CN112143741B - Biomembrane gene island GIVal43097 and excision method thereof - Google Patents

Biomembrane gene island GIVal43097 and excision method thereof Download PDF

Info

Publication number
CN112143741B
CN112143741B CN202010929895.2A CN202010929895A CN112143741B CN 112143741 B CN112143741 B CN 112143741B CN 202010929895 A CN202010929895 A CN 202010929895A CN 112143741 B CN112143741 B CN 112143741B
Authority
CN
China
Prior art keywords
gene
biofilm
island
gival43097
biomembrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010929895.2A
Other languages
Chinese (zh)
Other versions
CN112143741A (en
Inventor
王晓雪
王鹏霞
王伟权
汤开浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Sea Institute of Oceanology of CAS
Original Assignee
South China Sea Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Sea Institute of Oceanology of CAS filed Critical South China Sea Institute of Oceanology of CAS
Priority to CN202010929895.2A priority Critical patent/CN112143741B/en
Publication of CN112143741A publication Critical patent/CN112143741A/en
Application granted granted Critical
Publication of CN112143741B publication Critical patent/CN112143741B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y406/00Phosphorus-oxygen lyases (4.6)
    • C12Y406/01Phosphorus-oxygen lyases (4.6.1)
    • C12Y406/01002Guanylate cyclase (4.6.1.2)

Abstract

The invention discloses a biomembrane gene island GIVal43097 and a cutting method thereof. The nucleotide sequence of the biomembrane gene island GIVal43097 is shown in SEQ ID NO. 1. The invention utilizes molecular biology means, and identifies and directionally excises the gene island for enhancing the biofilm formation, thereby eliminating the carried gene on one hand, preventing the horizontal transmission of the gene island on the other hand, simultaneously protecting the flora balance to the maximum extent, being a novel strategy for eliminating the bacterial biofilm and achieving the purpose of weakening the pathogenic vibrio biofilm.

Description

Biomembrane gene island GIVal43097 and excision method thereof
The technical field is as follows:
the invention belongs to the fields of biochemistry and molecular biology, and particularly relates to a biomembrane gene island GIVal43097 and a excision method thereof.
Background art:
biofilms are the predominant form of bacteria found in the environment. Biofilm (bifilm), also known as biofilm, is a bacterial community formed by adhesion of bacteria to extracellular matrices such as polysaccharides, proteins, and DNA secreted from the surfaces of living or non-living organisms. Extracellular secretions in biofilms provide a barrier to the survival of microorganisms, and bacteria in the biofilm state are better resistant to environmental stresses, and thus biofilms are also referred to as semi-dormant states of bacteria. The existence form of the biofilm is various, and the biofilm comprises a solid-liquid biofilm or an adhesive biofilm formed between a solid medium and a liquid medium, a gas-liquid biofilm formed between a gas medium and a liquid medium, and a gas-solid biofilm formed between the gas medium and the solid medium and composed of a bacterial community. An article of the national institutes of health in the united states of 2014 indicated that biofilms were involved in more than 60% of microbial infection processes. Some pathogenic bacteria can regulate and control the formation of a biological membrane to enhance the pathogenic capability of the pathogenic bacteria, for example, when the human pathogenic bacteria vibrio cholerae enters the intestinal tract, the pathogenic bacteria can adapt to the acidic environment in the intestinal tract of a human well by regulating and controlling the large formation of the biological membrane, protect the pathogenic bacteria from being influenced by bile and low pH, and maintain the pathogenic capability; when the vibrio cholerae begins to infect human bodies, the expression of intracellular polysaccharide is inhibited, so that the biological membrane is promoted to be thinned, and the infection of hosts is facilitated. Coral pathogenic bacteria, namely vibrio coralyticus, quickly forms a biological membrane on the surface layer of coral mucus when infecting coral antler, and then induces the expression of virulence factors to exert pathogenicity.
Research shows that horizontal transfer elements such as gene islands and prophages participate in the formation and regulation of biological membranes. For example, the excision of the original phage CP4So in Shewanella MR-1 can enhance the biofilm of host bacteria and increase the survival rate of the host at low temperature. Meanwhile, the formation of the biological membrane can further regulate and control the cutting-off and the release of horizontal transfer elements such as prophages and the like. For example, when Escherichia coli K-12 forms a biofilm, the CP4-57 prophage on its genome is excised, further promoting the formation of a population biofilm. The Pf filamentous prophage is largely replicated and released in the process of forming the pseudomonas aeruginosa biofilm, and the pathogenicity of the bacteria is enhanced. However, the research objects of the biofilm are mainly concentrated in escherichia coli model bacteria and pathogenic bacteria of human and animals at present, and the research on the biofilm in marine bacteria is relatively less due to the pathogenic action and mechanism. Some species of Vibrio, such as Vibrio alginolyticus and Vibrio coraolyticus, cause coral diseases, and the presence of biofilm enhances the pathogenicity. Therefore, there is an urgent need to identify gene islands that regulate biofilm formation in these pathogenic bacteria, and to establish a highly efficient and targeted gene island excision method that ultimately attenuates bacterial biofilm formation.
The invention content is as follows:
the first purpose of the invention is to provide a gene island GIVal43097 for regulating and controlling the formation of bacterial biofilm in Vibrio alginolyticus.
The nucleotide sequence of the biomembrane gene island GIVal43097 is shown in SEQ ID NO. 1.
The second objective of the invention is to provide a guanylate cyclase gene, the nucleotide sequence of which is shown as 1907-2812 base of SEQ ID NO.1 or as 5342-6748 base of SEQ ID NO. 1.
The invention also provides application of the guanylate cyclase gene in promoting bacterial biofilm formation.
The third purpose of the invention is to provide the application of the dgc137 gene in the knock-out biomembrane gene island GIVal43097 in reducing the biomembrane synthesis.
The fourth object of the present invention is to provide an excision enzyme alpA, the nucleotide sequence of which is the reverse complement of the sequence shown by the 15008-15217 th base of SEQ ID NO. 1.
A fifth object of the present invention is to provide the use of an overexpressed excisionase alpA to mediate excision of the biofilm gene GIVal43097, thereby further removing the formation of bacterial biofilms in organisms, such as Vibrio alginolyticus SCSIO 43097 biofilms.
The sixth object of the present invention is to provide a method for excising the biofilm gene island GIVal43097 by overexpressing the excision enzyme alpA in an organism containing the biofilm gene island GIVal 43097.
The existing bacterial biofilm removal method is removal or inhibition by physical and chemical means, and the application in organisms is greatly limited. The invention utilizes molecular biology means, and identifies and directionally excises the gene island for enhancing the biofilm formation, thereby eliminating the carried gene on one hand, preventing the horizontal transmission of the gene island on the other hand, simultaneously protecting the flora balance to the maximum extent, being a novel strategy for eliminating the bacterial biofilm and achieving the purpose of weakening the pathogenic vibrio biofilm.
Compared with the prior art, the advantages are as follows:
1. the invention utilizes molecular biology means to remove bacterial biofilms in organisms. The current biofilm removal method mainly aims at the biofilms on medical devices or chronic wounds on body surfaces, and cannot be directly used for removing the biofilms formed by bacteria in organisms because mechanical treatment or chemical substance treatment is used.
2. The gene island is cut off by utilizing the overexpression of the excision enzyme coded by the gene island, so that the method is a specific knockout method, and compared with a chemical substance treatment method, the method cannot damage the flora balance.
3. High efficiency, the existing physical and chemical method is used for removing the biological membrane, the selected chemical reagent needs experimental test, and the removal effect cannot be estimated. The efficiency of gene island excision by the excision enzyme overexpression method is close to 100 percent.
Description of the drawings:
FIG. 1 shows the sequence analysis (A) of GIVal43097 gene island and the domain analysis and knock-out PCR detection of the biomembrane associated proteins Dgc137(B), Dgc139(C) and Dgc140 (D);
FIG. 2 is the identification of the biofilm-associated gene on Gene island GIVal 43097. Knocking out mutant strains delta dgc137, delta dgc139 and delta dgc140 from genes dgc137, dgc139 and dgc140, and carrying out phenotype detection on a gas-liquid biomembrane (A), a solid-liquid biomembrane (B) and a gas-solid biomembrane (C) of a gene island GIVal43097 excised strain delta GIVal43097 (abbreviated as delta GI, the same below); and dgc137 gene complemented gas-solid biofilm, gas-liquid biofilm (D) and solid-liquid biofilm (E), WT is wild type, WT/pBBR1Cm represents expression of empty vector in wild type, delta dgc137/pBBR1Cm represents expression of empty vector in delta dgc137, delta dgc137/pDGc137 represents expression of pBBR1Cm containing dgc137 complemented plasmid in delta dgc137, and delta GI/pBBR1Cm represents expression of empty vector in delta GI.
FIG. 3 is a schematic diagram (A) and excision efficiency (B) of excision of GIVal43097 gene island mediated by excision enzyme AlpA, and detection of solid-liquid biofilm (C), gas-solid biofilm (D) and gas-liquid biofilm (E) of gene island GIVal43097 deletion mutant strain, 43097 is wild strain containing GIVal 43097.
FIG. 4 shows the detection of solid-liquid biomembrane (A) and gas-solid biomembrane (B) after heterologous expression of key genes dgc137, dgc139 and dgc140 on gene island GIVal43097 in Pseudomonas aeruginosa PAO1, and PAO1/pHERD20T is a control of expression empty vector in PAO 1.
The specific implementation mode is as follows:
the following examples are further illustrative of the present invention and are not intended to be limiting thereof.
Example 1:
firstly, extracting the genomic DNA of Vibrio algyrinolyticus SCSIO 43097:
the strain Vibrio alginolyticus SCSIO 43097 preserved at-80 ℃ is streaked on a 2216E culture medium plate, and is kept in an incubator at 30 ℃ for overnight; picking single colony in a 250ml triangular flask containing 25ml fresh 2216E culture medium, culturing in an incubator at 25 ℃ for 12 hours under 220rpm shaking; transferred at 1:100 into a 250ml Erlenmeyer flask containing 25ml of fresh 2216E medium, and shake-cultured at 220rpm for 5-6 hours (to log phase); centrifuging at 12,000rpm for 1min, collecting thallus, and removing supernatant; total DNA extraction was performed using a bacterial genomic DNA extraction kit (TIANGEN, BEIJING) to obtain SCSIO 43097 genomic DNA, which was used for whole genome sequencing and annotation analysis of SCSIO 43097, and by using Mauve software to perform sequence alignment with the closely related bacterium Vibrio algyrinthulius ATCC 33787, it was found that SCSIO 43097 contained a 22kb or so genetic island having the nucleotide sequence shown in SEQ ID NO.1, which encodes 1 integrase, 1 excise, 3 guanylate cyclases and 16 putative proteins (Table 1 and FIG. 1A).
TABLE 1 functional annotation of the genes contained in the Gene island GIVal43097
Figure BDA0002669833280000051
Identification of biomembrane related gene on GIVal43097 gene island
The guanylate cyclase is reported to be involved in the synthesis of C-di-GMP so as to regulate bacterial biomembrane, so that the gene island is supposed to regulate the formation of host bacterial biomembrane. The GIVal43097 gene island contains three genes dgc137, dgc139 and dgc140 containing GGDEF domain and encoding guanylate cyclase. Specific primers (table 2) were designed, and pMBLcas9 vector was used to knock out these three genes, respectively, to finally obtain three single-gene knock-out mutants Δ dgc, Δ 63139, and Δ dgc (fig. 1B-D). It was found that biofilm was significantly reduced after dgc137 knockdown, and that dgc139 and dgc140 knockdown had no significant effect on biofilm (fig. 2). In conclusion, dgc137 is an essential gene for SCSIO 43097 to form a large number of biofilms.
TABLE 2 primers used in the present invention
Figure BDA0002669833280000061
Figure BDA0002669833280000071
The method for gene knockout and gene complementation in Vibrio alginolyticus SCSIO 43097 comprises the following steps:
in the present study, a plasmid pMBLcas9 (the construction method is shown in Wang et al, Journal of analytical chemistry 2019,74(9), 2559-2565) depending on a CRISPR/Cas9 system is selected for gene knockout. First, gene fragments of upstream and downstream homologous arms and sgrnas were obtained by PCR amplification using primers (table 2); the homologous arms and sgRNA fragments were purified, pMBLcas9 was digested with AhdI, multi-fragment recombination was performed using ClonExpress MultiS kit (Vazyme), the recombinant fragments were introduced into E.coli WM3064 competent cells by chemical transformation, and the recombinant plasmids were verified by sequencing. The recombinant plasmid was subsequently transferred into v.algyrinolyticus SCSIO 43097 using the conjugative transfer method. Briefly, WM3064 containing recombinant plasmid is used as donor bacteria, SCSIO 43097 is used as recipient bacteria to perform conjugation transfer experiment, and the donor bacteria and the recipient bacteria are respectively cultured to OD 600 At 1.0 rpm, the cells were centrifuged at 6000rpm for 2 minutes to collect cells, which were then cultured in a mediumEach wash was performed 2 times, the supernatants were removed and resuspended in 50. mu.L of LB, and both cells were spotted onto LB plates containing 0.3mM DAP. After overnight incubation, the lawn was streaked out using an inoculating loop to 2216E plates containing chloramphenicol (15. mu.g/mL). The zygotes obtained on the resistant plates are subjected to wF/wR primer PCR to determine correct knockout strains, so that dgc137, dgc139 and dgc140 are knocked out, and three single-gene knockout mutants, namely delta dgc137, delta dgc139 and delta dgc140, are obtained.
The gene dgc137 was complemented back in this study using plasmid pBBR1Cm (see Zeng et al, applied Microbiol Biotechnol,2015,99, 10127-. First, the coding region and promoter region of gene dgc137 were amplified by PCR using primers (dgc 137-pBBR1Cm-F and dgc137-pBBR1Cm-R in Table 2); the PCR fragment was purified and recombinantly inserted into the SalI and KpnI sites of the pBBR1Cm vector using the Clonexpress II One Step Cloning Kit (Vazyme); the plasmid is introduced into escherichia coli WM3064 competent cells by a chemical transformation method, and the plasmid is supplemented by dgc137 through sequencing verification. Subsequently, the dgc137 complementation plasmid was transferred into the single knockout mutant Δ dgc137 by the conjugative transfer method using an LB plate containing 0.3mM DAP. After overnight culture, the lawn was picked with an inoculating loop and streaked onto 2216E plates containing chloramphenicol (15. mu.g/mL) to detect the correct transformants, thereby achieving complementation of dgc137 to obtain the complemented strain Δ dgc137/pDGc 137.
Expression of the excision enzyme AlpA in v.algyrinyticus SCSIO 43097 and targeted excision of gene island GIVal 43097:
the construction of pHGECm vector for the expression of the excision enzyme AlpA in SCSIO 43097 (see Wang et al, Environmental Microbiology,2017,19(11): 4620-4637) was used. First, the excision enzyme gene alpA encoded by the gene island GIVal43097 itself was obtained by PCR amplification using primers (Table 2), the PCR fragment was ligated between pHGECm vector EcoRI and BamHI cleavage sites, introduced into Escherichia coli WM3064 competent cells by chemical transformation, and the recombinant plasmid pHGECm-alpA was verified by sequencing, and the obtained strain was WM 3064/pHGECm-alpA. Performing conjugation transfer experiment by using WM3064/pHGECm-alpA as donor bacteria and SCSIO 43097 as acceptor bacteria, and cleaning bacteria liquid with culture mediumResuspend, mix well and spot onto LB plate containing 0.3mM DAP. After overnight culture, the lawn was picked with an inoculating loop and streaked onto LB plate containing chloramphenicol (30. mu.g/mL), and the recombinant strain was obtained by confirmation. The correct recombinant strain 43097/pHGECm-alpA was activated overnight and 1/100 was transferred to 25mL fresh 2216E medium containing chloramphenicol (15. mu.g/mL) to OD 600 When the gene island GIVal43097 is directionally excised, IPTG is added when the gene island GIVal43097 is changed to about 1.0, the strain is subjected to shake culture for 6-8 hours at 220rpm in a shaking table at 30 ℃, an inoculating loop of the strain liquid is streaked to an LB plate to obtain a single colony, and a correct gene island excised mutant strain is determined by using 43097GI-wF/-wR primers, so that a mutant strain delta GIVal43097 with the gene island GIVal43097 directionally excised is obtained.
And fourthly, detecting the biofilm phenotype of gene island excisions (single gene knockout mutants delta dgc137, delta dgc139 and delta dgc140, and a mutant strain delta GIVal 43097):
1. solid-liquid biofilm determination:
first, a single colony of the strain was inoculated into a flask containing 25mL of 2216E medium and cultured overnight at 30 ℃. Subsequently, the overnight-cultured broth was diluted to OD 600 When the medium was changed to 0.05, the medium was transferred to fresh 2216E medium, and 250 μ L of each diluted medium was put in a 96-well plate, and a sample to which only 2216E medium was added was used as a blank. Then placing 96-well plate in 30 deg.C constant temperature incubator for static culture (without shaking during culture), culturing for 2 hr, 4 hr, 6 hr or 8 hr respectively, and measuring OD with enzyme labeling instrument 620 The numerical value of (c). The culture solution was decanted, the 96-well plate was gently rinsed with tap water 5 times, the free cells were washed off, and 280. mu.L of a 0.1% crystal violet solution was added for staining. Standing at room temperature for 20min, pouring out the crystal violet solution, continuously soaking and washing the 96-well plate with clean tap water gently for 5 times, washing off free crystal violet, inverting the 96-well culture plate on water-absorbing filter paper to remove residual water, naturally drying, adding 300 μ L of absolute ethyl alcohol, and standing for 5-10min to fully dissolve the crystal violet. Finally, the OD of the 96-well plate was read by a microplate reader 540 Numerical values. Each strain was made in 3 replicates, each replicate was made in 3 replicates. The numerical calculation of the solid-liquid biofilm adopts Sample (OD540 nm) -Blank (OD540 nm)/Sample (OD620nm) -Blank (OD620 nm).
2. And (3) measuring the gas-liquid biofilm:
first, a single clone was picked and inoculated into a flask containing 25mL of 2216E medium and cultured overnight at 30 ℃. Then, the overnight-cultured broth was diluted to OD 600 Transfer to fresh 2216E medium (0.05), aspirate 4mL of diluted inoculum into a 10mL glass tube. The cells were kept standing in an incubator at 30 ℃ and observed, recorded and photographed several times a day (the test tube was not shaken when the observation was noticed).
3. Measurement of gas-solid biofilm:
first, a single clone was picked and inoculated into a flask containing 25mL of 2216E medium and cultured overnight at 30 ℃. Sucking 10 μ L of bacterial liquid to contain FeCl 3 The culture medium is statically cultured in an incubator at 30 ℃ on a plate of seawater LB culture medium, LB culture medium or other nutrient culture media, and the colony morphology is observed, recorded and photographed every day.
The gene dgc137 encoding the gene GIVal43097 can obviously enhance the biofilm formation of host vibrio. Meanwhile, the gene island is an important vector for gene horizontal transfer, generally has horizontal transfer capacity and can be transmitted among different species of bacteria in the same ecological niche, so that the establishment of a method for directly cutting the gene island from a genome can remove genes contained in the gene island and also eliminate the transmission capacity of the gene island. The research shows that the gene island coded excision AlpA can mediate the excision of the gene island (FIGS. 3A and B), and we use the method to obtain the gene island deletion mutant delta GIVal 43097. Subsequently, we compared the biofilm formation abilities of the genetic island deletion mutant Δ GIVal43097 and the wild strain, and the results showed that the deletion of GIVal43097 significantly reduced the host bacteria solid-liquid biofilm, gas-solid biofilm, and gas-liquid biofilm formation abilities (fig. 3C-E).
And fifthly, carrying out biomembrane phenotype detection on heterologous expression of biomembrane key genes on the gene island (dgc137, dgc139 and dgc140 are respectively expressed in pseudomonas aeruginosa PAO 1):
genes dgc137, dgc139 and dgc140 are expressed in Pseudomonas aeruginosa PAO1 and constructed by using pHERD20T vector (the construction method is shown in the literature: Li et al, Molecular Microbiology,2019,111(2), 495-. First, the coding regions of genes dgc137, dgc139 and dgc140 were amplified by PCR using primers (Table 2), the PCR fragment was ligated between the restriction sites of the vector NcoI and HindIII of pHERD20T, introduced into competent cells of Escherichia coli WM3064 by chemical transformation, and the recombinant plasmids pdgc137, pdgc139 and pdgc140 were verified by sequencing. WM3064 containing recombinant plasmids is used as donor bacteria, PAO1 is used as recipient bacteria to carry out a conjugal transfer experiment, the bacterial liquid is cleaned and resuspended by using a culture medium, the mixture is dripped on an LB plate containing DAP of 0.3mM after being mixed evenly, after being cultured for 6h at 37 ℃, lawn is picked by an inoculating loop and is streaked on the LB plate containing carbenicillin (100 mu g/mL), thereby obtaining recombinant bacteria PAO1/pdgc137, PAO1/pdgc139 and PAO1/pdgc140 of which the related genes on a gene island are expressed heterologously in pseudomonas aeruginosa. As a control, PAO1/pHERD20T was used which had been transferred into the empty vector pHERD 20T.
The correct recombinant strains were activated by overnight incubation at 37 ℃ and subsequently the overnight incubated broth was diluted to OD 600 When the sample was changed to 0.05, the sample was transferred to a fresh LB medium containing carbenicillin (100 μ g/mL) and 10mM arabinose, and 250 μ L of each diluted culture solution was put in a 96-well plate, and a sample to which only LB medium was added was used as a blank. Then placing 96-well plate in 37 deg.C constant temperature incubator for static culture (no shaking during culture), respectively culturing for 2 hr, and measuring OD with enzyme labeling instrument 620 The numerical value of (c). The culture solution was decanted, the 96-well plate was gently rinsed with tap water 5 times, the free cells were washed off, and 280. mu.L of a 0.1% crystal violet solution was added for staining. Standing at room temperature for 20min, pouring out the crystal violet solution, further gently washing the 96-well plate with clean tap water for 5 times, washing off free crystal violet, inverting the 96-well culture plate on water-absorbing filter paper to remove residual water, naturally air drying, adding 300 μ L of anhydrous ethanol, and standing for 5-10min to fully dissolve the crystal violet. Finally, the OD of the 96-well plate was read with a microplate reader 540 Numerical values. 3 replicates were made for each strain, 3 replicates for each. The numerical calculation of the solid-liquid biofilm was carried out by sampling (OD540 nm) -Blank (OD540 nm)/sampling (OD620nm) -Blank (OD620 nm).
The biofilm forming capability of the recombinant bacteria is detected by the method, and dgc137 shows that the biofilm forming capability of PAO1 is remarkably enhanced; dgc140 also enhanced biofilm-forming ability of PAO1, but was less potent than dgc 137; dgc139 had no effect on the biofilm-forming ability of PAO1 and was not different from the empty vector pHERD20T (FIG. 4).
Sequence listing
<110> Nanhai ocean institute of Chinese academy of sciences
<120> biomembrane gene island GIVal43097 and excision method thereof
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 21792
<212> DNA
<213> Vibrio corallinus (Vibrio algillyliticus SCSIO 43097)
<400> 1
tccatgtggt gggtaaatcg aactctgaat cttgtaatgt cttccaaaat ccaggtttaa 60
attttaattt gttgttttta tttggttttt aatttctcct tgtccaagga tgtctttagc 120
cgtacaatga aaactcgtct ttccccgtac cccacgccgt acccagagcc gtacccagaa 180
atacagaggt ttttcagtca tgatcaagcc agtcgataaa attagtacga atgccacgct 240
gaaagcattg aagccacaag gcaaggaata tttaattcca gataagaaaa tcgaagggtt 300
gaatattcgc gttcgaccaa cgggcacgat gacttggatc tttcgctttc aggctggtaa 360
caaacacgaa aaaatcacca tgggacggta tgttaagttg aaaccggaaa cggggatgac 420
acttgaacag gctcgaacag aagcggggcg ttaccgtagc tggctggaaa acaataaaaa 480
tccgaaacag gaactggcac gtgaacagcg cgagcaagag gaagcaaaaa cttttgatga 540
tgcttttgcc agttttgacg agaagcgttt gtccaagcag ctacgaggag aacaagcgag 600
ggcaacctat agccgggatg tcaaaccatt tcttggtcac atcaaattag aagagttgag 660
aattcatgat cttaataaag tatttgatgc aaaggttgat gagaatggac agcgaaaagc 720
gggtgcgatt aatgcatgcc atagaattat caatcaggtg atcaaccatg cgctagcttt 780
gaatatgatt ggtgcacacc ctgcaccaca tttgaaatcc aaggatgtcg gtggtggttc 840
taaggtcaca aaacgcaatt tgagcttttc agaattgaaa acattgctaa caagcttgcc 900
ttcttggcgt acagagccct caaacgtccg tctaatgcag tttttgctcg ggtgtgggca 960
acgtattagt gctgtgcttg aaatgcgttg gagtgaggta gatttgcaag agaaggtatg 1020
gttgttgcca gccagttcaa aagaacgtca caccaagagt caggagagcc gaaaagtacc 1080
attaagtgat tacctactga aacttattaa agagcagcgt gagaatgtac caagcaaatg 1140
gaaacttgtt tggccgcagc ttatggatga caaacttcaa gaacccgcag cagtacgtgc 1200
tctgatcaaa cgcaatttac cggaagattt tgagcgtttt tcgccacacg atctacgccg 1260
cacctttatc agccgttgta gcgaaatggg gctggatatc gtggcgattg aaaagacggt 1320
tggtcaccag ctaccaggta tgttgcgggt atataaccat cacgactacc ttgaagagca 1380
gttagtggta ctgcaagcat ggggagaaaa gttgcaagcg ttagatacaa gcaatgtcat 1440
tcctttagag tcgatgaagt tgcctaagca tttgtaaaat tcttagagat tattcttact 1500
agttaggggg gtgttactct ttatctgagc gaaatttaat cgtggctctt tgactatgtg 1560
ggcttcatga atggggaagt cttttggagg acgattgaga gaatacataa ctcgctgaga 1620
tttttcgtat gctcccttct cttgtccatc ggcagcatcc actatcatct ctccaactaa 1680
acgagcttag ggttaacctt catcaaaacg ttgactgtta gatagatcaa ataactactc 1740
caaaaagtcc ctcacattga cggtgcttta gtactattga gtgggatgtt taatacctct 1800
ttagtattgc taaaatcaat attttcaaat gtaatgcagt acaccaataa acataacaaa 1860
aaattatcat atacataaaa tattttgctg catgctggag gccataatgt atcttcaagt 1920
aggaaggttg ggagttaatc ttaatgatct tattgaatct cttgatcatc tcgagacata 1980
tgtgttcatc aaagatacgc aatccagata tatctatgca aataacctaa gcctgcagtt 2040
aatgagaatt gataagaaaa aactgggtca aataagagat tcggattttt taccagagga 2100
taccgttgag ttcataaagc atattgatgc taaggtcatc aagggagaaa cgactaggga 2160
agaggttttc attaatgatg caaatggtaa gcaacggatt tatcttgaga tgaaatcacc 2220
aatttatagc tccgaatcct ctaatgaggt tgtagctatc ttaggtattg cgactgatat 2280
tacaaagcaa aaggaactcg aaaagaaggc atgccagcaa gctcaaatgg atgaattaac 2340
taaagttctc aacaggcgtg gactcatcga aagcgtacaa caatacctaa aaaagaggat 2400
aagtgaaaac actttttctg cttttctatt tattgacttg aacgatttca aaaaaattaa 2460
tgatgatcat ggccatacag taggcgatca catattacgt gaagtaagtg aacgtatgaa 2520
aagtagtgtg agggcttccg gcctagtatc aaggtatggc ggagatgagt ttgtcgtatt 2580
tttagggagc gttgggagta gcaatagaga agcggaatac tacacggaag aggtgatgtc 2640
gagaattgag agtgcactcg ctggtccaat aaatatcggc aaaggtaagg tgcaggtagg 2700
tacgtcaata ggtaagtata ttattgaagg agcagacttt tccctagagt cagcgataac 2760
taaagccgat gagaatatgt actacgagaa aacgcgagta aagaagattt agactgaact 2820
aaagtgtcgc aactcatgct tgaccttaca aacccacagg ttagtacaac taggtcgtac 2880
tgcgaatgtg ctggtgtcgt aactcacaat gggacaaagc gatttgcaaa gagtatggta 2940
tctactcgaa agttttagta gtttgactga tgaactaaga tgccgtaggt gatttgagtt 3000
gtggtcagtc atatagagag aaaactagag aagttgctta aaaatgaacc tcacttgact 3060
agggctgaag cagttaagct actagcaaaa ttgaagcaga aaaaaacaaa aagcaaaagt 3120
aaacatcaag cactgaaaac cgtttcaggg ggagttgttt ctcctcgata gaacaagttg 3180
tctagcatca caccagtatt gagtaacgcg ctcaattaat gatgcttgtc gtcggcagtt 3240
cagcaatcct ccacagcatg ctgtttggga caaacgctcc ttcagttttt gggtctgcta 3300
gacaccgcaa tgaaatcaac tttattgtct tgcgaagtta tatttaattt ctcttttaat 3360
tcttcaacag gtattgggcg gcttagatag aaaccttggg cttgttcaca gcctaactct 3420
tcaagaattc gtaactggtg atcggtttct actccttccg caacgacttg aattcctaac 3480
ccttttgcaa tgtcgataat gcctgaagtg atcgctcttg aacgataatc aaccgcaata 3540
tctttgatga aacaacgatc tatcttgatt tcatcgacgt cgagtctatt gaaaattcca 3600
aatgaggtat aaccgacccc aaagtcatcg atagagaacg ttacaccaga ccttttcatt 3660
tttgttacta ggcttgcaca tttttctata tccttaagtg tggctgtctc tgtgatttca 3720
aggcataggt attttgaaag ttcagtgtct tgatttagct gatactcaat ttgatggata 3780
cccttagtgc tatttagctc agtcgctgaa atatttacag atacgctttg gatgacacgg 3840
cctaggagct gagcttcttt aagttgcttt gatgcttgct tgattactag cttcgttaaa 3900
gcgctactaa gattattttc ttctgccagc gtaacaaata ctgatggagg tatatctccg 3960
tattgagagt gggtccagcg agatagcact tcaactcccg ctattctctt gtcttttagg 4020
cgatattttg gttgaaagac tatctgtatt tgctcttctt gaatcgcatg acgcaactct 4080
ataatcatgc gttgtttttg gaaatcttct tcagcgagtt ttttgtcgtg gtatcggata 4140
gtattttttg ttttttttgc ctgagctaga gcatattttg ccgacgacat gagttgcttg 4200
acactctctc catcatacgg gtagaaggcc acaccaatag agcatgtcac atcaatttca 4260
tgattttttg catgttgatt aaactgcttt tgaacgcgag ctaagtgcag agctatttgg 4320
ttttcatcat gcattcgtac caaacaagca aacccatcag agtgtattcg tgatgagaga 4380
agaggaaaga ccgtatgaga gtcaatagat tgtgcgatat cctttagaaa ctgactactt 4440
ttcgtaaaac cgaggtgatc ggctatgggt ttaaagttat caatatcaag aagaaaaaga 4500
acgtagtgtt catcttcttt ggcactttgg attttttgtt ctaggtagcg aaaaaatacc 4560
aaagggctgt gtaaaccggt tacagagtca atgtcattcg cttgttcaag ttctcgattg 4620
ttctttttta ccagtcccca cagcaataaa gatgtgacca ctacaaataa cattcccttc 4680
agtgattgaa ccaaggtata gacttgtgta ttgctcgata ggagttctac tgctttatct 4740
gagaaccaaa cccatagcga cgcaaacaca aagtaagtaa aaacgaactt agtggaggat 4800
tttatatctc ttttcatact gaccacagta ttatttgtgt actgcccatg agtaagttta 4860
tacttaaata agtaaattat cattaaattg catgtcaatc tagaggcaca tcactaaagt 4920
gtttaaaatg ttacatcgag catcaatcac agactgttag ggctattctg gcgttttaat 4980
gtatgttggt tagtcacttc ttggagttac tctctatggg gttttgctca agataactct 5040
aagtaaggag tgatgtttca tacagagtat tcaaaggtct gattaagtct ttgagttagt 5100
atagatctgt gagtggcaat gtcttttata tctaatgaaa aaatggatga tttaacttat 5160
ggagtatatg gaggaaatgt aacagatgag ggataagtta aatctgagaa agttaattct 5220
gtgcctgagt gtgttcagtg tactagtcac tcttcttaat acttttcact ccatatatag 5280
agttcagcat gagctgctag ttaacaatac catagagtcc aaccgtgtat atgccgttaa 5340
aatggcggaa ataacggata cttttattga ttatgcttta tcccaactag agtacagcgc 5400
accgataatc agccgtagaa tgcttgagcc gcttgtattg cagcaagagg caaatcgatt 5460
gcgaactcaa accgactctt tcaactctgt cgtaattgtt aatgcggacg gcgtcatcat 5520
atcggtttca ccagaaacta ttgaagtgaa aggtgttcaa ttaactgaag aaagcgcgtt 5580
acagtctcta aatgcgaaaa ctccacttat cacgaatcca tttgtatccc ctgctggcaa 5640
ctatttgaca agcatgtcgt atcctatctt ttctgaaaac ggcgattact taggctatgt 5700
tgcgggaacc atctacctcg atcaaaaaaa tatattaagg acaattcttg ggcagcatag 5760
ttacaaagat gggtcatatt tgtatgttgt cgataagcat cagacgttga tttatcaccc 5820
tgatccgcaa cgaattggag aagttattac taataacgaa gcaataagag cggtaagtcg 5880
tggtgaggaa gggggaaaag ctatcgttaa ctcccatagc gttggcatgc tctctggata 5940
cgcgcccgta aaacatgctg gctggggggt tattgctgag aagccagaag agcgcgtttt 6000
gtctatgctt gacgatcaaa tgtggcatat gtttatagag tcactcccag ttagtgttct 6060
tatatttttg attatttggg tttcttcgat ttttatatcg aaacctttat ggcaattagc 6120
cagtgtagtc aaaagttttg aaagccataa ctctaccgag caagacttaa atgaagtgaa 6180
gccttggtat tttgaagcgt catacttgaa acgttcattt ctcagcacgt tcaatattgt 6240
atccagcact attgatcagc tgcacctaga tactttaact gatcccatga ctgggctact 6300
gaaccgcaga ggtcaaggta aggcgattga taccttgcga gcacaaaaaa ctcccttttc 6360
tgtgctagct ttggatcttg attactttaa aaaagtgaat gatagctttg gtcatgatgt 6420
cggcgatgat ttattagtca gtgtggcaag tatgatcaag gctcaggcac gagaagttga 6480
tattgtttgc cgctctggtg gcgaagagtt tatcgttttc ttagtcaaaa cggacataca 6540
tcaggctaaa ctcgttgccg agagaattcg taaatatatt gcattaaaca agtttgatgc 6600
agtagggcat gttacgattt ctatcggagt gtctcattgg tcagcagaag atgagccgat 6660
tagcgcgact cttaaacgtg ccgatgatgc tctttatcaa gctaaacata atggtaggaa 6720
tcgcgccgaa atcgctctct tcaagtgaga ggcctgaaat taatgatata gccccattat 6780
gcgcagtgct taagtattag gaaggtcatt gctccttcct aatacctgat ttcaagtatt 6840
ttgaagaaca gaagtcgggg cgaattagtt ttgataggtg gctagaggta gttatttcac 6900
gagacttctg cttcgtttct ttaccatctg ccctcagcat cgtcagccga gtgatatgtt 6960
gagttattcc cttcaaattt cagccgacca aaactttcac ataatacatc aagagtgatg 7020
tcgctttcta agatggtttc tacaggtact gcgagagttt catcgtctga gaaatcgtta 7080
atatccagtt gatagcgctc aaagctgtgt tgttcttcgt cagttaaaga tgacttaagt 7140
ttgtgctcaa atactcgacc atataaccag catttgatat ttcctagtga aaattcaata 7200
agcggtgctt caccataaat cccatccatt cgattgttgg cttttagcat agagtgaacc 7260
gttaatatta ttgccacact gtatgatctt cctgcaacct gtagttcagg acgcgcaagc 7320
tcacaccagt gatccgaaga agatagctcg tacagtttat tgcttctaat cgttgctgcg 7380
tcaatgacct cttcgcgtaa gtagggatga gaatgagccg ttccaatgta ttgataatcc 7440
tcgccgaaca ctttagcgat atcttttttt attgaaagag agagtgggtt ccattcaact 7500
gaagagcgtt ttcttttagc tgatgtttca acagaaacat gatttatcgt acatttaaat 7560
gggtgggctt tattcgcata tccccaaagg tgggccgctg tctctatgga gactgatttt 7620
ctgccctcat gctttatcgc ataagcctct aaaccagcca tgattagctc aaatatcgca 7680
cttttactga ctgaaattgt cgcggtcatt ttctcttggt tcctattatt gacggttatt 7740
ttcgtagttt gatgagaggt aagacacaag agttattggg cgaactctac atgttctttc 7800
agtttgtttt tatagcgctc ataaagcgaa tcccatacat cttcacttac catgactagt 7860
ggtaagtatt cttcaaaaat gacaccactg tcgtcagggt aggcaagctc ggtataagca 7920
taacgtgggc catctacata aagcgcttcc caacattcga tgcattcatc tttaaaccac 7980
tcttttgtga ttggctcagg gccgttaccc agaagatgaa ttaagttctt agaatcgaag 8040
aaatgatgtt cttcactttt gatatcaaac aggtagctag aaaatagagt gatggctctt 8100
ctgcagaaat accataatcg caacattgaa actgcgcagg tgattgaaga gctgatacag 8160
tgggcgaaag agatgcaagc tgacgctgag atgatggaaa aactggggct ttccactgat 8220
gaaattgcgt tttaccgtgc attggtcacc aacgaggcat ctgtgcgcac cttaggcgat 8280
gacaacttgc gccaactcgc tattgaactc acgcaccaac tgcgtaaatc ggctactgta 8340
tattggcaga aacgagaaag cgtgcgtgct cggatgcgca accttgtacg ccgtttattg 8400
cgtcgctaga aatatccacc tgatgccgca gaagaggcaa ttaagctggt tctggatcaa 8460
gctgaagtgc tggctgacgg gtggtatgcg gcatgattaa atgaaaggca aggtctgata 8520
gccttgcctt tctattagtg ctgacattgg tcctgtctta tcatcccact ttctgctgaa 8580
tattatttaa agtgtgtttg tatttagaga atgatccctg tagttttctt ttcctcttta 8640
ggcttaacga cttttggctt cgcatgctct gtatgctttc gttttgactt cgtataagcg 8700
gacttacgtg caatactatg attttcgatt tctgcaatat ttccttttac tacttttgca 8760
taggcaaact taggcaatac tttggtcact tcaatggtcg caactttgat ttcatcgtgg 8820
cctaaactct cttttgtcac aggatcgata aatttttcac ccaaattgaa gacatcaaag 8880
tattgtcctt gcttaactgt attgccgccc gagttcaaaa ctaaagagcc attatcgcca 8940
actaaaacca ctaacggata aatgttatct tttagttggt taaatatttt tttcgaagca 9000
atatcaacca gaagattcaa attgtttcta cttgaagtgg ttggaatagt tgctgaccat 9060
ttcacttgat tattgacaac atcgagaatt tgaaatttta ccaaaacttt agagctatag 9120
taggttttca catctttaat gctttcccct gtgagctcta cggtacgtga gttatcgacg 9180
acactttcgt tagtgttagc agtaacaacc tgaccagtta caaaatactg taacgttggg 9240
tcgagtttgt catatagtac tttgaacttt cggtcttgca ccaaaagttc ttcgactttt 9300
ttgccgataa tagtgccttt tgggccagaa aaactaccaa tagcgattgt tcttcttttg 9360
gcattttgat cttttatttt ctctctaggg tcaacctcaa ccttaacctc taactttacc 9420
tcacagccat aacttgaaca cttttcatgt agcactttgt acttaacgtt ccctcgcgag 9480
tatgttgcag tgccatctgc catagagtcg tttaactgtt ttgtctttcc gtcgttaatt 9540
gatgtaagga gtgaagtgcg ggcactttca atagatacac ctgagacctg ttctaccgca 9600
cgccttaaac tgacatcaat agcctgatct aatgtttctc cttgcccatt tgttataact 9660
ttctcataac ttgcagcact agataaacat gagaataagc ttgctgcgca aagtagtata 9720
agccttttat tcatgttaaa aatccgccac atcaaacata tcttccgatt cagccgagtt 9780
aatgttatca gagagagttt ctgctcccag ggcttcttgc tccagctttt cagcactcat 9840
tccacttgcc atattttttg cactcacaat cttcttagga tgccaaacga gtaccgtccc 9900
caccatttca tgccccatca cagggtgctt acgacgccat tcaaactcag tacttacacc 9960
agtcatattt tgtacacttg atgtcattga agcactttgt tgaacggatt tgattaattc 10020
attagttaag cctggggact ttttgcgaac agcacctgtt atcaaatcga actgctcagc 10080
tttactgaca cggttttctt ctgaagttga ctcttggaaa tcgccattca gattataggt 10140
ttgtgccaag ctcgcccaag cgttgttcgt tgcaaagctc ttagctgctt tacgttcaat 10200
ttttctttcc gttggtgagg atgtataagt aacgcctgct tgaccgtatg aaatcaacat 10260
gggatagccg tcggagtcat agctaacttg agttcctacc ttcagatata gactgtcttt 10320
ttggttatag aacatatcgt agatagatgt cattttaggg ttagctttat ctttctgtgg 10380
tgtaatttga ccgccggaat cgatcattgc acgaacttga tctcgtttat ttgcagacaa 10440
agcaagaaca accccaactg tcccttgacc agaatctctg atttcttcat aggttttgat 10500
aatcatcatt ccagccaaat caccgtatga agaccttata gtctgcttga tcactgactc 10560
tttaaataga tcgcgcttga tcgatggtgg ggctgcttca aactcttttg gatcaatccc 10620
catttcttgt aattctgcat caagtttacc ttctagcacc gcaaccactt tatctaagaa 10680
gctcgccatc tgagagtcac tcttaaaatc ctcttcagtc ggggtcggca agccgctatt 10740
ttttgtcatg gagtaaagca tgttattttc gacactggta tttagtgttt gtaagtattc 10800
tttttgcgcc tctaatacgg ccttatctaa tgctgctact cgaaactctg cccatcgagg 10860
gtcattgcga tctgccatga tttcagcaga accagaataa ataaatacac tatgttgctt 10920
accctgttta tataaggtgc gttttacgtt tgacacataa gcatcaagct tttcatcaat 10980
ggcatcagtg gtatcaacat cgttttgaac ttggaccaca tctttatcgg tttgtttgcc 11040
cgcagcctct tctgttattt ctgctaccgt tgttgtatct actaaattac cttcttgaga 11100
tgcatgtgtt ggtaatgaca agccagcgat taccattgct gtaaataatt ggtttaattt 11160
catttttaat cacctaaccc tctaactaaa agtaatgggc agctttcact gcccatcatt 11220
tgacgctacc taccagctca cacttgagcc atccgctacc ttgccgacta ctcgctctcc 11280
ttcccaatac gctaaaccat tttctatatt ggttagtgac atttggaaat agtactcaat 11340
tcgtgtatct ccgttatcta gagttgagtc tcgctgaagg attttgcctg ataggctaaa 11400
gtctggggct agtacttggt tatctccttt gacacttgcc tgtttgacca ttttggaatt 11460
ttttaaatca cgcatttttt ttgtggcatc gtcctcaccg aatgcagttg ttactaagaa 11520
ttttcctgat tgaagtaact ttactcttaa agatttggtt agctgatcag tgtctaagcg 11580
ctgcatagtg tcattctcaa tgccacttac ataaataatg tatcgaccac caacatctgc 11640
ttgagggtga gtcatcaatt tattagaaat aatgtcatca gccatttcat ttgctgcttt 11700
cgagaaatca gcgtaagaga gggctgctac cacatttgtc gttgtatcag cagcatcaat 11760
ataagatgtg gttgttttac aaccaaccaa gctcatcgca gctacaacag ctgcaattgt 11820
caattttttc atgtttatcc ttaaatattt acgactttta cggatggttc tattaatgga 11880
gagaccgctt tcacgtagat gatgtgtttg ttagattctg tgctaagctc aactggaata 11940
gtgaaagatc ctgcctttat ttcaactgta ttgtgtttgg ctttgattcg agttgcttga 12000
tattcactcg gtagggctga gaaagttcga atatcagcac cagtagtcac catttgtaaa 12060
atggctaatg catcaccaag taaagcgttt tcatctttaa cttgtttttg agcgatggtt 12120
tttaatgtta ctcgggtgat ttcacgagct aaaatatatg gaaactcctg atcgaattcg 12180
gcactaatta tcttatccat atctgcaata gtgctggtct ttgaaccatt aattgtaatg 12240
ctgtcaaatg ttgtaccgcg ttttttcaag gtaggaattg cgataccagc ataagataca 12300
ttgttagaca gtaagaaaat tggcagatca attcgacgct cttctttcac tggcgatttg 12360
ccattttcaa aaatcaccca aacttgatct tttagcctag attggcttgg atttttaacc 12420
atactacgtg ccaattgata gtccgctttg gcagcaggtg aaccagtaag agagtgtaca 12480
cgcttgaaag agttagcagc tttttcaaag tctgacttag atttacctgt gatgagtaaa 12540
tgaagaccgt aagagtatgt agtaaaaggg tttacgtagc cttcataagg tttccattgg 12600
ccttgctcaa tacctgcttt ttttagtgta ttttgtgtca aatccgattc tatggtctgc 12660
tttaccaaag cgcttgactc accagcttca gactccagtt cttcgcttcg ctccttaatg 12720
atatctgcaa aatgttgagc tgctctacgc tgtcgctctt ctgctctatt tagttcaacg 12780
cgagcatttt gatagtcatg aagtgatata aaattccatg ctttaatggt atttgtcatg 12840
atgccgtcgt aatgcgcttg ttcgtaagcc aacatggcgt catttccaac cattgaacca 12900
ataagctcaa ctccctcaga agcagtactt tccgtatctt cttctttcat cattatttct 12960
gtttcatcaa gcagcttggt ggataattcg tattcacctg catagttcaa gcttgcacca 13020
gcttgcaatg tccatagtag gtcgcttgtt tcacctgaat cgttatcgta gccagcatgt 13080
tctaaggcta cttgagatgc tcccgaaaag tcaccagaat caagctttga attgaagcta 13140
tcgaagtcgt ttctctgcat catacttgta cagcctgaca acataaccat actgatcgca 13200
ctgctaatta gttttatatt cattgacttt attgttatct aaatgattga atttttgaac 13260
tagaatcacc ttatactcac aaatagcact gcaatcaagc tcttaatgtg tggttaatta 13320
acacttttag tattatccga ttattgaatg ctatttattt gatttatgtc attaggctca 13380
catgcgtctc ttgtctttga aagttgagtg tatctactaa acgtaagcga atatctattg 13440
ttatcagtag ggaagctctt cttatctcaa ttggaccatt tcattatgtg tagtagtaat 13500
gaaaggaatt tcagatagat attatcttcg tgtatatccc aacggtttca tttttaggag 13560
ctttttatgc acgaaaacaa ctactatttt gatggtcctg tcacagcaaa taaggtgctc 13620
gacgcggctg ctgaaatcct tgctacacgg gctctccgag gcgatcagta ttgcaatccc 13680
gaagcaacaa aaacctattt atcttgcaaa ttaaaacacc atgaaagaga ggtgtttgcg 13740
gtgatgtttc tagataatca gcatcgtctt attgcttttg aaaagctctt ctttggcaca 13800
atagattcgg caagtgtcta tcccagagaa gtcctcaaag cggctttaaa agtcaatgcc 13860
gccgcactca tatttgctca caatcaccct tctggtgatg ccacaccttc ccaagccgat 13920
aaacaaatta cgcaaaggct caaagaggct ttagcgctgg tggacattcg agttcttgat 13980
catatcgtgg ttggcgatag tgccatctct tttgcagaga gggggctact atgatccaga 14040
aaacatcggg tgaactggaa ttgcaggata gctttcatcg agcattgctt ttggtaatcc 14100
aacgttattc gattcctcca caagctcaac gtatggtcct gaactgtcga caaagacgct 14160
attaccagac agggcagggg cttcatccca ttgaaattca atttcgtcgt acatcggtca 14220
gtgaagattg gcaggttgtt tgcttagcga gttttcttat tcggaaaata aaccgagtga 14280
gatggagcct gaactctact ttcatctctt caatctttgg tgttatcaac cagatagcgg 14340
tgctgcaagt cttgcagacc cgcaagtgaa agcgctgtta gatacttggc tgaacgcgct 14400
ctctcgacac cttactcagt ctctctttga tgacattcag ttatcgatga ttcaaacctt 14460
cgatgaacac cattcatgat cacattttaa cctcggtcac ttttaggaga tctaaccatg 14520
tctatactgc attttacgcc gtcagctctt gctgtttcta ataagctttt gacgttatta 14580
aaccaacatt gtcatgcctc gatgaaatca acacagtcca ccagccatgc cctctctatc 14640
cattttcgag acaaaagcta tagcgcggaa gaggggggat atcatccggt tgagattggc 14700
ctcaacattg tgaatggtaa aacggttgat attctctaca ttaccgattt tgcgtatatg 14760
gggaactatt atccggagct agagcgatgc attgattttg attttggcaa tcaagtcgct 14820
tttaccgtcg ccactggatg gcaaagcatt cgctctccag gtatcgatga gctgtatcaa 14880
atgtgggagc aaaactttct tcagtacgtc gaatgggagt gttacgacga cattcagatt 14940
tctcattaac ttttatcaat ctagctaagc tttaacctgc tgctttatat ctccaccaaa 15000
gaatcaatca aacttctgat tgtggtaatc ccaactgttc atctcgctct gtcactcttt 15060
ctaatatcca gtcttggact tcgctttcta cccaagccac gctgcgaaag cccagtgata 15120
ccgatttagg gaacttaccc tcagccatga gcttgtacat gtacgcacgg ctcaaacctg 15180
tattatccag cacttctttt agtcgaatta gtctcatttt tctgtcctca tgatttgttc 15240
gtcataagga ggtagctagt tgtaattttt ccggacgcta actaaggagc gcctatgtcc 15300
gaacagcacg atcttttcac tacgcttgaa agcgagatac gccaggcatc cctcaatgaa 15360
cgtactcgca ccaagttact cgataacctc aaacaaatga gagccaccga gctcaacatt 15420
ctcattacag gagccaccgg agcaggaaaa agctcaacga ttaacgcact ctttgacatg 15480
agtgttgcag aggtgggaat cagttgtgag ccgcacactc agggtgttac gcaatatcgt 15540
ctgaacaatc ttattctttg ggatagtcct ggtctggggg atggtatcga agaagataag 15600
cgccatgccc gcttattgaa aaatacgctg agagcgagag atgagcagaa ccgtttcgtg 15660
attgacttgg tacttgtgat tcttgatggt agctcacgcg atttaggtac acctatcacc 15720
ttgattagcg atgtgcttat tccggtatta ggcgaagacg cacagcaccg tttaatcatc 15780
gccattaatc aagccgataa tgcgttaaaa ggaaatcaag cctgggacta cgaaagcaat 15840
acaccgacac ccgcatcaaa agcttatctt gaaaccatgg tgcgctcggt tcatcgacgc 15900
gtattgcgtg caacaggggt ttatctaaag cccgtctact acgttgcggg gcactgtgat 15960
ggattggcca agcaacggcc ctataacctt tccaagttgc tgtatttgat tgttgaacgt 16020
ttaccaaaaa ataaacggct cttactggcg aatcgcacgc tttcccctcg acatgagaat 16080
tggaaagaca acgatgccag tgattacaac aaaaaaacca gtcttagttt gtgggaggca 16140
atcttcgaca ctacgactga aggtgcgcaa tacggcgaag aaataggaag tgtgtttggc 16200
actacgggca agcacctagg caaaattata ggcggtgcgc taggggcatg cttaggcggt 16260
ttacgctatc tctttggctg gtagataagc gccgctacgg ttacatctct caaagccaat 16320
ctctcttcga cataagttgt cgcaaccacc ttttaatatc aactcattga ataatatata 16380
aaggatatct ctcatgaaac ctattgtaat taccgcagca ctaacactgc tcatgacctt 16440
tactgcgtct gctgagggct acaaagtcga atacaaagac atcaacaccc gatggggacc 16500
aaagacgaaa atatatgtaa cgtccctctt tgactactcg actgtcttca ggatcgaagt 16560
taaccgaggt aactgtgaag tcgctagacc agaaacacca aagattaccg tcaacaagaa 16620
taagtacagt caatctgaag agttactcaa aaacatgagc aaccctgatt acaaaaagcc 16680
ctccagtaac aacaagtcta gtggtgtgaa atggcttcct tattccgaag tggatttgaa 16740
gtacggagag tctactggtt atgtcactac aatgccctgt agagtcctac aaattgacat 16800
tcactctagt gaagggagtt accgctttaa tgcggattaa acaactgaaa ggccacaagg 16860
gcctttcttt tttgtcttct cacttacaac tgctgtggaa gttttttcct ttatccccaa 16920
aaggcttact ttcaagtttt gctaaatagc tgacacggta aaaagcctga ttgtattggt 16980
tgtaaaaagt ctccgtatct agtcgcttat taatttcata agtaccgtta ttagggaaaa 17040
aaatcgcact acttgcttgc ccgaccgtaa taccgattgc acttgcccaa gccttagcaa 17100
ccatccctga aacgtattca cccgtaagat catcataagg ccctattcct tgaaaaacat 17160
caccattgag caatatggct acgtgatagt gaggatacac tgaagtgact atctctctac 17220
accagataaa tcgaggttga gagtggcggt tgtgcttctt acgttttaga taagcacaca 17280
tgatagcttt gaaggactct tggaacttag taatctgttt gccagttacc ccgttaaccg 17340
gataaccatc cgggtaatgt aaatcaaatc gcattagccg tgttcgaggg tattggctta 17400
acgcataatc gaaagtcttc ttgatttttc gtaagtactt tggttcaagg gcccctttgt 17460
tggtattgaa actcaatggc ataccgttga tgtgtaactt acatgcattg ttgatgttat 17520
tcatttctat cattcctatt ggttagtgtt ctcaataggt agataggttg ttgtaattaa 17580
ttagataagg ttcatataaa tactattatt accgacagtt tttcactccc ttcctccagc 17640
cacgcatctt tgctcgacaa ggcgtcctgt agcttcaaaa cttgcaaaag ttactctgat 17700
aaaaagttag gccccccgtt tgagaaggag tctctgattt ttctcattga taccaatcgc 17760
aaattgcttt ccatcaacaa catcaagggc tttgattgta cgtgctaggt ccaatgcacg 17820
ataagcaaga aattcgatta acttattgac tttctctttc tcaagcttaa gtgttgacca 17880
ggcaaaatgt tcacgtataa cacgctcata ccactcaatg tctgtacaaa cctttccttc 17940
gacattgatg aacttaatga tttcactttc aataaagtaa tctatgtgtt ctgcaaactc 18000
tttattgcat tttacgtcag caactttttg aaataataaa ggtattgtga ggttgtaaac 18060
gggattcagc gcaccagacg attttaaatg ggcgataaag ctgtagtagc ttttttgatc 18120
gtacatggat aagttcagaa aaattattga ctttcttttc tttagaacag agtggctgag 18180
acctttgata tatcccctga tataaccaag tcttctaagc ttgctgagca ttgcttgagc 18240
tttacgttca gtgcatccca taaatctgca taaatctcta aggcttatac tatcaacaat 18300
cccagattcc gtagcctcac ttaaaagatg ggtaagcatt aagcgatttg acagcgtcaa 18360
ctctttagca tgctgattac tataccaaag atgattcatc cacctcctca tatagatggg 18420
gcgttgttca aactgactac tcaactcatc aaaatcaatg cctgtaagtt gatagcgtgt 18480
gactggtctt cctcgttttc taggtacttc tttctcaggt atcaagagaa taacttttgc 18540
ctctatcaat aagcgtagac agcgccttat aaggcgttct gaggcttggt attttcgggc 18600
catatataga acaggttttc tgtaaaaatt gtctgattcg gcatccaaat acataagcag 18660
cagtagcatt ctagcttcag cgtttagttt gtcattctct tggaaagtcc agtttacaat 18720
cataaaatca catttatatt tatttatagg gcgttttggt atgtatatta cttggttttt 18780
ctttctatgt ccttggacta cgtccaaaga catagttata gtgtgaagga tgccaactat 18840
attaaaaacg ctggaagcta gagtgatatg agtgagaaaa aaatacgtcc attagaaggt 18900
tttagtttca acaatgaatc tcatgtgaaa tggttaaata cgtatctagc aaaagccaaa 18960
actaatccaa ttgtcgaaaa gcattacttt gggttatttc agttatcagc atcacctaaa 19020
aaacgacttc aaaatttttt tatagattgt aaaaattcag ctgatggtag agagatctgg 19080
ttacttatgc atggagcttg ggggaaaagg tcgagaagag aaaagcaaaa gcggaagggg 19140
aaaaaacagt ataattttga actcacgata gaatttggtc aaaatcttca agctttagcc 19200
acaaagaggg gacagactca gcagaaggtt cttgaagagc ttgtaaatgg ttcattaaca 19260
tcaatgctcg aagttcgaaa gttacaagaa actgatagaa ttctatcact agaagctaca 19320
gccaatacca cgttagaaaa ggagttaggc tctgctcgaa aaaaaatttt agagttggag 19380
tcaaaaattg cgactcttaa aaaagagaac cttcacaagg cctctgaaag cgacaatgtt 19440
tctactaacc atcatgcaga tgaaccgtta caactgactc tagaaagaaa aggtcgttca 19500
attattcaca tgcagccaaa ggacagtgac caagactaag catctttaca ctataaatac 19560
cactagtaga gctggtggct aggcgcttgg tgtgagtatt aacatgaagg agatcgggtt 19620
attgagtgat cagcttgggt gaaaatacac acttggtgtg cttaatgtaa ggaaattgtc 19680
tgcttactgc atgtgagcat ataacgcgct gtcagcgctg actatccaca tgaacatgtt 19740
gcttattttt gcgaactagc atctaacagt taataaaatc actgtcttta aatacagcga 19800
tggtttacac tttttgcgtt atatcaaccg gattatgtaa actatttgga cgaaattgga 19860
ataaaaaatg aaagcatatc acacatacag tgctgtagac gttgcatgga gcttgctcaa 19920
gcatgcgaaa gagcaaggta aatgcttctc caatttgcag ctacaaaaac ttacctatgt 19980
ttgtcatggt ttatcattgg cacacttcca gcgtcctctc gtcgtagatg atgtatttgc 20040
ttggaagttt ggtccagtgg tgccatctgt ttactttcgc tttaaatctt acggtagtag 20100
tgtgatcact gaacaatgtg atgtagcact agaccaagaa agtgagtcta ttgttaaaga 20160
tgtagtctct aagctgggcc atttgacggg gcctcaactt gtagatttaa ctcaccgcga 20220
aggaagtcca tggcatcagg tatgggatgg cacacaccaa aaagtgattc cggaccattt 20280
gattcaagcc cattacactc aaatcaaaca atccggacga acagctagcc tgtgagtaac 20340
aaagaaaata gtgtcgtcag tttttacatt gacgacactc ccacagctga acaagcttca 20400
aaaaccttcc aagacgacta cgaactggac tttcaagatt ttatagaaag aacggtaaat 20460
gaaagtgctg ctgaagactt ctcgtactca aataatggag taaagaaagc tggaagacgg 20520
cttcgcaaga gagagggcga cctcaagtca gctactgcta caatccaaca gtttcgagcc 20580
gcacacgaaa agccattaaa cactatcgca tatcttgttg gtcgctgttg ccgtgagctg 20640
ggtatagatg ttaaaccagt tacacggtta aagcgcttag aaacaatcgt agataagttg 20700
cagcgtaaat ctcttgatgg tgaaacggca aatgctactt gtgtaaccaa tatgaatgat 20760
attggcggct gcagggcgat ttttccggat ttaatttcat tggagaaggt gaaatctcaa 20820
ctgcaactta cagttgagaa ggtaggccga gttagaatta aagatattga tgactatatt 20880
actagtccta aacctaatga ttgtggttac cgaagcttgc atgtgattta tcgctatgac 20940
catgctagcg gtaaaagttt taacattgag gctcagctac gtactcgact tcaacatctt 21000
tgggctacta cagtggaaat tgtcgacatc ctagaaggta ccaagattaa gactcactct 21060
cacagttcaa atgaaggcaa gagcagttta caggttcagt gggaagaatt gctttcgata 21120
atgagccaat gcattgctga tgctgaaggg gctatagagt taagtgatat cgataaagcc 21180
gatttttcaa agcgtttggt cgtcttggac cgcgaaatca atgcgctaaa tcggttgagt 21240
agttttaaaa ttttatctga aaaggttaat tcttactgtg atagttccat tgagcacgta 21300
ttgctagtta ttaacgaaac ttcacgagaa ttgatcttta gtgaagagtt tgaaaattac 21360
agccaagcaa tttcagttta taacgcagct gagaaagtca ctcgtagcta ctcacgagca 21420
acctcgagac tcaataccct tctcatatcc acaaaaaata tgggccaact ttcggaagcc 21480
taccctaact atctaggcga ttgtgcctca ttcatcactc tgcttgaaga cacaatgctg 21540
tctggtgaaa gttaaataca aacctttctt gttgttattg acccttgtat ctaatcctgc 21600
ttgttaaaac gtgcccaatc tgtcatcgaa tttggtatgt gtaaaatatg gcttcctgtg 21660
atggcttgag ggttagactt tattgtcccc gtaccccaag ccgtacccag ggtgtttttt 21720
gctaaagata aaagccgttc atgtccttat tttatgcgct ctagaagcac tccagactcc 21780
atatggtggg ta 21792

Claims (2)

1. The application of the guanylate cyclase gene in promoting the formation of bacterial biofilms is characterized in that the nucleotide sequence of the guanylate cyclase gene is shown as 1907-2812-bit base of SEQ ID NO.1 or is shown as 5342-6748-bit base of SEQ ID NO. 1.
2. Knockout of biomembrane gene island GIVal43097 todgc137Use of genes for reducing biofilm synthesis, saiddgc137The nucleotide sequence of the gene is shown as 1907-2812 base of SEQ ID NO. 1.
CN202010929895.2A 2020-09-07 2020-09-07 Biomembrane gene island GIVal43097 and excision method thereof Active CN112143741B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010929895.2A CN112143741B (en) 2020-09-07 2020-09-07 Biomembrane gene island GIVal43097 and excision method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010929895.2A CN112143741B (en) 2020-09-07 2020-09-07 Biomembrane gene island GIVal43097 and excision method thereof

Publications (2)

Publication Number Publication Date
CN112143741A CN112143741A (en) 2020-12-29
CN112143741B true CN112143741B (en) 2022-09-20

Family

ID=73891088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010929895.2A Active CN112143741B (en) 2020-09-07 2020-09-07 Biomembrane gene island GIVal43097 and excision method thereof

Country Status (1)

Country Link
CN (1) CN112143741B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200763A (en) * 1995-09-22 1998-12-02 马普科技促进协会 New adhesion from helicobactor pylori
CN1246867A (en) * 1996-10-11 2000-03-08 马普科技促进协会 Helicobacter pylori live vaccine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200763A (en) * 1995-09-22 1998-12-02 马普科技促进协会 New adhesion from helicobactor pylori
CN1246867A (en) * 1996-10-11 2000-03-08 马普科技促进协会 Helicobacter pylori live vaccine

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
NCBI.Reference Sequence: WP_025593100.1.《NCBI》.2018, *
NCBI.Reference Sequence: WP_025593645.1.《NCBI》.2017, *
NCBI.Reference Sequence: WP_140279175.1.《NCBI》.2019, *
Reference Sequence: WP_025593100.1;NCBI;《NCBI》;20180916;第1页 *
Reference Sequence: WP_025593645.1;NCBI;《NCBI》;20170926;第1页 *
Reference Sequence: WP_140279175.1;NCBI;《NCBI》;20190630;第1页 *
幽门螺杆菌黏附素及其致病作用的研究进展;黄秋月等;《胃肠病学和肝病学杂志》;20191231;1.1.4节 *
鞭毛介导的运动性与细菌生物膜的相互关系;丁莉莎;《微生物学报》;20090430;418页右栏第2段 *

Also Published As

Publication number Publication date
CN112143741A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
Nataro et al. Identification and cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella strains
Xiang et al. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin
Lavie et al. PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum
Darfeuille-Michaud et al. R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections
Duguid et al. Adhesive properties of Enterobacteriaceae
Thomson et al. The rap and hor proteins of Erwinia, Serratia and Yersinia: a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens
JPH07500010A (en) Helicobacter pylori genes necessary for the regulation and maturation of urease and their uses
Furmanek-Blaszk Phenotypic and molecular characteristics of an Aeromonas hydrophila strain isolated from the River Nile
Tamura et al. Role of phaseolotoxin production by Pseudomonas syringae pv. actinidiae in the formation of halo lesions of kiwifruit canker disease
CN111793591B (en) Salmonella mutant strain capable of efficiently stimulating immune response and construction method and application thereof
JPH08509873A (en) Immune composition against Helicobacter infection, polypeptide used in the composition and nucleic acid sequence encoding the polypeptide
CN111788304A (en) Genetically engineered phage
Hu et al. Morganella morganii urease: purification, characterization, and isolation of gene sequences
CN110184241A (en) Vibrio alginolyticus bacteriophage resistant to high temperature and combinations thereof, kit and application
CN116333957A (en) Recombinant bacillus for displaying streptococcus suis prophage lyase, construction method and application thereof
US20220056457A1 (en) Cis conjugative plasmid system
KR101554762B1 (en) Method and gene for imparting or enhancing nonspecific adherence and/or aggregability to microorganism
Penaloza-Vazquez et al. AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae
Jeong et al. An HrpB‐dependent but type III‐independent extracellular aspartic protease is a virulence factor of Ralstonia solanacearum
de la Cruz et al. Function of the Ti-plasmid Vir proteins: T-complex formation and transfer to the plant cell
CN110452895B (en) Lysozyme from bacteriophage and gene and application thereof
CN112143741B (en) Biomembrane gene island GIVal43097 and excision method thereof
JP2004512817A (en) B2 / D + A-type polynucleotides isolated from Escherichia coli and biological uses of these polynucleotides and their polypeptides
CN112011520B (en) Temperate phage VneM1 for regulating coral flora and application thereof
AU668075B2 (en) Production of outer membrane (OM) proteins in gram-positive bacteria and recovery of protective epitopes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant