectrum analyzer, resulting in a wider dual-comb spectrum than the case of resonance injection;
(4)第二射频源向所述第二太赫兹量子级联激光器注入的射频信号,注入的射频信号接近所述第二太赫兹量子级联激光器的腔内往返频率,此时所述第一太赫兹量子级联激光器不进行射频注入,逐渐增加注入的射频信号功率和频率,也产生比共振注入情况下更宽的双光梳谱。(4) The radio frequency signal injected by the second radio frequency source into the second terahertz quantum cascade laser, the injected radio frequency signal is close to the intra-cavity round-trip frequency of the second terahertz quantum cascade laser, at this time the first terahertz quantum cascade laser THz quantum cascade lasers do not perform RF injection, and gradually increase the power and frequency of the injected RF signal, which also produces a wider dual-comb spectrum than in the case of resonant injection.
有益效果beneficial effect
由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明将两个相距较远的太赫兹量子级联激光器通过光耦合拍频产生下转换双光梳光谱,并通过非共振射频注入产生更宽的双光梳光谱带宽。并且,两个THz QCL可以分别充当激光器和探测器完成非共振射频注入实现超宽带双光梳光谱。本发明相比于传统傅里叶变换红外光谱仪,具有快速高效且高分辨率的特点,且还可以应用于物质的快速精密太赫兹光谱测量中。Compared with the prior art, the present invention has the following advantages and positive effects due to the adoption of the above-mentioned technical solution: the present invention generates down-conversion double-light by optical coupling beat frequency between two terahertz quantum cascade lasers that are far apart. Comb spectroscopy, and generate a wider dual-comb spectral bandwidth by off-resonant RF injection. Moreover, two THz QCLs can act as lasers and detectors, respectively, to perform non-resonant RF injection to achieve ultra-broadband dual-comb spectroscopy. Compared with the traditional Fourier transform infrared spectrometer, the invention has the characteristics of high speed, high efficiency and high resolution, and can also be applied to the fast and precise terahertz spectrum measurement of substances.
附图说明Description of drawings
图1是本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2是本发明对应条件下的拍频信号谱图。FIG. 2 is a spectrogram of the beat signal under the corresponding conditions of the present invention.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
本发明的实施方式涉及一种基于非共振射频注入产生超宽带太赫兹双光梳装置,如图1所示,包括处于真空环境下的第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2,所述第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2独立工作,所述第一太赫兹量子级联激光器1通过第一高频同轴线缆线3与第一T型偏置器4相连,所述第一T型偏置器4与第一射频源5相连,所述第一太赫兹量子级联激光器1和第一T型偏置器4分别与第一直流源6相连;所述第二太赫兹量子级联激光器2通过第二高频同轴线缆线7与第二T型偏置器8相连,所述第二T型偏置器8与第二射频源(图中未示出)相连,所述第二T型偏置器8还通过低噪声放大器9与频谱分析仪10相连,所述第二太赫兹量子级联激光器2和第二T型偏置器8分别与第二直流源11相连。其中,所述第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2放置在同一高度上,且两者之间具有一定距离,其中第一太赫兹量子级联激光器1的光通过抛物面镜12进入第二太赫兹量子级联激光器2,并在所述第二太赫兹量子级联激光器2的谐振腔内进行光耦合;所述第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2的直流偏置电流不同,并且所述第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2的发射频谱重叠但是其频率不同。Embodiments of the present invention relate to an ultra-broadband terahertz double-comb device based on non-resonant radio frequency injection, as shown in FIG. 1 , including a first terahertz
本实施方式中第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2之间的间距为15~30cm。所述第一太赫兹量子级联激光器1后端面2~5mm位置处放置有用于阻抗匹配的第一微带线;所述第二太赫兹量子级联激光器2后端面2~5mm位置处放置有用于阻抗匹配的第二微带线。In this embodiment, the distance between the first terahertz
所述第一太赫兹量子级联激光器1的上电极分别通过金线引线与陶瓷片键合,所述陶瓷片与所述第一直流源6的正极一端连接,所述第一太赫兹量子级联激光器1的下电极与第一直流源6的负极连接;所述第二太赫兹量子级联激光器2的上电极通过金线引线与陶瓷片键合,所述陶瓷片与所述第二直流源11的正极一端连接,所述第二太赫兹量子级联激光器2的下电极与所述第二直流源11的负极连接。The upper electrodes of the first terahertz
所述第一太赫兹量子级联激光器1的上电极分别通过金线引线与第一微带线键合,所述第一高频同轴线缆3与第一T型偏置器4连接;所述第二太赫兹量子级联激光器2的上电极通过金线引线与第二微带线键合,所述第二高频同轴线缆7与所述第二T型偏置器8连接。The upper electrodes of the first terahertz
所述第一T型偏置器4具有一个直流偏置端口、一个射频端口和一个射频与直流混合端口,所述直流偏置端口与所述第一直流源6连接,所述射频端口与所述第一射频源5连接,所述混合端口通过所述第一高频同轴线缆3与第一太赫兹量子级联激光器1连接;所述第二T型偏置器8具有一个直流偏置端口、一个射频端口和一个射频与直流混合端口,所述直流偏置端口与所述第二直流源11连接,所述射频端口通过低噪声放大器9与所述频谱分析仪10连接,所述混合端口通过所述第二高频同轴线缆7与第二太赫兹量子级联激光器2连接。The first T-type biaser 4 has a DC bias port, a radio frequency port and a mixed radio frequency and DC port, the DC bias port is connected to the
采用上述装置实现超宽带双光梳光谱的方法,采用非共振射频注入调制,包括:The method for realizing ultra-broadband dual-optical comb spectroscopy using the above device adopts non-resonant radio frequency injection modulation, including:
步骤S1:提供所述第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2。第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2分别放置在两个制冷器中,相隔15~30cm放置,并由液氦控制其低温工作。在第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2的后端面位置处提供用于阻抗匹配的第一微带线和第二微带线,第一微带线和第二微带线通过金线分别与各自的太赫兹量子级联激光器的上电极连接,整个装置处于真空且封闭的环境下;Step S1 : providing the first terahertz
步骤S2:提供第一直流源6、第一T型偏置器4和第一射频源5。将第一直流源6与第一T型偏置器4的直流偏置端口连接,第一射频源5与第一T型偏置器4的射频端口连接,第一T型偏置器4的混合端口与第一太赫兹量子级联激光器1后端的第一微带线通过第一高频同轴线缆3连接。Step S2 : providing a
步骤S3:提供第二直流源11、第二T型偏置器8、第二射频源、低噪声放大器9和频谱分析仪10。将第二直流源11与第二T型偏置器8的直流偏置端口连接,频谱分析仪10经过低噪声放大器9与第二T型偏置器8的射频端口连接,第二T型偏置器8的射频端口还连接第二射频源,第二T型偏置器8的混合端口与第二太赫兹量子级联激光器2后端的微带线通过第二高频同轴线缆7连接。Step S3 : providing a
步骤S4:第一直流源和第二直流源分别同时给第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2供电。第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2的直流偏置电流并不是完全相同,并且第一太赫兹量子级联激光器1和第二太赫兹量子级联激光器2的发射频谱重叠但是其频率并不完全相同;Step S4: The first DC source and the second DC source supply power to the first terahertz
步骤S5:第一射频源5向第一太赫兹量子级联激光器1注入较低功率的射频信号(此时第二太赫兹量子级联激光器2不进行射频注入),注入的射频信号频率接近第一太赫兹量子级联激光器1的腔内往返频率(共振注入),此时会产生下转换光谱。Step S5: The first
步骤S6:逐渐增加注入的射频信号功率,同时根据频谱分析仪10上双光梳光谱的变化改变注入的射频信号频率,出现比共振注入情况下更宽的双光梳谱(见图2)。Step S6: Gradually increase the power of the injected radio frequency signal, and at the same time change the frequency of the injected radio frequency signal according to the change of the dual-comb spectrum on the
步骤S7:第二射频源向第二太赫兹量子级联激光器2注入较低功率的射频信号(此时第一太赫兹量子级联激光器1不进行射频注入),注入的射频信号接近第二太赫兹量子级联激光器2的腔内往返频率(共振注入),逐渐增加注入的射频信号功率和频率,也出现比共振注入情况下更宽的双光梳谱(见图2)。Step S7: The second radio frequency source injects a lower power radio frequency signal into the second terahertz quantum cascade laser 2 (at this time, the first terahertz
步骤S8:提供待测样品,放置在两个抛物面镜的中间,进行快速样品探测。Step S8: Provide the sample to be tested, and place it in the middle of the two parabolic mirrors for fast sample detection.
不难发现,本发明将两个相距较远的太赫兹量子级联激光器通过光耦合拍频产生下转换双光梳光谱,并通过非共振射频注入产生更宽的双光梳光谱带宽。并且,两个THzQCL可以分别充当激光器和探测器完成非共振射频注入实现超宽带双光梳光谱。本发明相比于传统傅里叶变换红外光谱仪,具有快速高效且高分辨率的特点,且还可以应用于物质的快速精密太赫兹光谱测量中。It is not difficult to find that the present invention generates a down-conversion dual-comb spectrum by optical coupling beat frequency of two terahertz quantum cascade lasers far apart, and generates a wider dual-comb spectrum bandwidth through non-resonant radio frequency injection. Moreover, the two THzQCLs can act as lasers and detectors, respectively, to perform non-resonant RF injection to achieve ultra-broadband dual-comb spectroscopy. Compared with the traditional Fourier transform infrared spectrometer, the invention has the characteristics of high speed, high efficiency and high resolution, and can also be applied to the fast and precise terahertz spectrum measurement of substances.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010876302.0A CN112146755B (en) | 2020-08-27 | 2020-08-27 | Device and method for generating ultra-wideband terahertz double-optical comb based on non-resonant radio frequency injection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010876302.0A CN112146755B (en) | 2020-08-27 | 2020-08-27 | Device and method for generating ultra-wideband terahertz double-optical comb based on non-resonant radio frequency injection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112146755A true CN112146755A (en) | 2020-12-29 |
CN112146755B CN112146755B (en) | 2021-07-09 |
Family
ID=73888606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010876302.0A Active CN112146755B (en) | 2020-08-27 | 2020-08-27 | Device and method for generating ultra-wideband terahertz double-optical comb based on non-resonant radio frequency injection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112146755B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113092072A (en) * | 2021-03-01 | 2021-07-09 | 中国科学院上海微系统与信息技术研究所 | Single-mode terahertz quantum cascade laser tuning characteristic characterization device |
CN114039268A (en) * | 2021-10-18 | 2022-02-11 | 中国科学院上海微系统与信息技术研究所 | A dual-comb fully phase-locked system for terahertz quantum cascade lasers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101092484B1 (en) * | 2010-02-05 | 2011-12-13 | 한국표준과학연구원 | Terahertz spectrum analyzer |
CN106471685A (en) * | 2014-01-24 | 2017-03-01 | 加州理工学院 | Double frequency light source |
CN109462140A (en) * | 2018-12-24 | 2019-03-12 | 中国科学院上海微系统与信息技术研究所 | A kind of on piece Terahertz double frequency carding device of radio frequency injection modulation |
CN110132884A (en) * | 2019-04-28 | 2019-08-16 | 中国科学院上海微系统与信息技术研究所 | Terahertz spectrum measurement system and method for analyzing terahertz spectrum of substances |
CN110376156A (en) * | 2019-07-30 | 2019-10-25 | 上海理工大学 | The THz wave spectra system that asynchronous optical sampling and double light combs integrate |
-
2020
- 2020-08-27 CN CN202010876302.0A patent/CN112146755B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101092484B1 (en) * | 2010-02-05 | 2011-12-13 | 한국표준과학연구원 | Terahertz spectrum analyzer |
CN106471685A (en) * | 2014-01-24 | 2017-03-01 | 加州理工学院 | Double frequency light source |
CN109462140A (en) * | 2018-12-24 | 2019-03-12 | 中国科学院上海微系统与信息技术研究所 | A kind of on piece Terahertz double frequency carding device of radio frequency injection modulation |
CN110132884A (en) * | 2019-04-28 | 2019-08-16 | 中国科学院上海微系统与信息技术研究所 | Terahertz spectrum measurement system and method for analyzing terahertz spectrum of substances |
CN110376156A (en) * | 2019-07-30 | 2019-10-25 | 上海理工大学 | The THz wave spectra system that asynchronous optical sampling and double light combs integrate |
Non-Patent Citations (1)
Title |
---|
廖小瑜等: "太赫兹半导体激光光频梳研究进展", 《物理学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113092072A (en) * | 2021-03-01 | 2021-07-09 | 中国科学院上海微系统与信息技术研究所 | Single-mode terahertz quantum cascade laser tuning characteristic characterization device |
CN113092072B (en) * | 2021-03-01 | 2022-06-24 | 中国科学院上海微系统与信息技术研究所 | A device for characterizing tuning characteristics of single-mode terahertz quantum cascade lasers |
CN114039268A (en) * | 2021-10-18 | 2022-02-11 | 中国科学院上海微系统与信息技术研究所 | A dual-comb fully phase-locked system for terahertz quantum cascade lasers |
CN114039268B (en) * | 2021-10-18 | 2024-10-18 | 中国科学院上海微系统与信息技术研究所 | Terahertz quantum cascade laser double-optical-comb complete phase-locking system |
Also Published As
Publication number | Publication date |
---|---|
CN112146755B (en) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109462140B (en) | An on-chip terahertz dual-frequency comb device for radio frequency injection modulation | |
CN112670824B (en) | A dual-comb frequency stabilization system for terahertz quantum cascade lasers | |
US11733096B2 (en) | Highly-integrated ultrahigh-resolution mid-infrared dual-comb spectroscopy measurement device and method | |
US9040919B2 (en) | Photomixer-waveguide coupling tapers | |
US10215694B2 (en) | Contact-free photomixing probe for device and integrated circuit measurement or characterization | |
CN104048814B (en) | Terahertz waveguide test system | |
CN112146755A (en) | Device and method for generating ultra-broadband terahertz dual-optical comb based on non-resonant radio frequency injection | |
CN110398292B (en) | A high-sensitivity optical frequency comb clock jitter measurement method and system | |
CN108287132B (en) | A terahertz asynchronous high-speed scanning system trigger signal generating device and method | |
US11788956B2 (en) | Terahertz spectrum measurement system and method for analyzing a terahertz spectrum of a substance | |
CN113092072B (en) | A device for characterizing tuning characteristics of single-mode terahertz quantum cascade lasers | |
CN110133679A (en) | A Doppler Velocimetry System Based on Monolithic Integrated Dual-frequency Laser | |
Grant et al. | Ultra-high frequency monolithically integrated quantum well infrared photodetector up to 75 GHz | |
CN118232165A (en) | Dual optical comb signal locking system and method | |
CN109273983B (en) | A terahertz quantum cascade laser and its spectral modulation method | |
CN110274889A (en) | Multi-channel terahertz spectrographic detection unit based on surface plasma body resonant vibration antenna | |
CN114414522B (en) | Device and method for representing optical frequency comb coherent spectrum by adopting terahertz optical self-detection | |
CN116222778A (en) | An integrated terahertz dual optical comb imaging system | |
CN117760961A (en) | On-chip microcavity double-optical comb sensor and application method thereof | |
Bavedila et al. | Development of an highly distributed photoconductor for CW THz generation | |
CN116247510A (en) | A self-injected terahertz optical frequency comb system | |
Union et al. | Air Force Office of Scientific Research Award# F49620-89-C-0056 P00004 | |
Jayasankar | Design and Characterisation of Terahertz Schottky Barrier Diode Mixers | |
CN118983690A (en) | A dual-comb control system for terahertz quantum cascade lasers | |
Yang et al. | Near 1 THz Biasless Frequency Tripler Based on Membrane Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |