CN112143829A - Typing and application of universal SNP (single nucleotide polymorphism) markers - Google Patents
Typing and application of universal SNP (single nucleotide polymorphism) markers Download PDFInfo
- Publication number
- CN112143829A CN112143829A CN202011212501.8A CN202011212501A CN112143829A CN 112143829 A CN112143829 A CN 112143829A CN 202011212501 A CN202011212501 A CN 202011212501A CN 112143829 A CN112143829 A CN 112143829A
- Authority
- CN
- China
- Prior art keywords
- snp
- dna
- artificial sequence
- snp07
- typing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002773 nucleotide Substances 0.000 title description 2
- 125000003729 nucleotide group Chemical group 0.000 title 1
- 241000227653 Lycopersicon Species 0.000 claims abstract description 62
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000003550 marker Substances 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 238000003205 genotyping method Methods 0.000 claims abstract description 15
- 230000003321 amplification Effects 0.000 claims abstract description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 22
- 238000004925 denaturation Methods 0.000 claims description 15
- 230000036425 denaturation Effects 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 11
- 230000004087 circulation Effects 0.000 claims 3
- 238000004153 renaturation Methods 0.000 claims 1
- 238000007844 allele-specific PCR Methods 0.000 abstract description 7
- 230000002860 competitive effect Effects 0.000 abstract description 7
- 108020004414 DNA Proteins 0.000 description 193
- 210000000349 chromosome Anatomy 0.000 description 9
- 238000012216 screening Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 108700028369 Alleles Proteins 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 108091092878 Microsatellite Proteins 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 239000003147 molecular marker Substances 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000001506 fluorescence spectroscopy Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 235000002262 Lycopersicon Nutrition 0.000 description 1
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开一组普适性SNP标记的分型及应用。本发明的分型包括以下步骤:提取待测西红柿的基因组DNA;基于多个SNP位点组成的位点集信息,通过程序性降低扩增温度进行SNP位点的检测;基于检测结果对待测西红柿进行基因分型以及分型结果的分析。本发明的SNP标记具有良好的多态性,且稳定性和可重复性好,将SNP标记通过竞争性等位基因特异性PCR检测,能够实现更高通量的检测过程。此外,本发明提供核心SNP标记集。利用该套标记集可以高效、准确地鉴定西红柿品种的真实性,保证西红柿种质资源收集的可靠性,同时显著降低检测成本。
The invention discloses the typing and application of a group of universal SNP markers. The typing of the present invention includes the following steps: extracting the genomic DNA of the tomato to be tested; based on the site set information composed of multiple SNP sites, the SNP site is detected by reducing the amplification temperature programmatically; based on the detection result, the tomato to be tested is detected. Perform genotyping and analysis of genotyping results. The SNP marker of the present invention has good polymorphism, and has good stability and repeatability. The SNP marker is detected by competitive allele-specific PCR, which can realize a higher throughput detection process. In addition, the present invention provides a set of core SNP markers. The use of the marker set can efficiently and accurately identify the authenticity of tomato varieties, ensure the reliability of tomato germplasm resources collection, and significantly reduce the detection cost.
Description
技术领域technical field
本发明涉及种质资源和分子育种技术领域,具体地涉及一种普适性SNP标记的组合物、分型方法及其应用。The invention relates to the technical field of germplasm resources and molecular breeding, in particular to a universal SNP marker composition, typing method and application thereof.
背景技术Background technique
西红柿属于茄科(Solanineae)番茄属(Lycopersicon),富含番茄素和多种维生素,生长周期短且具有较高的经济价值,不仅是我国种植面积最大的重要蔬菜作物之一,同时也是肉质果实研究的模式植物。随着育种技术的快速发展,西红柿品种数量与日俱增,而生活水平的进步促使品种多样化的需求不断提高。生产上,假冒品种、品种不纯、品种混淆等现象普遍存在,极大损害了育种家和种子公司的利益,也给种子需求者在选择种子时带来了困惑。品种鉴定是农业发展过程中的重要环节,如何对庞大的西红柿种质资源进行科学地鉴定和分析,避免相同西红柿种质的重复收集,保护植物新品种知识产权,促进西红柿品种市场健康发展,是西红柿生产中急需解决的问题之一。Tomato belongs to Solanineae (Lycopersicon), is rich in tomato and multivitamins, has a short growth cycle and high economic value. It is not only one of the important vegetable crops with the largest planting area in my country, but also a succulent fruit. Model plants for research. With the rapid development of breeding technology, the number of tomato varieties is increasing day by day, and the improvement of living standards has prompted the increasing demand for variety diversification. In production, counterfeit varieties, impure varieties, mixed varieties and other phenomena are common, which greatly damages the interests of breeders and seed companies, and also brings confusion to seed demanders when choosing seeds. Variety identification is an important link in the process of agricultural development. How to scientifically identify and analyze the huge tomato germplasm resources, avoid repeated collection of the same tomato germplasm, protect the intellectual property rights of new plant varieties, and promote the healthy development of the tomato variety market. One of the urgent problems in tomato production.
传统的西红柿品种鉴定方法主要依靠形态学标记法,对茎、叶、花、株高、果实等性状的相对差异进行肉眼识别,或是借助某些易测试的性状,如典型的抗病虫性、生理特性,这种方法费时费力,部分性状易受环境影响,并且形态学特征往往在植株的特定生长阶段才开始显现或者有些品种的区分并不体现于形态上。随着分子生物学技术的发展,利用分子标记技术进行品种的鉴定已成为一种趋势,排除了环境因素的影响,结果更加可靠。国际新品种权植物保护联盟(UPOV)已在BMT分子测试指南中将SSR(simple sequence repeat)标记和SNP(single-nucleotide polymer-phism)标记作为植物品种鉴定推荐的分子标记方法(Button P,2007)。SNP标记具有变异丰富、准确度高、易实现自动化等优点,可以打破SSR标记数量有限、操作耗时的局限性,被公认为极具应用前景的分子标记(Rasheed Awaiset al.,2017)。与此同时,番茄基因组测序的完成为番茄SNP标记的开发提供了良好的基础(Lin et al.,2014)。Traditional identification methods of tomato varieties mainly rely on morphological markers to visually identify relative differences in traits such as stems, leaves, flowers, plant height, and fruits, or rely on some easily testable traits, such as typical resistance to pests and diseases. , physiological characteristics, this method is time-consuming and labor-intensive, some characters are easily affected by the environment, and morphological characteristics often begin to appear in a specific growth stage of the plant or the distinction of some varieties is not reflected in the shape. With the development of molecular biology technology, the identification of varieties by molecular marker technology has become a trend, which excludes the influence of environmental factors and makes the results more reliable. The International Union for the Protection of New Varieties (UPOV) has adopted SSR (simple sequence repeat) markers and SNP (single-nucleotide polymer-phism) markers as the recommended molecular markers for plant variety identification in the BMT molecular testing guidelines (Button P, 2007 ). SNP markers have the advantages of abundant variation, high accuracy, and easy automation. They can overcome the limitations of limited SSR markers and time-consuming operations. They are recognized as molecular markers with great application prospects (Rasheed Awaiset al., 2017). At the same time, the completion of tomato genome sequencing provides a good foundation for the development of tomato SNP markers (Lin et al., 2014).
目前,SNP标记技术广泛用于水稻、玉米、大豆等作物的品种鉴定,且在品种管理和保护中均产生了积极的效果。西红柿品种鉴定主要采用InDel标记法(高建昌等,2013),利用聚丙烯酰胺凝胶电泳进行基因分型和分析,该方法通量较低、步骤繁琐、数据整合困难。此外,传统方法品种真实性鉴定中出现的效率低和易受环境因素影响等问题仍需进一步改善。At present, SNP marker technology is widely used in the identification of varieties of rice, corn, soybean and other crops, and has produced positive effects in variety management and protection. The identification of tomato varieties mainly uses the InDel labeling method (Gao Jianchang et al., 2013), and polyacrylamide gel electrophoresis is used for genotyping and analysis. This method has low throughput, cumbersome steps and difficult data integration. In addition, the problems of low efficiency and vulnerability to environmental factors in the authenticity identification of traditional methods still need to be further improved.
发明内容SUMMARY OF THE INVENTION
为解决现有技术中的至少部分技术问题,本发明提供一组普适性SNP标记的分型方法及应用。本发明的组合物和基因分型方法能够鉴定市面上广泛存在的西红柿商业品种,不仅可以实现高通量检测,而且高效、准确地鉴定西红柿品种的真实性,保证西红柿种质资源收集的可靠性,同时显著降低检测成本。具体地,本发明包括以下内容。In order to solve at least part of the technical problems in the prior art, the present invention provides a group of universal SNP marker typing methods and applications. The composition and genotyping method of the invention can identify commercial tomato varieties widely existing in the market, not only can realize high-throughput detection, but also efficiently and accurately identify the authenticity of tomato varieties, and ensure the reliability of tomato germplasm resources collection , while significantly reducing detection costs. Specifically, the present invention includes the following.
本发明的第一方面,提供一种基于SNP标记的分型方法,其包括以下步骤:The first aspect of the present invention provides a kind of typing method based on SNP marker, it comprises the following steps:
(1)提取待测西红柿的基因组DNA的步骤;(1) the step of extracting the genomic DNA of the tomato to be tested;
(2)基于多个SNP位点组成的位点集信息,通过程序性降低扩增温度进行待测西红柿基因组SNP位点的检测步骤,其中位点集包括以下位点:SNP01-3、SNP02-1、SNP02-3、SNP03-1、SNP03-3、SNP04-1、SNP04-2、SNP05-3、SNP06-3、SNP06-6、SNP07-4、SNP07-5、SNP07-8、SNP07-9、SNP08-1、SNP09-1、SNP10-1、SNP11-3、SNP12-4、SNP12-6和SNP12-8;(2) Based on the site set information composed of multiple SNP sites, the detection step of the tomato genome SNP site to be tested is performed by reducing the amplification temperature programmatically, wherein the site set includes the following sites: SNP01-3, SNP02- 1. SNP02-3, SNP03-1, SNP03-3, SNP04-1, SNP04-2, SNP05-3, SNP06-3, SNP06-6, SNP07-4, SNP07-5, SNP07-8, SNP07-9, SNP08-1, SNP09-1, SNP10-1, SNP11-3, SNP12-4, SNP12-6 and SNP12-8;
(3)进行待测西红柿基因分型和分型结果的分析的步骤。(3) The step of genotyping the tomato to be tested and analyzing the genotyping results.
根据本发明的基于SNP标记组合的分型方法,优选地,所述位点集进一步包括:According to the typing method based on the combination of SNP markers of the present invention, preferably, the locus set further comprises:
SNP01-1、SNP01-2、SNP02-2、SNP02-4、SNP03-2、SNP03-4、SNP03-5、SNP03-6、SNP04-3、SNP04-4、SNP04-5、SNP05-1、SNP05-2、SNP05-4、SNP05-5、SNP05-6、SNP05-7、SNP06-1、SNP06-2、SNP06-4、SNP06-5、SNP07-1、SNP07-2、SNP07-3、SNP07-6、SNP07-7、SNP07-10、SNP07-11、SNP07-12、SNP07-13、SNP11-1、SNP11-2、SNP12-1、SNP12-2、SNP12-3、SNP12-5、SNP12-7和SNP12-9。SNP01-1, SNP01-2, SNP02-2, SNP02-4, SNP03-2, SNP03-4, SNP03-5, SNP03-6, SNP04-3, SNP04-4, SNP04-5, SNP05-1, SNP05- 2. SNP05-4, SNP05-5, SNP05-6, SNP05-7, SNP06-1, SNP06-2, SNP06-4, SNP06-5, SNP07-1, SNP07-2, SNP07-3, SNP07-6, SNP07-7, SNP07-10, SNP07-11, SNP07-12, SNP07-13, SNP11-1, SNP11-2, SNP12-1, SNP12-2, SNP12-3, SNP12-5, SNP12-7 and SNP12- 9.
根据本发明的基于SNP标记组合的分型方法,优选地,利用由第一正向引物、第二正向引物和反向引物三条引物组成的引物组来检测基因组DNA位点集中各位点的信息。According to the typing method based on the combination of SNP markers of the present invention, preferably, a primer set consisting of three primers, a first forward primer, a second forward primer and a reverse primer, is used to detect the information of each site in the genomic DNA site set .
根据本发明的基于SNP标记组合的分型方法,优选地,利用SEQ ID NO:1-63所示的引物进行基因组DNA中位点集的检测。According to the typing method based on the combination of SNP markers of the present invention, preferably, the primers shown in SEQ ID NOs: 1-63 are used to detect the locus set in the genomic DNA.
根据本发明的基于SNP标记组合的分型方法,优选地,利用SEQ ID NO:1-177所示的引物进行基因组DNA中位点集的检测。According to the typing method based on the combination of SNP markers of the present invention, preferably, the primers shown in SEQ ID NOs: 1-177 are used to detect the locus set in the genomic DNA.
根据本发明的基于SNP标记组合的分型方法,优选地,步骤(2)包括构建含缓冲液和溶解于所述缓冲液的多个引物组的反应体系的步骤,所述反应体系中各引物组中第一正向引物、第二正向引物和反向引物的终浓度一般为50-200μmol/L,优选80-150μmol/L,例如100μmol/L。According to the typing method based on the combination of SNP markers of the present invention, preferably, step (2) includes the step of constructing a reaction system containing a buffer and a plurality of primer sets dissolved in the buffer, wherein each primer in the reaction system The final concentration of the first forward primer, the second forward primer and the reverse primer in the group is generally 50-200 μmol/L, preferably 80-150 μmol/L, such as 100 μmol/L.
根据本发明的基于SNP标记组合的分型方法,优选地,步骤(2)程序性降低扩增温度进行SNP位点的检测包括:According to the typing method based on the combination of SNP markers of the present invention, preferably, step (2) programmatically reducing the amplification temperature to detect the SNP site includes:
变性步骤,94℃变性15min;94℃变性20s;Denaturation step, denaturation at 94°C for 15min; denaturation at 94°C for 20s;
第一循环步骤,首先61℃、退火60s,之后每个循环降低0.6℃、退火60s,共5-20个循环;The first cycle step, first 61°C, annealing for 60s, then lowering by 0.6°C for each cycle, annealing for 60s, a total of 5-20 cycles;
第二循环步骤,94℃变性20s,55℃复性延伸60s,共26-32个循环,优选在26个循环的基础上增加2-5,优选3-5个循环。In the second cycle step, denaturation at 94°C for 20s, and annealing and extension at 55°C for 60s, a total of 26-32 cycles, preferably 2-5 cycles, preferably 3-5 cycles, on the basis of 26 cycles.
本发明的第二方面,提供一种用于基于SNP标记进行分型的组合物,其包含用于检测由多个SNP位点组成的位点集的信息的引物,其中位点集包括SNP01-3、SNP02-1、SNP02-3、SNP03-1、SNP03-3、SNP04-1、SNP04-2、SNP05-3、SNP06-3、SNP06-6、SNP07-4、SNP07-5、SNP07-8、SNP07-9、SNP08-1、SNP09-1、SNP10-1、SNP11-3、SNP12-4、SNP12-6和SNP12-8。A second aspect of the present invention provides a composition for typing based on SNP markers, comprising primers for detecting information of a locus set consisting of a plurality of SNP loci, wherein the locus set includes SNP01- 3. SNP02-1, SNP02-3, SNP03-1, SNP03-3, SNP04-1, SNP04-2, SNP05-3, SNP06-3, SNP06-6, SNP07-4, SNP07-5, SNP07-8, SNP07-9, SNP08-1, SNP09-1, SNP10-1, SNP11-3, SNP12-4, SNP12-6 and SNP12-8.
根据本发明的用于基于SNP标记进行分型的组合物,优选地,所述位点集进一步包括SNP01-1、SNP01-2、SNP02-2、SNP02-4、SNP03-2、SNP03-4、SNP03-5、SNP03-6、SNP04-3、SNP04-4、SNP04-5、SNP05-1、SNP05-2、SNP05-4、SNP05-5、SNP05-6、SNP05-7、SNP06-1、SNP06-2、SNP06-4、SNP06-5、SNP07-1、SNP07-2、SNP07-3、SNP07-6、SNP07-7、SNP07-10、SNP07-11、SNP07-12、SNP07-13、SNP11-1、SNP11-2、SNP12-1、SNP12-2、SNP12-3、SNP12-5、SNP12-7和SNP12-9。According to the composition for typing based on SNP markers of the present invention, preferably, the site set further comprises SNP01-1, SNP01-2, SNP02-2, SNP02-4, SNP03-2, SNP03-4, SNP03-5, SNP03-6, SNP04-3, SNP04-4, SNP04-5, SNP05-1, SNP05-2, SNP05-4, SNP05-5, SNP05-6, SNP05-7, SNP06-1, SNP06- 2. SNP06-4, SNP06-5, SNP07-1, SNP07-2, SNP07-3, SNP07-6, SNP07-7, SNP07-10, SNP07-11, SNP07-12, SNP07-13, SNP11-1, SNP11-2, SNP12-1, SNP12-2, SNP12-3, SNP12-5, SNP12-7 and SNP12-9.
本发明的第三方面,提供根据第二方面所述的组合物在西红柿品种鉴定中的用途。The third aspect of the present invention provides the use of the composition according to the second aspect in the identification of tomato varieties.
本发明的第四方面,提供用于基于SNP标记进行分型的试剂盒,其包括引物组,所述引物组包括如SEQ ID NO:1-177所示的序列。In a fourth aspect of the present invention, there is provided a kit for typing based on SNP markers, which includes a primer set including the sequences shown in SEQ ID NOs: 1-177.
本发明基于西红柿重测数据与西红柿品种全基因组序列比对产生的SNP中设计筛选出一套西红柿品种鉴定相关的SNP标记集,该套标记集包含59个SNP标记。这些SNP标记具有良好的多态性,且稳定性和可重复性好。将SNP标记通过竞争性等位基因特异性PCR检测,能够实现更高通量的检测过程。此外,本发明提供一套核心SNP标记集,该套标记集包含21个SNP标记。利用该套标记集可以高效、准确地鉴定西红柿品种的真实性,保证西红柿种质资源收集的可靠性,同时显著降低检测成本。本发明的SNP标记集特别适用于形态特征不能区分或很难区分的品种的鉴定。The invention designs and selects a set of SNP markers related to the identification of tomato varieties based on the SNPs generated by the tomato retest data and the whole genome sequence alignment of tomato varieties, and the marker set includes 59 SNP markers. These SNP markers have good polymorphism and good stability and reproducibility. The detection of SNP markers by competitive allele-specific PCR enables a higher-throughput detection process. In addition, the present invention provides a core set of SNP markers, which includes 21 SNP markers. The use of the marker set can efficiently and accurately identify the authenticity of tomato varieties, ensure the reliability of tomato germplasm resources collection, and significantly reduce the detection cost. The SNP marker set of the present invention is particularly suitable for the identification of varieties whose morphological characteristics are indistinguishable or difficult to distinguish.
附图说明Description of drawings
图1为MAF筛选前后标记随机组合区分度比较的箱线图。Figure 1 is a boxplot of the comparison of the discrimination of random combinations of markers before and after MAF screening.
图2为标记SNP04-1荧光读取结果示例(HC Scientific公司的Matrix Scanner扫描结果)。FIG. 2 is an example of a fluorescent reading result of the labeled SNP04-1 (scanning result of Matrix Scanner from HC Scientific).
图3为MAF值区间对应的SNP个数。Figure 3 shows the number of SNPs corresponding to the MAF value interval.
图4为缺失率区间对应的SNP个数。Figure 4 shows the number of SNPs corresponding to the missing rate interval.
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the present invention will now be described in detail, which detailed description should not be construed as a limitation of the invention, but rather as a more detailed description of certain aspects, features, and embodiments of the invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为具体公开了该范围的上限和下限以及它们之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only used to describe particular embodiments, and are not used to limit the present invention. Additionally, for numerical ranges in the present disclosure, it should be understood that the upper and lower limits of the range, and every intervening value therebetween, are specifically disclosed. Every smaller range between any stated value or intervening value in a stated range and any other stated value or intervening value in that stated range is also encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。除非另有说明,否则“%”为基于重量的百分数。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention relates. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention. All documents mentioned in this specification are incorporated by reference for the purpose of disclosing and describing the methods and/or materials in connection with which the documents are referred. In the event of conflict with any incorporated document, the content of this specification controls. "%" is a percentage by weight unless otherwise stated.
除非另作说明,否则本发明中的基因位置或位点是指相对于西红柿品种Heinz1706(版本号为SL3.0)而言的位置。Unless otherwise specified, gene positions or loci in the present invention refer to positions relative to tomato variety Heinz 1706 (version number SL3.0).
[利用SNP标记进行基因分型方法][Methods for Genotyping Using SNP Markers]
本发明的基因分型方法包括以下步骤:The genotyping method of the present invention comprises the following steps:
(1)提取待测西红柿的基因组DNA的步骤;(1) the step of extracting the genomic DNA of the tomato to be tested;
(2)基于多个SNP位点组成的位点集信息,通过程序性降低扩增温度进行待测西红柿基因组SNP位点的检测步骤;(2) based on the site set information composed of multiple SNP sites, the detection step of the tomato genome SNP site to be tested is performed by reducing the amplification temperature programmatically;
(3)进行待测西红柿基因分型和分型结果的分析的步骤。(3) The step of genotyping the tomato to be tested and analyzing the genotyping results.
步骤(1)中,用于提取待测西红柿的基因组DNA的方法不特别限定,可使用本领域已知的方法进行,基因组DNA提取方法可参考已知的教科书,例如冷泉港的《分子克隆实验指南》第四版等公开出版物等。用于提取的西红柿样本可以是西红柿子叶或西红柿植株的真叶、根等部位。In step (1), the method for extracting the genomic DNA of the tomato to be tested is not particularly limited, and methods known in the art can be used, and the genomic DNA extraction method can refer to known textbooks, such as "Molecular Cloning Experiments in Cold Spring Harbor". Publications such as the Fourth Edition of the Guide. Tomato samples used for extraction can be tomato cotyledons or true leaves, roots and other parts of tomato plants.
步骤(2)中,获得西红柿DNA序列多态性位点的具体方式不特别限定。优选地,本发明采用基于Illumina Genome Analyzer测序系统平台进行样本的重测序。进一步包括对测序数据的处理得到含有SNP位点的多态性数据,数据处理包括以西红柿品种Heinz 1706为参考基因组,利用PopSeq2Geno获得SNP变异位点。In step (2), the specific manner of obtaining the tomato DNA sequence polymorphism site is not particularly limited. Preferably, the present invention adopts a platform based on the Illumina Genome Analyzer sequencing system to perform resequencing of the samples. It further includes the processing of sequencing data to obtain polymorphism data containing SNP loci. The data processing includes taking the tomato variety Heinz 1706 as the reference genome and using PopSeq2Geno to obtain SNP variant loci.
优选地,步骤(2)中,设置如下参数以获得可靠的SNP位点:过滤掉最小等位基因频率(MAF)小于0.01,基因型缺失率(Miss Rate)大于0.2,以及SNP附近50bp内无其他变异的位点。进一步优选地,基于平均最小等位基因频率为0.379,平均缺失率为0.002,得到SNP位点集。在某些具体实施方案中,所述SNP位点集如表1所示。Preferably, in step (2), the following parameters are set to obtain reliable SNP sites: filter out the minimum allele frequency (MAF) less than 0.01, genotype deletion rate (Miss Rate) greater than 0.2, and no SNP within 50bp other sites of variation. Further preferably, the SNP locus set is obtained based on an average minimum allele frequency of 0.379 and an average deletion rate of 0.002. In certain specific embodiments, the set of SNP loci is shown in Table 1.
优选地,将SNP位点分别对应于西红柿各染色体上,然后利用公式R=(最小等位基因频率)*0.8-(基因型缺失率)*0.2计算各染色体中存在的每个SNP位点的R,对每条染色体中各SNP位点的R值进行大小排序。本发明的R值仅考虑了分子标记在染色体上物理位置和遗传距离位置,而未涉及分子标记的功能或表型特征。本发明所指的功能性状或表型包括但不限于例如植株高度、叶片大小、果实颜色、种子或根据生理、分布区域或其它与某一生态系统过程相关以及与物种相联系的一些生物学特性来划分的特征。本发明的方法尤其适用于解决例如西红柿种子发育至幼苗、栽培型或半栽培型西红柿幼苗无法正确分型,导致种质资源无法有效鉴定和分析的问题。Preferably, the SNP loci are respectively corresponding to each chromosome of tomato, and then the formula R=(minimum allele frequency)*0.8-(genotype deletion rate)*0.2 is used to calculate the number of SNP loci present in each chromosome. R, size-sort the R value of each SNP site in each chromosome. The R value of the present invention only considers the physical location and genetic distance position of the molecular marker on the chromosome, and does not involve the function or phenotypic characteristics of the molecular marker. Functional traits or phenotypes referred to in the present invention include, but are not limited to, for example, plant height, leaf size, fruit color, seeds, or some biological characteristics associated with an ecosystem process and associated with a species according to physiology, distribution area, or other to divide the characteristics. The method of the present invention is particularly suitable for solving the problem that, for example, tomato seeds grow to seedlings, and cultivated or semi-cultivated tomato seedlings cannot be correctly typed, resulting in ineffective identification and analysis of germplasm resources.
优选地,经R值进行大小排序得到本发明的核心SNP位点集,所述位点集为SNP01-3、SNP02-1、SNP02-3、SNP03-1、SNP03-3、SNP04-1、SNP04-2、SNP05-3、SNP06-3、SNP06-6、SNP07-4、SNP07-5、SNP07-8、SNP07-9、SNP08-1、SNP09-1、SNP10-1、SNP11-3、SNP12-4、SNP12-6和SNP12-8。Preferably, the core SNP site set of the present invention is obtained by size sorting by R value, and the site set is SNP01-3, SNP02-1, SNP02-3, SNP03-1, SNP03-3, SNP04-1, SNP04 -2, SNP05-3, SNP06-3, SNP06-6, SNP07-4, SNP07-5, SNP07-8, SNP07-9, SNP08-1, SNP09-1, SNP10-1, SNP11-3, SNP12-4 , SNP12-6 and SNP12-8.
以SNP标记为基础的西红柿品种鉴定分析方面的报道较为少见。SNP标记的检测方法有很多种,本发明采用竞争性等位基因特异性PCR进行相关检测,国内外已经推出许多自动化程度高的检测平台。因此,开发出具有普遍代表性的西红柿SNP标记,可为西红柿品种的真实性鉴定、种质的收集和规模化管理提供技术支持,节约时间成本,提高工作效率。Reports on the identification and analysis of tomato varieties based on SNP markers are rare. There are many detection methods for SNP markers. The present invention uses competitive allele-specific PCR to perform related detection, and many detection platforms with a high degree of automation have been launched at home and abroad. Therefore, the development of generally representative tomato SNP markers can provide technical support for the authenticity identification of tomato varieties, collection of germplasm and large-scale management, save time and cost, and improve work efficiency.
优选地,本发明利用由第一正向引物、第二正向引物和反向引物三条引物组成的引物组来检测基因组DNA位点集中各位点的信息。进一步优选地,利用SEQ ID NO:1-63所示的引物进行基因组DNA中位点集的检测。还优选地,利用SEQ ID NO:64-177所示的引物进行基因组DNA中位点集的检测。Preferably, the present invention utilizes a primer set consisting of three primers, a first forward primer, a second forward primer and a reverse primer, to detect the information of each site in the genomic DNA site set. Further preferably, the primers shown in SEQ ID NOs: 1-63 are used to detect the set of loci in the genomic DNA. Also preferably, the detection of the set of loci in the genomic DNA is performed using the primers shown in SEQ ID NOs: 64-177.
优选地,步骤(2)包括构建包含缓冲液和溶解于所述缓冲液的多个引物组的反应体系的步骤。反应体系中各引物的浓度不特别限定,一般在50-200μmol/L之间,优选80-150μmol/L之间,例如100μmol/L。该浓度为初始浓度,当引物为干粉时,可以将干粉稀释到100μmol/L作为储存液。在使用前通过按规定比例稀释储存液后与其他成分混合得到反应体系作为工作液。例如,可将各引物组中第一正向引物、第二正向引物和反向引物的浓度制备为100μmol/L作为储存液。三种引物可以制备为三种不同的储存液,也可将三种引物制备为同时含三种引物的同一储存液。在构建反应体系时,可将第一正向引物溶液、第二正向引物溶液和反向引物溶液以特定的体积比,例如(10-15):(10-15):(28-32)的体积比混合。进一步优选地,第一正向引物、第二正向引物和反向引物的溶液体积比为(11-14):(11-14):(29-31)。还优选地,第一正向引物、第二正向引物和反向引物的溶液体积比为(11-13):(11-13):(29-31)。Preferably, step (2) includes the step of constructing a reaction system comprising a buffer and a plurality of primer sets dissolved in the buffer. The concentration of each primer in the reaction system is not particularly limited, and is generally between 50-200 μmol/L, preferably between 80-150 μmol/L, for example, 100 μmol/L. This concentration is the initial concentration. When the primer is a dry powder, the dry powder can be diluted to 100 μmol/L as a storage solution. Before use, the reaction system is obtained as a working solution by diluting the storage solution according to the specified ratio and mixing with other components. For example, the concentration of the first forward primer, the second forward primer and the reverse primer in each primer set can be prepared to be 100 μmol/L as a storage solution. The three primers can be prepared as three different stock solutions, or the three primers can be prepared as the same stock solution containing all three primers. When constructing the reaction system, the first forward primer solution, the second forward primer solution and the reverse primer solution can be in a specific volume ratio, for example (10-15):(10-15):(28-32) volume ratio mixing. Further preferably, the solution volume ratio of the first forward primer, the second forward primer and the reverse primer is (11-14):(11-14):(29-31). Also preferably, the solution volume ratio of the first forward primer, the second forward primer and the reverse primer is (11-13):(11-13):(29-31).
反应体系的总体积不限定,可以是任何适合的体积。在示例性反应体系中,总体系约5μL,具体可为基因组DNA2.5μL(60ng·μL-1),引物混合液0.07μL,LGC公司的KASP V4.0 2×Master Mix 2.5μL,适用于384孔板。在另一示例性反应中,反应总体系为10μL,具体可为基因组DNA 5μL(60ng·μL-1),引物混合液0.14μL,LGC公司的KASP V4.02×Master Mix 5μL,适用于96孔板。引物混合液由第一正向引物A1、第二正向引物A2、反向引物C、ddH2O按照12:12:30:46的体积比混合得到(各引物初始浓度均为100μmol/L)。试验时可设置水的空白对照。The total volume of the reaction system is not limited and may be any suitable volume. In an exemplary reaction system, the total system is about 5 μL, specifically, 2.5 μL of genomic DNA (60 ng·μL −1 ), 0.07 μL of primer mixture, 2.5 μL of KASP V4.0 2×Master Mix from LGC Company, suitable for 384 orifice plate. In another exemplary reaction, the total reaction volume is 10 μL, specifically, 5 μL of genomic DNA (60 ng·μL −1 ), 0.14 μL of primer mix, 5 μL of KASP V4.02×Master Mix from LGC, suitable for 96 wells plate. The primer mixture is obtained by mixing the first forward primer A1, the second forward primer A2, the reverse primer C, and ddH 2 O according to the volume ratio of 12:12:30:46 (the initial concentration of each primer is 100 μmol/L) . A blank control of water can be set during the test.
本发明通过程序性降低扩增温度进行待测西红柿基因组SNP位点的检测步骤。开始前先用高温扩增,保证扩增的严谨性,待目的基因的丰度上升后,降低扩增的温度,从而提高扩增的效率。另外,避免了非特异性PCR产物的出现,尤其是当使用复杂的基因组DNA模板,非特异性退火易发生时。优选地,其包括变性步骤,94℃变性15min;94℃变性20s;第一循环步骤,首先61℃、退火60s,之后每个循环降低0.6℃、退火60s,共10个循环;第二循环步骤,94℃变性20s,55℃复性延伸60s,共25-32个循环,优选25-30个循环,还优选25-27,例如26个循环。根据实际分型结果,可以适当增加3-5个循环。In the present invention, the detection step of the tomato genome SNP site to be tested is performed by reducing the amplification temperature programmatically. Before starting, use high temperature amplification to ensure the rigor of amplification. After the abundance of the target gene increases, reduce the temperature of amplification, thereby improving the efficiency of amplification. In addition, the appearance of non-specific PCR products is avoided, especially when complex genomic DNA templates are used, where non-specific annealing is prone to occur. Preferably, it includes a denaturation step, denaturation at 94°C for 15min; denaturation at 94°C for 20s; a first cycle step, firstly at 61°C, annealing for 60s, then decreasing by 0.6°C and annealing for 60s in each cycle, a total of 10 cycles; the second cycle step , denaturation at 94°C for 20s, and annealing and extension at 55°C for 60s, for a total of 25-32 cycles, preferably 25-30 cycles, and also preferably 25-27, such as 26 cycles. According to the actual typing results, 3-5 cycles can be appropriately increased.
[用于基因分型的组合物][Composition for Genotyping]
本发明的第二方面,提供用于基于SNP标记进行分型的组合物,该组合物包含用于检测由多个SNP位点组成的位点集的信息的引物,其中位点集包括SNP01-3、SNP02-1、SNP02-3、SNP03-1、SNP03-3、SNP04-1、SNP04-2、SNP05-3、SNP06-3、SNP06-6、SNP07-4、SNP07-5、SNP07-8、SNP07-9、SNP08-1、SNP09-1、SNP10-1、SNP11-3、SNP12-4、SNP12-6和SNP12-8。In a second aspect of the present invention, there is provided a composition for typing based on SNP markers, the composition comprising primers for detecting information of a locus set consisting of a plurality of SNP loci, wherein the locus set includes SNP01- 3. SNP02-1, SNP02-3, SNP03-1, SNP03-3, SNP04-1, SNP04-2, SNP05-3, SNP06-3, SNP06-6, SNP07-4, SNP07-5, SNP07-8, SNP07-9, SNP08-1, SNP09-1, SNP10-1, SNP11-3, SNP12-4, SNP12-6 and SNP12-8.
优选地,所述位点集进一步包括SNP01-1、SNP01-2、SNP02-2、SNP02-4、SNP03-2、SNP03-4、SNP03-5、SNP03-6、SNP04-3、SNP04-4、SNP04-5、SNP05-1、SNP05-2、SNP05-4、SNP05-5、SNP05-6、SNP05-7、SNP06-1、SNP06-2、SNP06-4、SNP06-5、SNP07-1、SNP07-2、SNP07-3、SNP07-6、SNP07-7、SNP07-10、SNP07-11、SNP07-12、SNP07-13、SNP11-1、SNP11-2、SNP12-1、SNP12-2、SNP12-3、SNP12-5、SNP12-7和SNP12-9。Preferably, the site set further comprises SNP01-1, SNP01-2, SNP02-2, SNP02-4, SNP03-2, SNP03-4, SNP03-5, SNP03-6, SNP04-3, SNP04-4, SNP04-5, SNP05-1, SNP05-2, SNP05-4, SNP05-5, SNP05-6, SNP05-7, SNP06-1, SNP06-2, SNP06-4, SNP06-5, SNP07-1, SNP07- 2. SNP07-3, SNP07-6, SNP07-7, SNP07-10, SNP07-11, SNP07-12, SNP07-13, SNP11-1, SNP11-2, SNP12-1, SNP12-2, SNP12-3, SNP12-5, SNP12-7 and SNP12-9.
[用途][use]
本发明的第三方面,提供第二方面所述的组合物在西红柿品种鉴定中的用途。The third aspect of the present invention provides the use of the composition described in the second aspect in the identification of tomato varieties.
本发明的第四方面,提供用于基于SNP标记进行分型的试剂盒,其包括引物组,所述引物组包括如SEQ ID NO:1-177所示的序列。In a fourth aspect of the present invention, there is provided a kit for typing based on SNP markers, which includes a primer set including the sequences shown in SEQ ID NOs: 1-177.
实施例Example
1.与西红柿品种鉴定相关SNP标记的开发1. Development of SNP markers related to identification of tomato varieties
本发明中的SNP标记是基于38份西红柿重测序数据与西红柿品种Heinz 1706(版本号为SL3.0)全基因组序列比对得到的。具体地,分别提取38份西红柿基因组DNA,浓度范围在900-1200ng/ul,每个样品10ng在测序公司的Illumina Genome Analyzer测序系统平台上进行重测序。The SNP marker in the present invention is obtained based on the alignment of 38 tomato resequencing data with the whole genome sequence of tomato variety Heinz 1706 (version number is SL3.0). Specifically, 38 tomato genomic DNAs were extracted respectively with a concentration range of 900-1200 ng/ul, and 10 ng of each sample was resequenced on the Illumina Genome Analyzer sequencing system platform of the sequencing company.
首先使用fastp软件进行测序数据的过滤,过滤掉质量值小于10超过30%,含接头,未测出碱基比例超过10%的序列。以西红柿品种Heinz 1706(版本号为SL3.0)为参考基因组,利用PopSeq2Geno获得SNP变异位点,初步过滤掉最小等位基因频率小于0.01,基因型缺失率大于0.2,以及SNP附近50bp内无其他变异的位点从而获得可靠的上万个SNP位点。First, use fastp software to filter the sequencing data, and filter out the sequences whose quality value is less than 10 and more than 30%, contains adapters, and the proportion of undetected bases exceeds 10%. Taking the tomato variety Heinz 1706 (version number SL3.0) as the reference genome, PopSeq2Geno was used to obtain SNP variant sites, and the minimum allele frequency was less than 0.01, the genotype deletion rate was greater than 0.2, and there was no other within 50bp near the SNP. The mutated sites can obtain reliable tens of thousands of SNP sites.
将这些SNP位点分别对应于西红柿各染色体上,然后利用公式R=(最小等位基因频率)*0.8-(基因型缺失率)*0.2计算各染色体中存在的每个SNP位点的R,对每条染色体中各SNP位点的R值进行大小排序。选择分布在西红柿各染色体上R值最大的位点,共计120个转化为竞争性等位基因特异性PCR标记。These SNP loci are respectively corresponding to each chromosome of tomato, and then use the formula R=(minimum allele frequency)*0.8-(genotype deletion rate)*0.2 to calculate the R of each SNP locus present in each chromosome, The R value of each SNP locus in each chromosome was sorted by size. The loci with the largest R value distributed on each chromosome of tomato were selected, and a total of 120 loci were transformed into competitive allele-specific PCR markers.
接下来,分析MAF筛选前后标记随机组合区分度对比。具体地,将Python脚本计算的MAF筛选前后标记数梯度对应的100种标记随机组合的区分度,利用R绘制成箱线图。MAF筛选前为83个标记,MAF筛选后为59个标记。Next, the comparison of the discrimination of random combinations of markers before and after MAF screening was analyzed. Specifically, the degree of discrimination of 100 random combinations of markers corresponding to the gradient of the number of markers before and after the MAF screening calculated by the Python script was drawn into a boxplot using R. 83 markers before MAF screening and 59 markers after MAF screening.
MAF过滤前,标记数为50时,100种可能的平均区分度为241份样品的99.17%,标记数为40时,平均区分度为96.03%,标记数为30时,平均区分度为93.9%,标记数为20时,平均区分度为90.3%,标记数为10时,平均区分度为75.04%。MAF过滤后,标记数为80时,100种可能的平均区分度为241份样品的98.96%,标记数为70时,平均区分度为98.34%,标记数为60时,平均区分度为97.51%,标记数为50时,平均区分度为96.39%,标记数为40时,平均区分度为94.68%,标记数为30时,平均区分度为92.15%,标记数为20时,平均区分度为88.81%,标记数为10时,平均区分度为69.97%。Before MAF filtering, when the number of markers is 50, the average discrimination of 100 possible samples is 99.17% of the 241 samples, when the number of markers is 40, the average degree of discrimination is 96.03%, and when the number of markers is 30, the average degree of discrimination is 93.9% , when the number of markers is 20, the average degree of discrimination is 90.3%, and when the number of markers is 10, the average degree of discrimination is 75.04%. After MAF filtering, when the number of markers is 80, the average discrimination of 100 possible samples is 98.96% of the 241 samples, when the number of markers is 70, the average degree of discrimination is 98.34%, and when the number of markers is 60, the average degree of discrimination is 97.51% , when the number of marks is 50, the average degree of discrimination is 96.39%, when the number of marks is 40, the average degree of discrimination is 94.68%, when the number of marks is 30, the average degree of discrimination is 92.15%, when the number of marks is 20, the average degree of discrimination is 88.81%, and when the number of markers is 10, the average discrimination is 69.97%.
结果如图1所示,MAF筛选后的59个标记的区分度与MAF筛选前83个标记的区分度相同,均为99.59%。同时,MAF筛选后标记随机组合的区分度均比MAF筛选前标记随机组合的区分度高。59个标记如下表1所示:The results are shown in Figure 1. The discrimination degree of the 59 markers after MAF screening is the same as that of the 83 markers before MAF screening, both being 99.59%. At the same time, the discrimination degree of the random combination of markers after MAF screening is higher than that of the random combination of markers before MAF screening. The 59 markers are shown in Table 1 below:
表1Table 1
平均最小等位基因频率(MAF)为0.379,平均缺失率(Miss Rate)为0.002。The mean minimum allele frequency (MAF) was 0.379 and the mean missing rate (Miss Rate) was 0.002.
基于241份西红柿材料的竞争性等位基因特异性PCR分型结果数据的分析,将上述59个SNP标记利用生物信息学的方法进行标记的随机组合,并随机输出标记数为50、40、30、20、10分别对应的100种可能的组合。标记数为50时,100种可能的平均区分度为241份样品的99.17%,标记数为40时,100种可能的平均区分度为241份样品的96.03%,标记数为30时,100种可能的平均区分度为241份样品的93.9%,标记数为20时,100种可能的平均区分度为241份样品的90.3%,标记数为10时,100种可能的平均区分度为241份样品的75.04%。为确保品种的区分度在90%以上,且考虑标记在染色体上物理位置和遗传距离位置,最终选出得到具有优异效果的由21个SNP标记组成的核心标记集。该套核心标记的区分度为241份样品的92.53%。Based on the analysis of the competitive allele-specific PCR typing results of 241 tomato materials, the above 59 SNP markers were randomly combined by bioinformatics, and the number of markers was randomly output as 50, 40, 30 , 20, and 10 correspond to 100 possible combinations respectively. When the number of markers is 50, the average degree of discrimination of 100 possible samples is 99.17% of the 241 samples, when the number of markers is 40, the average degree of discrimination of 100 possible samples is 96.03% of the 241 samples, and when the number of markers is 30, the average degree of discrimination of 100 samples The possible average discrimination is 93.9% of the 241 samples, and when the number of markers is 20, the average discrimination of the 100 possible samples is 90.3% of the 241 samples, and when the number of markers is 10, the average discrimination of the 100 possible samples is 241 75.04% of the sample. In order to ensure that the degree of discrimination of varieties is above 90%, and considering the physical location and genetic distance of the markers on the chromosome, a core marker set consisting of 21 SNP markers with excellent effects was finally selected. The discrimination of this set of core markers was 92.53% of the 241 samples.
3.基于本发明的SNP标记进行基因分型方法:3. Genotyping method based on the SNP marker of the present invention:
3.1提取西红柿基因组DNA。3.1 Extraction of tomato genomic DNA.
3.2构建PCR反应体系:3.2 Construction of PCR reaction system:
总体系约5μL,具体可为基因组DNA 5ng,引物混合液0.07μL,LGC公司的KASP V4.02×Master Mix 2.5μL,加ddH2O补至5μL,适用于384孔板。The total system is about 5 μL, specifically 5 ng of genomic DNA, 0.07 μL of primer mix, 2.5 μL of KASP V4.02×Master Mix from LGC Company, and ddH 2 O to make up to 5 μL, suitable for 384-well plate.
反应总体系为10μL,具体可为基因组DNA 10ng,引物混合液0.14μL,LGC公司的KASP V4.0 2×Master Mix 5μL,加ddH2O补至10μL,适用于96孔板。引物混合液由正向引物A1、正向引物A2、反向引物C、ddH2O按照12:12:30:46的体积比混合的到(各引物初始浓度均为100μmol/L)。试验时可设置水的空白对照。The total reaction system is 10 μL, specifically 10 ng of genomic DNA, 0.14 μL of primer mixture, 5 μL of KASP V4.0 2×Master Mix from LGC Company, and ddH 2 O to make up to 10 μL, suitable for 96-well plates. The primer mixture was prepared by mixing forward primer A1, forward primer A2, reverse primer C, and ddH 2 O in a volume ratio of 12:12:30:46 (the initial concentration of each primer was 100 μmol/L). A blank control of water can be set during the test.
本发明提供用于PCR扩增西红柿SNP标记的引物对,引物包含59个引物组,每个引物组用于扩增对应的SNP标记,由两条正向引物(A1/A2)和一条反向引物组成,正向引物A1的5’端加上FAM荧光接头(GAAGGTGACCAAGTTCATGCT),正向引物A2的5’端加上VIC荧光接头(GAAGGTCGGAGTCAACGGATT)。具体如序列SEQ ID NO:1-177所示。The present invention provides primer pairs for PCR amplification of tomato SNP markers, the primers include 59 primer sets, each primer set is used to amplify the corresponding SNP marker, and consists of two forward primers (A1/A2) and one reverse primer The primers consisted of a FAM fluorescent linker (GAAGGTGACCAAGTTCATGCT) added to the 5' end of the forward primer A1, and a VIC fluorescent linker (GAAGGTCGGAGTCAACGGATT) added to the 5' end of the forward primer A2. Specifically, the sequences are shown in SEQ ID NOs: 1-177.
4.PCR扩增的程序4. Procedure for PCR Amplification
94℃变性15min;94℃变性20s,61℃(每循环降低0.6℃)退火60s,共10个循环;Denaturation at 94°C for 15min; denaturation at 94°C for 20s, annealing at 61°C (decreased by 0.6°C per cycle) for 60s, a total of 10 cycles;
94℃变性20s,55℃复性延伸60s,共25-32个循环,优选25-30个循环,还优选25-27,例如26个循环。Denaturation at 94°C for 20s, and annealing and extension at 55°C for 60s, for a total of 25-32 cycles, preferably 25-30 cycles, and also preferably 25-27, such as 26 cycles.
荧光数据的读取和分析可利用Applied Biosystems公司的ScientificQuantStudioTM12K Flex实时PCR系统进行,荧光数据读取温度为30℃,读取时间为60s,荧光为FAM和HEX荧光。也可以使用HC Scientific公司的GeneMatrix基因分型系统,或其他能进行竞争性等位基因特异性PCR实验的PCR系统。其中,图2为标记SNP04-1荧光读取结果(HCScientific公司的Matrix Scanner扫描结果)。图3为MAF值区间对应的SNP个数。图4为缺失率区间对应的SNP个数。The reading and analysis of the fluorescence data can be carried out using the ScientificQuantStudio TM 12K Flex real-time PCR system of Applied Biosystems, the reading temperature of the fluorescence data is 30°C, the reading time is 60s, and the fluorescence is FAM and HEX fluorescence. Alternatively, use the HC Scientific GeneMatrix Genotyping System, or other PCR systems capable of performing competitive allele-specific PCR experiments. Among them, Fig. 2 shows the fluorescent reading result of labeled SNP04-1 (the scanning result of Matrix Scanner of HC Scientific Corporation). Figure 3 shows the number of SNPs corresponding to the MAF value interval. Figure 4 shows the number of SNPs corresponding to the missing rate interval.
本发明的标记集包含59个SNP标记。所述59个SNP标记具有良好的多态性,且稳定性和可重复性好,将SNP标记通过竞争性等位基因特异性PCR技术检测,检测过程更加高通量。利用该套标记集可以高效、准确地鉴定西红柿品种的真实性,保证西红柿种质资源收集的可靠性。The marker set of the present invention contains 59 SNP markers. The 59 SNP markers have good polymorphism, and have good stability and repeatability. The SNP markers are detected by competitive allele-specific PCR technology, and the detection process is more high-throughput. The set of markers can be used to efficiently and accurately identify the authenticity of tomato varieties and ensure the reliability of tomato germplasm resources collection.
序列表sequence listing
<110> 中国农业科学院蔬菜花卉研究所<110> Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences
<120> 一组普适性SNP标记的分型及应用<120> Typing and application of a set of universal SNP markers
<130> BH2000342-1<130> BH2000342-1
<141> 2020-10-23<141> 2020-10-23
<160> 177<160> 177
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
gaaggtgacc aagttcatgc ttggccctat tatgagagta gaggggg 47gaaggtgacc aagttcatgc ttggccctat tatgagagta gaggggg 47
<210> 2<210> 2
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
gaaggtcgga gtcaacggat ttggccctat tatgagagta gagggga 47gaaggtcgga gtcaacggat ttggccctat tatgagagta gagggga 47
<210> 3<210> 3
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
aggtacgtgg atctatatct cagcct 26aggtacgtgg atctatatct cagcct 26
<210> 4<210> 4
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
gaaggtgacc aagttcatgc tgggatgggt cttcaagcat catcttt 47gaaggtgacc aagttcatgc tgggatgggt cttcaagcat catcttt 47
<210> 5<210> 5
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
gaaggtcgga gtcaacggat tgggatgggt cttcaagcat catcttg 47gaaggtcgga gtcaacggat tgggatgggt cttcaagcat catcttg 47
<210> 6<210> 6
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
ggaaaacttg gccgattcat tgg 23ggaaaacttg gccgattcat tgg 23
<210> 7<210> 7
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
gaaggtgacc aagttcatgc tggggtcgaa atctgtcatc caatg 45gaaggtgacc aagttcatgc tggggtcgaa atctgtcatc caatg 45
<210> 8<210> 8
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
gaaggtcgga gtcaacggat tggggtcgaa atctgtcatc caatt 45gaaggtcgga gtcaacggat tggggtcgaa atctgtcatc caatt 45
<210> 9<210> 9
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
gttgagttca tcgttgctga tcgtg 25gttgagttca tcgttgctga tcgtg 25
<210> 10<210> 10
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
gaaggtgacc aagttcatgc tcttcccgtg ccgtctgatc tgataa 46gaaggtgacc aagttcatgc tcttcccgtg ccgtctgatc tgataa 46
<210> 11<210> 11
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
gaaggtcgga gtcaacggat tcttcccgtg ccgtctgatc tgatat 46gaaggtcgga gtcaacggat tcttcccgtg ccgtctgatc tgatat 46
<210> 12<210> 12
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
cgagatgctt gtagagactc gac 23cgagatgctt gtagagactc gac 23
<210> 13<210> 13
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
gaaggtgacc aagttcatgc tcaccaatct aaggactcgg cgg 43gaaggtgacc aagttcatgc tcaccaatct aaggactcgg cgg 43
<210> 14<210> 14
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
gaaggtcgga gtcaacggat tcaccaatct aaggactcgg cga 43gaaggtcgga gtcaacggat tcaccaatct aaggactcgg cga 43
<210> 15<210> 15
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
gcactccatg aagcatagcg tagta 25gcactccatg aagcatagcg tagta 25
<210> 16<210> 16
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
gaaggtgacc aagttcatgc taccccatgt ttcctccaat ccttagc 47gaaggtgacc aagttcatgc taccccatgt ttcctccaat ccttagc 47
<210> 17<210> 17
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 17<400> 17
gaaggtcgga gtcaacggat taccccatgt ttcctccaat ccttaga 47gaaggtcgga gtcaacggat taccccatgt ttcctccaat ccttaga 47
<210> 18<210> 18
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 18<400> 18
cagaacaaga ccactatttc tgcg 24cagaacaaga ccactatttc tgcg 24
<210> 19<210> 19
<211> 49<211> 49
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 19<400> 19
gaaggtgacc aagttcatgc tgtaacgctc taaaggacca ctcgatctc 49gaaggtgacc aagttcatgc tgtaacgctc taaaggacca ctcgatctc 49
<210> 20<210> 20
<211> 49<211> 49
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 20<400> 20
gaaggtcgga gtcaacggat tgtaacgctc taaaggacca ctcgatcta 49gaaggtcgga gtcaacggat tgtaacgctc taaaggacca ctcgatcta 49
<210> 21<210> 21
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 21<400> 21
gtcatttggt tggtcaaagg atgc 24gtcatttggt tggtcaaagg atgc 24
<210> 22<210> 22
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 22<400> 22
gaaggtgacc aagttcatgc tctaactgat acgcaaccct acttggc 47gaaggtgacc aagttcatgc tctaactgat acgcaaccct acttggc 47
<210> 23<210> 23
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 23<400> 23
gaaggtcgga gtcaacggat tctaactgat acgcaaccct acttggt 47gaaggtcgga gtcaacggat tctaactgat acgcaaccct acttggt 47
<210> 24<210> 24
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 24<400> 24
tcatttttgg gcgggcttac tttg 24tcatttttgg gcgggcttac tttg 24
<210> 25<210> 25
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 25<400> 25
gaaggtgacc aagttcatgc ttctcgggcg tgactcagtt ttag 44gaaggtgacc aagttcatgc ttctcgggcg tgactcagtt ttag 44
<210> 26<210> 26
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 26<400> 26
gaaggtcgga gtcaacggat ttctcgggcg tgactcagtt ttac 44gaaggtcgga gtcaacggat ttctcgggcg tgactcagtt ttac 44
<210> 27<210> 27
<211> 27<211> 27
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 27<400> 27
catggtttct ggcatggaaa agtggac 27catggtttct ggcatggaaa agtggac 27
<210> 28<210> 28
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 28<400> 28
gaaggtgacc aagttcatgc tgtgcaaact ttggagacta gggt 44gaaggtgacc aagttcatgc tgtgcaaact ttggagacta gggt 44
<210> 29<210> 29
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 29<400> 29
gaaggtcgga gtcaacggat tgtgcaaact ttggagacta gggc 44gaaggtcgga gtcaacggat tgtgcaaact ttggagacta gggc 44
<210> 30<210> 30
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 30<400> 30
ggtgcttgtt gcctcttact gg 22ggtgcttgtt gcctcttact gg 22
<210> 31<210> 31
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 31<400> 31
gaaggtgacc aagttcatgc taaacaagtt gggatcgggt aagcg 45gaaggtgacc aagttcatgc taaacaagtt gggatcgggt aagcg 45
<210> 32<210> 32
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 32<400> 32
gaaggtcgga gtcaacggat taaacaagtt gggatcgggt aagca 45gaaggtcgga gtcaacggat taaacaagtt gggatcgggt aagca 45
<210> 33<210> 33
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 33<400> 33
tgtggactaa cgatttcacg gg 22tgtggactaa cgatttcacg gg 22
<210> 34<210> 34
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 34<400> 34
gaaggtgacc aagttcatgc tcattacagg agtggtacgt ctgac 45gaaggtgacc aagttcatgc tcattacagg agtggtacgt ctgac 45
<210> 35<210> 35
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 35<400> 35
gaaggtcgga gtcaacggat tcattacagg agtggtacgt ctgaa 45gaaggtcgga gtcaacggat tcattacagg agtggtacgt ctgaa 45
<210> 36<210> 36
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 36<400> 36
aagaacaaca cgtcctttag tgcc 24aagaacaaca cgtcctttag tgcc 24
<210> 37<210> 37
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 37<400> 37
gaaggtgacc aagttcatgc tgctggttaa gtgccaagaa catggac 47gaaggtgacc aagttcatgc tgctggttaa gtgccaagaa catggac 47
<210> 38<210> 38
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 38<400> 38
gaaggtcgga gtcaacggat tgctggttaa gtgccaagaa catggat 47gaaggtcgga gtcaacggat tgctggttaa gtgccaagaa catggat 47
<210> 39<210> 39
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 39<400> 39
gtagccctct catcttccat ggac 24gtagccctct catcttccat ggac 24
<210> 40<210> 40
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 40<400> 40
gaaggtgacc aagttcatgc tgcgctcaac atgttctgtt cctcatc 47gaaggtgacc aagttcatgc tgcgctcaac atgttctgtt cctcatc 47
<210> 41<210> 41
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 41<400> 41
gaaggtcgga gtcaacggat tgcgctcaac atgttctgtt cctcatt 47gaaggtcgga gtcaacggat tgcgctcaac atgttctgtt cctcatt 47
<210> 42<210> 42
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 42<400> 42
cgaaaaacca ctcttatcaa aggctcgc 28cgaaaaacca ctcttatcaa aggctcgc 28
<210> 43<210> 43
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 43<400> 43
gaaggtgacc aagttcatgc tcccattttc ttttagccga cgggtc 46gaaggtgacc aagttcatgc tcccattttc ttttagccga cgggtc 46
<210> 44<210> 44
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 44<400> 44
gaaggtcgga gtcaacggat tcccattttc ttttagccga cgggtt 46gaaggtcgga gtcaacggat tcccattttc ttttagccga cgggtt 46
<210> 45<210> 45
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 45<400> 45
taattccaca ggtgaggtct aggg 24taattccaca ggtgaggtct agg 24
<210> 46<210> 46
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 46<400> 46
gaaggtgacc aagttcatgc tgttgtgtcc gtgaccagag agagttt 47gaaggtgacc aagttcatgc tgttgtgtcc gtgaccagag agagttt 47
<210> 47<210> 47
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 47<400> 47
gaaggtcgga gtcaacggat tgttgtgtcc gtgaccagag agagttc 47gaaggtcgga gtcaacggat tgttgtgtcc gtgaccagag agagttc 47
<210> 48<210> 48
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 48<400> 48
tcgttacttg tccctgttca cacc 24tcgttacttg tccctgttca cacc 24
<210> 49<210> 49
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 49<400> 49
gaaggtgacc aagttcatgc tcctaagtgc ggggaagtta acaacc 46gaaggtgacc aagttcatgc tcctaagtgc ggggaagtta acaacc 46
<210> 50<210> 50
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 50<400> 50
gaaggtcgga gtcaacggat tcctaagtgc ggggaagtta acaact 46gaaggtcgga gtcaacggat tcctaagtgc ggggaagtta acaact 46
<210> 51<210> 51
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 51<400> 51
ctccaagtct tgtggattga aaggtc 26ctccaagtct tgtggattga aaggtc 26
<210> 52<210> 52
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 52<400> 52
gaaggtgacc aagttcatgc tacttaggcc cactcaaccg cag 43gaaggtgacc aagttcatgc tacttaggcc cactcaaccg cag 43
<210> 53<210> 53
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 53<400> 53
gaaggtcgga gtcaacggat tacttaggcc cactcaaccg caa 43gaaggtcgga gtcaacggat tacttaggcc cactcaaccg caa 43
<210> 54<210> 54
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 54<400> 54
aaccaactct ccctctccct tat 23aaccaactct ccctctccct tat 23
<210> 55<210> 55
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 55<400> 55
gaaggtgacc aagttcatgc tcgctgcagt gatgctgtta caac 44gaaggtgacc aagttcatgc tcgctgcagt gatgctgtta caac 44
<210> 56<210> 56
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 56<400> 56
gaaggtcgga gtcaacggat tcgctgcagt gatgctgtta caat 44gaaggtcgga gtcaacggat tcgctgcagt gatgctgtta caat 44
<210> 57<210> 57
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 57<400> 57
taatttcaat ccccgcctcg tt 22taatttcaat ccccgcctcg tt 22
<210> 58<210> 58
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 58<400> 58
gaaggtgacc aagttcatgc tacataggtg ccatcacgac tcc 43gaaggtgacc aagttcatgc tacataggtg ccatcacgac tcc 43
<210> 59<210> 59
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 59<400> 59
gaaggtcgga gtcaacggat tacataggtg ccatcacgac tcg 43gaaggtcgga gtcaacggat tacataggtg ccatcacgac tcg 43
<210> 60<210> 60
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 60<400> 60
cccaagcttc accttctaag aacct 25cccaagcttc accttctaag aacct 25
<210> 61<210> 61
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 61<400> 61
gaaggtgacc aagttcatgc tggccctccc tacttcaatt cct 43gaaggtgacc aagttcatgc tggccctccc tacttcaatt cct 43
<210> 62<210> 62
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 62<400> 62
gaaggtcgga gtcaacggat tggccctccc tacttcaatt ccc 43gaaggtcgga gtcaacggat tggccctccc tacttcaatt ccc 43
<210> 63<210> 63
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 63<400> 63
gagtttcgaa ttctcctcac gcct 24gagtttcgaa ttctcctcac gcct 24
<210> 64<210> 64
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 64<400> 64
gaaggtgacc aagttcatgc tgtcacttga agatcgtgtg tgtca 45gaaggtgacc aagttcatgc tgtcacttga agatcgtgtg tgtca 45
<210> 65<210> 65
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 65<400> 65
gaaggtcgga gtcaacggat tgtcacttga agatcgtgtg tgtcc 45gaaggtcgga gtcaacggat tgtcacttga agatcgtgtg tgtcc 45
<210> 66<210> 66
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 66<400> 66
ttcatgactc attggggact cacaag 26ttcatgactc attggggact cacaag 26
<210> 67<210> 67
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 67<400> 67
gaaggtgacc aagttcatgc tcgaatcgga ccggacgaaa acg 43gaaggtgacc aagttcatgc tcgaatcgga ccggacgaaa acg 43
<210> 68<210> 68
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 68<400> 68
gaaggtcgga gtcaacggat tcgaatcgga ccggacgaaa aca 43gaaggtcgga gtcaacggat tcgaatcgga ccggacgaaa aca 43
<210> 69<210> 69
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 69<400> 69
tgacacaagc agatgcacag agac 24tgacacaagc agatgcacag agac 24
<210> 70<210> 70
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 70<400> 70
gaaggtgacc aagttcatgc tgttcatagg aatccagaca caccg 45gaaggtgacc aagttcatgc tgttcatagg aatccagaca caccg 45
<210> 71<210> 71
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 71<400> 71
gaaggtcgga gtcaacggat tgttcatagg aatccagaca cacca 45gaaggtcgga gtcaacggat tgttcatagg aatccagaca cacca 45
<210> 72<210> 72
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 72<400> 72
cggtcaccgt gtagactatt gtagtc 26cggtcaccgt gtagactatt gtagtc 26
<210> 73<210> 73
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 73<400> 73
gaaggtgacc aagttcatgc tcaaatacaa ccggaccaac tcctc 45gaaggtgacc aagttcatgc tcaaatacaa ccggaccaac tcctc 45
<210> 74<210> 74
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 74<400> 74
gaaggtcgga gtcaacggat tcaaatacaa ccggaccaac tcctt 45gaaggtcgga gtcaacggat tcaaatacaa ccggaccaac tcctt 45
<210> 75<210> 75
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 75<400> 75
gtttgggttg gagcaaggat tacgc 25gtttgggttg gagcaaggat tacgc 25
<210> 76<210> 76
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 76<400> 76
gaaggtgacc aagttcatgc taggacttgg caatcctgtt agtgctt 47gaaggtgacc aagttcatgc taggacttgg caatcctgtt agtgctt 47
<210> 77<210> 77
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 77<400> 77
gaaggtcgga gtcaacggat taggacttgg caatcctgtt agtgcta 47gaaggtcgga gtcaacggat taggacttgg caatcctgtt agtgcta 47
<210> 78<210> 78
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 78<400> 78
caaagttctc atccatcggt tctcgt 26caaagttctc atccatcggt tctcgt 26
<210> 79<210> 79
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 79<400> 79
gaaggtgacc aagttcatgc tagtaacgag gttgttgctc tgtg 44gaaggtgacc aagttcatgc tagtaacgag gttgttgctc tgtg 44
<210> 80<210> 80
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 80<400> 80
gaaggtcgga gtcaacggat tagtaacgag gttgttgctc tgtc 44gaaggtcgga gtcaacggat tagtaacgag gttgttgctc tgtc 44
<210> 81<210> 81
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 81<400> 81
ccttctaggt gtcccatcaa gactcc 26ccttctaggt gtcccatcaa gactcc 26
<210> 82<210> 82
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 82<400> 82
gaaggtgacc aagttcatgc tcctgattgc cacgtcaagg gac 43gaaggtgacc aagttcatgc tcctgattgc cacgtcaagg gac 43
<210> 83<210> 83
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 83<400> 83
gaaggtcgga gtcaacggat tcctgattgc cacgtcaagg gat 43gaaggtcgga gtcaacggat tcctgattgc cacgtcaagg gat 43
<210> 84<210> 84
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 84<400> 84
tacaaggaag cctgtaaaga ctgc 24tacaaggaag cctgtaaaga ctgc 24
<210> 85<210> 85
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 85<400> 85
gaaggtgacc aagttcatgc tgttggatct ctagtattag gtccccg 47gaaggtgacc aagttcatgc tgttggatct ctagtattag gtccccg 47
<210> 86<210> 86
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 86<400> 86
gaaggtcgga gtcaacggat tgttggatct ctagtattag gtcccca 47gaaggtcgga gtcaacggat tgttggatct ctagtattag gtcccca 47
<210> 87<210> 87
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 87<400> 87
acaattctag ctccttcttg gaaccc 26acaattctag ctccttcttg gaaccc 26
<210> 88<210> 88
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 88<400> 88
gaaggtgacc aagttcatgc tatgatcctt cccatggttc cactcg 46gaaggtgacc aagttcatgc tatgatcctt cccatggttc cactcg 46
<210> 89<210> 89
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 89<400> 89
gaaggtcgga gtcaacggat tatgatcctt cccatggttc cactct 46gaaggtcgga gtcaacggat tatgatcctt cccatggttc cactct 46
<210> 90<210> 90
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 90<400> 90
gagcacggca caacacatta ca 22gagcacggca caacacatta ca 22
<210> 91<210> 91
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 91<400> 91
gaaggtgacc aagttcatgc tcctagaacc gaataaggta tccccca 47gaaggtgacc aagttcatgc tcctagaacc gaataaggta tccccca 47
<210> 92<210> 92
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 92<400> 92
gaaggtcgga gtcaacggat tcctagaacc gaataaggta tccccct 47gaaggtcgga gtcaacggat tcctagaacc gaataaggta tccccct 47
<210> 93<210> 93
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 93<400> 93
gatgcttttc ttcaggcttg gc 22gatgcttttc ttcaggcttg gc 22
<210> 94<210> 94
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 94<400> 94
gaaggtgacc aagttcatgc tgaaagtctg ccatacttgg ggtc 44gaaggtgacc aagttcatgc tgaaagtctg ccatacttgg ggtc 44
<210> 95<210> 95
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 95<400> 95
gaaggtcgga gtcaacggat tgaaagtctg ccatacttgg ggtt 44gaaggtcgga gtcaacggat tgaaagtctg ccatacttgg ggtt 44
<210> 96<210> 96
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 96<400> 96
ggtccataca aggcctcact agatg 25ggtccataca aggcctcact agatg 25
<210> 97<210> 97
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 97<400> 97
gaaggtgacc aagttcatgc ttataacccg gggacaagtg atgg 44gaaggtgacc aagttcatgc ttataacccg gggacaagtg atgg 44
<210> 98<210> 98
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 98<400> 98
gaaggtcgga gtcaacggat ttataacccg gggacaagtg atga 44gaaggtcgga gtcaacggat ttataacccg gggacaagtg atga 44
<210> 99<210> 99
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 99<400> 99
ccaacccaaa atttttcccc gttgga 26ccaacccaaa atttttcccc gttgga 26
<210> 100<210> 100
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 100<400> 100
gaaggtgacc aagttcatgc tggcgtcacg atagaggaag tccaa 45gaaggtgacc aagttcatgc tggcgtcacg atagaggaag tccaa 45
<210> 101<210> 101
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 101<400> 101
gaaggtcgga gtcaacggat tggcgtcacg atagaggaag tccag 45gaaggtcgga gtcaacggat tggcgtcacg atagaggaag tccag 45
<210> 102<210> 102
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 102<400> 102
aagcctgctg atctgttatc ccc 23aagcctgctg atctgttatc ccc 23
<210> 103<210> 103
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 103<400> 103
gaaggtgacc aagttcatgc tggaagattg gagtccgagt tagtgtc 47gaaggtgacc aagttcatgc tggaagattg gagtccgagt tagtgtc 47
<210> 104<210> 104
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 104<400> 104
gaaggtcgga gtcaacggat tggaagattg gagtccgagt tagtgta 47gaaggtcgga gtcaacggat tggaagattg gagtccgagt tagtgta 47
<210> 105<210> 105
<211> 27<211> 27
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 105<400> 105
cctccccttt catcacaaca tctatgc 27cctccccttt catcacaaca tctatgc 27
<210> 106<210> 106
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 106<400> 106
gaaggtgacc aagttcatgc tggacatctc attggccacc attg 44gaaggtgacc aagttcatgc tggacatctc attggccacc attg 44
<210> 107<210> 107
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 107<400> 107
gaaggtcgga gtcaacggat tggacatctc attggccacc attt 44gaaggtcgga gtcaacggat tggacatctc attggccacc attt 44
<210> 108<210> 108
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 108<400> 108
aaaactttgt ggtgtttagg gccc 24aaaactttgt ggtgtttagg gccc 24
<210> 109<210> 109
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 109<400> 109
gaaggtgacc aagttcatgc ttaaccttga atccttgggg aagcc 45gaaggtgacc aagttcatgc ttaaccttga atccttgggg aagcc 45
<210> 110<210> 110
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 110<400> 110
gaaggtcgga gtcaacggat ttaaccttga atccttgggg aagca 45gaaggtcgga gtcaacggat ttaaccttga atccttgggg aagca 45
<210> 111<210> 111
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 111<400> 111
atctgagtag cgtgagggta aga 23atctgagtag cgtgagggta aga 23
<210> 112<210> 112
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 112<400> 112
gaaggtgacc aagttcatgc tccccacgtt tccaaaaccc tagg 44gaaggtgacc aagttcatgc tccccacgtt tccaaaaccc tagg 44
<210> 113<210> 113
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 113<400> 113
gaaggtcgga gtcaacggat tccccacgtt tccaaaaccc taga 44gaaggtcgga gtcaacggat tccccacgtt tccaaaaccc taga 44
<210> 114<210> 114
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 114<400> 114
gattcctcgg gagaaatgtc gtaagtca 28gattcctcgg gagaaatgtc gtaagtca 28
<210> 115<210> 115
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 115<400> 115
gaaggtgacc aagttcatgc tggctccaaa agtcagctca aaggag 46gaaggtgacc aagttcatgc tggctccaaa agtcagctca aaggag 46
<210> 116<210> 116
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 116<400> 116
gaaggtcgga gtcaacggat tggctccaaa agtcagctca aaggaa 46gaaggtcgga gtcaacggat tggctccaaa agtcagctca aaggaa 46
<210> 117<210> 117
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 117<400> 117
tgagatgtgg actccttata aggcttgg 28tgagatgtgg actccttata aggcttgg 28
<210> 118<210> 118
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 118<400> 118
gaaggtgacc aagttcatgc tctcgaagac tggctcgtaa gacg 44gaaggtgacc aagttcatgc tctcgaagac tggctcgtaa gacg 44
<210> 119<210> 119
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 119<400> 119
gaaggtcgga gtcaacggat tctcgaagac tggctcgtaa gaca 44gaaggtcgga gtcaacggat tctcgaagac tggctcgtaa gaca 44
<210> 120<210> 120
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 120<400> 120
aaacggcccg tcataattac ctcca 25aaacggcccg tcataattac ctcca 25
<210> 121<210> 121
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 121<400> 121
gaaggtgacc aagttcatgc tgcttaggaa ccatgtgatc gtcg 44gaaggtgacc aagttcatgc tgcttaggaa ccatgtgatc gtcg 44
<210> 122<210> 122
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 122<400> 122
gaaggtcgga gtcaacggat tgcttaggaa ccatgtgatc gtca 44gaaggtcgga gtcaacggat tgcttaggaa ccatgtgatc gtca 44
<210> 123<210> 123
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 123<400> 123
tctactgtgc atctatcagc gtct 24tctactgtgc atctatcagc gtct 24
<210> 124<210> 124
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 124<400> 124
gaaggtgacc aagttcatgc tgtgtccagc ttgcttgctc ctc 43gaaggtgacc aagttcatgc tgtgtccagc ttgcttgctc ctc 43
<210> 125<210> 125
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 125<400> 125
gaaggtcgga gtcaacggat tgtgtccagc ttgcttgctc ctt 43gaaggtcgga gtcaacggat tgtgtccagc ttgcttgctc ctt 43
<210> 126<210> 126
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 126<400> 126
ttgatgatgg gaggtgacaa ttaccc 26ttgatgatgg gaggtgacaa ttaccc 26
<210> 127<210> 127
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 127<400> 127
gaaggtgacc aagttcatgc tccaccgtca gaaacaaatt gcg 43gaaggtgacc aagttcatgc tccaccgtca gaaacaaatt gcg 43
<210> 128<210> 128
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 128<400> 128
gaaggtcgga gtcaacggat tccaccgtca gaaacaaatt gca 43gaaggtcgga gtcaacggat tccaccgtca gaaacaaatt gca 43
<210> 129<210> 129
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 129<400> 129
gctccacgca caaaaacaag cag 23gctccacgca caaaaacaag cag 23
<210> 130<210> 130
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 130<400> 130
gaaggtgacc aagttcatgc ttggatgact gcaggaagag gag 43gaaggtgacc aagttcatgc ttggatgact gcaggaagag gag 43
<210> 131<210> 131
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 131<400> 131
gaaggtcgga gtcaacggat ttggatgact gcaggaagag gaa 43gaaggtcgga gtcaacggat ttggatgact gcaggaagag gaa 43
<210> 132<210> 132
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 132<400> 132
tttgaattcc ctcagcagct ggc 23tttgaattcc ctcagcagct ggc 23
<210> 133<210> 133
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 133<400> 133
gaaggtgacc aagttcatgc taaccagcat ttgtcgtgga cta 43gaaggtgacc aagttcatgc taaccagcat ttgtcgtgga cta 43
<210> 134<210> 134
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 134<400> 134
gaaggtcgga gtcaacggat taaccagcat ttgtcgtgga ctg 43gaaggtcgga gtcaacggat taaccagcat ttgtcgtgga ctg 43
<210> 135<210> 135
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 135<400> 135
ggcacacgat gatggattag tggt 24ggcacacgat gatggattag tggt 24
<210> 136<210> 136
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 136<400> 136
gaaggtgacc aagttcatgc tggcgaccat gttctagacc tcac 44gaaggtgacc aagttcatgc tggcgaccat gttctagacc tcac 44
<210> 137<210> 137
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 137<400> 137
gaaggtcgga gtcaacggat tggcgaccat gttctagacc tcaa 44gaaggtcgga gtcaacggat tggcgaccat gttctagacc tcaa 44
<210> 138<210> 138
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 138<400> 138
gaaatgtggt cccagggctt acac 24gaaatgtggt cccaggggctt acac 24
<210> 139<210> 139
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 139<400> 139
gaaggtgacc aagttcatgc tggggtatga tgagggtggt gtg 43gaaggtgacc aagttcatgc tggggtatga tgagggtggt gtg 43
<210> 140<210> 140
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 140<400> 140
gaaggtcgga gtcaacggat tggggtatga tgagggtggt gta 43gaaggtcgga gtcaacggat tggggtatga tgagggtggt gta 43
<210> 141<210> 141
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 141<400> 141
acgcccactt gttaacactc aaag 24acgcccactt gttaacactc aaag 24
<210> 142<210> 142
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 142<400> 142
gaaggtgacc aagttcatgc ttagggggaa tgagtgcaac agaag 45gaaggtgacc aagttcatgc ttagggggaa tgagtgcaac agaag 45
<210> 143<210> 143
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 143<400> 143
gaaggtcgga gtcaacggat ttagggggaa tgagtgcaac agaaa 45gaaggtcgga gtcaacggat ttagggggaa tgagtgcaac agaaa 45
<210> 144<210> 144
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 144<400> 144
ctgtaaaggc agtcattcct actacg 26ctgtaaaggc agtcattcct actacg 26
<210> 145<210> 145
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 145<400> 145
gaaggtgacc aagttcatgc ttgatccatg gtgtgtgcac atcg 44gaaggtgacc aagttcatgc ttgatccatg gtgtgtgcac atcg 44
<210> 146<210> 146
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 146<400> 146
gaaggtcgga gtcaacggat ttgatccatg gtgtgtgcac atct 44gaaggtcgga gtcaacggat ttgatccatg gtgtgtgtgcac atct 44
<210> 147<210> 147
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 147<400> 147
cccaaagctc acatttcctt acag 24cccaaagctc acatttcctt acag 24
<210> 148<210> 148
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 148<400> 148
gaaggtgacc aagttcatgc tggaaatgag tgtcccagcc atctatg 47gaaggtgacc aagttcatgc tggaaatgag tgtcccagcc atctatg 47
<210> 149<210> 149
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 149<400> 149
gaaggtcgga gtcaacggat tggaaatgag tgtcccagcc atctatt 47gaaggtcgga gtcaacggat tggaaatgag tgtcccagcc atctatt 47
<210> 150<210> 150
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 150<400> 150
agtcccaacc ctactctcat gtcct 25agtcccaacc ctactctcat gtcct 25
<210> 151<210> 151
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 151<400> 151
gaaggtgacc aagttcatgc tgaccacaac atccaggttc acc 43gaaggtgacc aagttcatgc tgaccacaac atccaggttc acc 43
<210> 152<210> 152
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 152<400> 152
gaaggtcgga gtcaacggat tgaccacaac atccaggttc aca 43gaaggtcgga gtcaacggat tgaccacaac atccaggttc aca 43
<210> 153<210> 153
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 153<400> 153
gcttgggcac tctattggta ctccta 26gcttgggcac tctattggta ctccta 26
<210> 154<210> 154
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 154<400> 154
gaaggtgacc aagttcatgc tggcgtagat tggtgtacac actg 44gaaggtgacc aagttcatgc tggcgtagat tggtgtacac actg 44
<210> 155<210> 155
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 155<400> 155
gaaggtcgga gtcaacggat tggcgtagat tggtgtacac acta 44gaaggtcgga gtcaacggat tggcgtagat tggtgtacac acta 44
<210> 156<210> 156
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 156<400> 156
gaatttacta aaccacccct cgcttg 26gaatttacta aaccacccct cgcttg 26
<210> 157<210> 157
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 157<400> 157
gaaggtgacc aagttcatgc tcattagtgt cctcgatggc tgatg 45gaaggtgacc aagttcatgc tcattagtgt cctcgatggc tgatg 45
<210> 158<210> 158
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 158<400> 158
gaaggtcgga gtcaacggat tcattagtgt cctcgatggc tgata 45gaaggtcgga gtcaacggat tcattagtgt cctcgatggc tgata 45
<210> 159<210> 159
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 159<400> 159
agcatctctt cgggtggttt agtac 25agcatctctt cgggtggttt agtac 25
<210> 160<210> 160
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 160<400> 160
gaaggtgacc aagttcatgc tcgcaacgaa tattggtcac cagg 44gaaggtgacc aagttcatgc tcgcaacgaa tattggtcac cagg 44
<210> 161<210> 161
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 161<400> 161
gaaggtcgga gtcaacggat tcgcaacgaa tattggtcac caga 44gaaggtcgga gtcaacggat tcgcaacgaa tattggtcac caga 44
<210> 162<210> 162
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 162<400> 162
cgattgactt tgttggcctc caaa 24cgattgactt tgttggcctc caaa 24
<210> 163<210> 163
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 163<400> 163
gaaggtgacc aagttcatgc tggttgtaga tgcggaagtg agtgc 45gaaggtgacc aagttcatgc tggttgtaga tgcggaagtg agtgc 45
<210> 164<210> 164
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 164<400> 164
gaaggtcgga gtcaacggat tggttgtaga tgcggaagtg agtgg 45gaaggtcgga gtcaacggat tggttgtaga tgcggaagtg agtgg 45
<210> 165<210> 165
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 165<400> 165
accaccttcg tattgagttg gaca 24accaccttcg tattgagttg gaca 24
<210> 166<210> 166
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 166<400> 166
gaaggtgacc aagttcatgc tccggaaatg atcaatgcga accctc 46gaaggtgacc aagttcatgc tccggaaatg atcaatgcga accctc 46
<210> 167<210> 167
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 167<400> 167
gaaggtcgga gtcaacggat tccggaaatg atcaatgcga accctt 46gaaggtcgga gtcaacggat tccggaaatg atcaatgcga accctt 46
<210> 168<210> 168
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 168<400> 168
aacactagac gcccttgttg ga 22aacactagac gcccttgttg ga 22
<210> 169<210> 169
<211> 48<211> 48
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 169<400> 169
gaaggtgacc aagttcatgc tgcctggtaa gatataccga cccttgtc 48gaaggtgacc aagttcatgc tgcctggtaa gatataccga cccttgtc 48
<210> 170<210> 170
<211> 48<211> 48
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 170<400> 170
gaaggtcgga gtcaacggat tgcctggtaa gatataccga cccttgtg 48gaaggtcgga gtcaacggat tgcctggtaa gatataccga cccttgtg 48
<210> 171<210> 171
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 171<400> 171
gtggaggtag agaggctgtt tct 23gtggaggtag agaggctgtt tct 23
<210> 172<210> 172
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 172<400> 172
gaaggtgacc aagttcatgc tgcagatgct catcggactg atttg 45gaaggtgacc aagttcatgc tgcagatgct catcggactg atttg 45
<210> 173<210> 173
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 173<400> 173
gaaggtcgga gtcaacggat tgcagatgct catcggactg attta 45gaaggtcgga gtcaacggat tgcagatgct catcggactg attta 45
<210> 174<210> 174
<211> 25<211> 25
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 174<400> 174
gcaaaatagt gaaatcgccg cgaga 25gcaaaatagt gaaatcgccg cgaga 25
<210> 175<210> 175
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 175<400> 175
gaaggtgacc aagttcatgc tgcctaccag accttttcta tgccttc 47gaaggtgacc aagttcatgc tgcctaccag accttttcta tgccttc 47
<210> 176<210> 176
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 176<400> 176
gaaggtcgga gtcaacggat tgcctaccag accttttcta tgcctta 47gaaggtcgga gtcaacggat tgcctaccag accttttcta tgcctta 47
<210> 177<210> 177
<211> 27<211> 27
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 177<400> 177
ccagcctttt ggtttatcct ctatgcc 27ccagcctttt ggtttatcct ctatgcc 27
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011212501.8A CN112143829B (en) | 2020-11-03 | 2020-11-03 | Typing and application of universal SNP (single nucleotide polymorphism) markers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011212501.8A CN112143829B (en) | 2020-11-03 | 2020-11-03 | Typing and application of universal SNP (single nucleotide polymorphism) markers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112143829A true CN112143829A (en) | 2020-12-29 |
CN112143829B CN112143829B (en) | 2021-04-30 |
Family
ID=73953863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011212501.8A Active CN112143829B (en) | 2020-11-03 | 2020-11-03 | Typing and application of universal SNP (single nucleotide polymorphism) markers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112143829B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114457184A (en) * | 2022-02-21 | 2022-05-10 | 广东省农业科学院蔬菜研究所 | SNP molecular marker and KASP primer for identifying color of luffa seed coat and application thereof |
CN115094155A (en) * | 2022-05-24 | 2022-09-23 | 沧州市农林科学院 | SNP (single nucleotide polymorphism) and haplotype influencing salt tolerance of wheat |
CN117757973A (en) * | 2023-12-08 | 2024-03-26 | 江苏省农业科学院 | A molecular marker related to tomato drought resistance and its application |
WO2024212386A1 (en) * | 2023-04-14 | 2024-10-17 | 华智生物技术有限公司 | Kasp marker primer group for detecting purity of solanum lycopersicom variety, kit thereof and use thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106676172A (en) * | 2016-12-16 | 2017-05-17 | 北京通州国际种业科技有限公司 | Tomato 212 SNP loci as well as applications thereof to identification of variety authenticity and seed purity of Lycopersicon esculentum |
CN110607386A (en) * | 2019-09-26 | 2019-12-24 | 北京通州国际种业科技有限公司 | KASP primer combination suitable for construction of tomato DNA fingerprint database and application thereof |
-
2020
- 2020-11-03 CN CN202011212501.8A patent/CN112143829B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106676172A (en) * | 2016-12-16 | 2017-05-17 | 北京通州国际种业科技有限公司 | Tomato 212 SNP loci as well as applications thereof to identification of variety authenticity and seed purity of Lycopersicon esculentum |
CN110607386A (en) * | 2019-09-26 | 2019-12-24 | 北京通州国际种业科技有限公司 | KASP primer combination suitable for construction of tomato DNA fingerprint database and application thereof |
Non-Patent Citations (4)
Title |
---|
HTTPS://SOLGENOMICS.NET/: "Search- Marker -SNP(基因组SL4.0)", 《SOL GENOMICS NETWORK》 * |
芮文婧: "基于表型性状与SNP标记的番茄种质资源遗传多样性分析", 《宁夏大学硕士学位论文》 * |
袁东升: "266份番茄种质资源遗传多样性分析及番茄杂交组合的评价", 《宁夏大学硕士学位论文》 * |
邓学斌: "加工番茄核心种质构建与重要农艺性状关联分析", 《中国农业科学院硕士学位论文》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114457184A (en) * | 2022-02-21 | 2022-05-10 | 广东省农业科学院蔬菜研究所 | SNP molecular marker and KASP primer for identifying color of luffa seed coat and application thereof |
CN115094155A (en) * | 2022-05-24 | 2022-09-23 | 沧州市农林科学院 | SNP (single nucleotide polymorphism) and haplotype influencing salt tolerance of wheat |
CN115094155B (en) * | 2022-05-24 | 2024-03-26 | 沧州市农林科学院 | A SNP and haplotype affecting salt tolerance in wheat |
WO2024212386A1 (en) * | 2023-04-14 | 2024-10-17 | 华智生物技术有限公司 | Kasp marker primer group for detecting purity of solanum lycopersicom variety, kit thereof and use thereof |
CN117757973A (en) * | 2023-12-08 | 2024-03-26 | 江苏省农业科学院 | A molecular marker related to tomato drought resistance and its application |
Also Published As
Publication number | Publication date |
---|---|
CN112143829B (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112143829B (en) | Typing and application of universal SNP (single nucleotide polymorphism) markers | |
CN108998562B (en) | Grain length gene marker based on wheat 895 genetic background in wheat variety and application | |
CN113584216B (en) | Development and application of KASP marker of wheat grain weight gene TaCYP78A16 | |
CN106191240B (en) | For identifying single nucleotide polymorphism site, primer, kit and the application of Peach fruits epidermal hair character | |
CN105925721B (en) | For identifying single nucleotide polymorphism site, primer, kit and the application of Peach fruits epidermis coloring character | |
KR101979218B1 (en) | Composition for determining bud mutation cultivar of Fuji apple | |
CN111961749B (en) | KASP primer for detecting tomato yellow leaf curl virus disease-resistant genes Ty-3 and Ty-3a and application thereof | |
KR20180077873A (en) | SNP markers for selection of marker-assisted backcross in watermelon | |
CN112592998A (en) | KASP primer combination for constructing grape DNA fingerprint atlas database and application | |
CN113832251B (en) | SNP locus combination for detecting tomato mosaic virus resistance and application thereof | |
CN111961751B (en) | KASP primer for detecting tomato root knot nematode resistance gene Mi-1.2 and application thereof | |
CN113355449A (en) | Elytrigia elongata 3E chromosome specific codominant KASP molecular marker and application thereof | |
CN113736906B (en) | SNP locus combinations for detecting tomato Verticillium wilt resistance and their applications | |
CN113736866B (en) | Combination of SNP loci for detection of resistance to yellow leaf curl virus disease in tomato and its application | |
CN113736907B (en) | SNP locus combination for detecting tomato gray leaf spot resistance and application thereof | |
CN106755493B (en) | SNP marker primer combination and identification method for identification of Leymus chinensis varieties | |
CN110592260B (en) | Competitive allele-specific polymerase chain reaction markers for leaf rust resistance loci in adult durum wheat and its application | |
CN115094158A (en) | KASP marker development of rice blast resistance gene Pid4 and application thereof | |
CN110257551B (en) | A set of SSR primers, application and construction method for constructing peach DNA fingerprint | |
CN113373256A (en) | Development and application of KASP molecular marker of sugarcane mosaic virus disease resistance gene of corn | |
CN107354203B (en) | Primer combination and kit for identifying cured tobacco Bina No. 1, application and detection method | |
CN113881795A (en) | KaSP marker development of rice grain type gene GLW7 and application thereof | |
CN107354205B (en) | Primer combination and kit for identifying tobacco 100 in flue-cured tobacco, application and detection method | |
CN112501337A (en) | KASP molecular marker related to sesame drought resistance character and application thereof | |
CN107354201B (en) | Primer combination and kit for identifying flue-cured tobacco yunyan 97, application and detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |