CN112132834A - 一种心室图像分割方法、系统、装置及存储介质 - Google Patents
一种心室图像分割方法、系统、装置及存储介质 Download PDFInfo
- Publication number
- CN112132834A CN112132834A CN202010986714.XA CN202010986714A CN112132834A CN 112132834 A CN112132834 A CN 112132834A CN 202010986714 A CN202010986714 A CN 202010986714A CN 112132834 A CN112132834 A CN 112132834A
- Authority
- CN
- China
- Prior art keywords
- image
- ventricular
- feature
- level
- feature extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002861 ventricular Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000003709 image segmentation Methods 0.000 title claims abstract description 31
- 238000000605 extraction Methods 0.000 claims abstract description 46
- 230000004927 fusion Effects 0.000 claims abstract description 19
- 230000006870 function Effects 0.000 claims abstract description 17
- 230000011218 segmentation Effects 0.000 claims description 13
- 238000011176 pooling Methods 0.000 claims description 7
- 238000010606 normalization Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/143—Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Probability & Statistics with Applications (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种心室图像分割方法、系统、装置及存储介质,该方法包括:获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图;引入DAPIS损失函数对特征图进行处理,生成预测图像和对应的概率值;结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像。该系统包括:特征提取模块、预测模块和拼接融合模块。该装置包括存储器以及用于执行上述心室图像分割方法的处理器。本发明作为一种心室图像分割方法、系统、装置及存储介质,可广泛应用于医学图像处理领域。
Description
技术领域
本发明涉及医学图像处理领域,尤其涉及一种心室图像分割方法、系统、装置及存储介质。
背景技术
心室图像为心脏疾病的预后和诊断提供了重要的信息,准确度高的心室图像分割是对心室图像临床指标进行定量分析的前提,因此,如何对心室图像进行准确分割有着非常重要的临床价值。
传统的心室图像分割方法是由专业医生进行手动分割,操作繁琐,效率不高,而且手动分割容易受人工主观影响,导致心室图像分割的准确度不高。
发明内容
为了解决上述技术问题,本发明的目的是提供一种心室图像分割方法、系统、装置及存储介质,可得到准确度高的心室图像。
本发明所采用的第一技术方案是:一种心室图像分割方法,包括以下步骤:
获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图;
引入DAPIS损失函数对特征图进行处理,生成预测图像和对应的概率值;
结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像。
进一步,所述特征金字塔架构包括膨胀率为1的第一特征提取块、膨胀率为1的第二特征提取块、膨胀率为2的第三特征提取块、膨胀率为4的第四特征提取块、膨胀率为8的第五特征提取块和金字塔池,所述第一特征提取块、第二特征提取块、第三特征提取块、第四特征提取块、第五特征提取块和金字塔池依次连接。
进一步,所述获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图这一步骤,其具体包括:
获取心室图像;
基于五个特征提取块对心室图像进行处理,生成五张高度抽象的低级特征图;
接收来自第五体征提取块的输出特征并基于金字塔池输出金字塔池特征图。
进一步,所述生成预测图像还包括将预测图像与参考标准图像进行比较得到像素级相似度、重叠度和空间欧几里得距离。
进一步,所述结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像这一步骤,其具体包括:
根据低级特征图得到低级语义特征;
根据金字塔池特征图得到高级语义特征;
将低级语义特征和高级语义特征按顺序执行池化卷积操作并结合预测图像融合产生最终的分割图像。
进一步,所述将低级语义特征和高级语义特征按顺序执行池化卷积操作并结合预测图像融合产生最终的分割图像这一步骤,其具体还包括:
将高级语义特征依次执行归一化、ReLU非线性和1x1内核卷积处理,得到处理后的高级语义特征;
将低级语义特征执行3x3卷积处理,得到处理后的低级语义特征;
将处理后的高级语义特征和处理后的低级语义特征相乘得到加权的低级特征;
根据加权的低级特征和预测图像,得到最终的分割图像。
本发明所采用的第二技术方案是:一种心室图像分割系统,包括:
特征提取模块,用于获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图;
预测模块,用于引入DAPIS损失函数对特征图进行处理,生成预测图像和对应的概率值;
拼接融合模块,用于结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像。
本发明所采用的第三技术方案是:一种心室图像分割装置,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上所述一种心室图像分割方法。
本发明所采用的第四技术方案是:一种存储介质,其中存储有处理器可执行的指令,其特征在于:所述处理器可执行的指令在由处理器执行时用于实现如上所述一种心室图像分割方法。
本发明方法、系统、装置及存储介质的有益效果是:通过特征金字塔架构作为多层次多尺度特征提取,可以有效地捕获心室图像的整体特征,并通过语义特征融合网络重建具有不同语义级别的高分辨率分割结果。
附图说明
图1是本发明一种心室图像分割方法的步骤流程图;
图2是本发明一种心室图像分割系统的结构框图;
图3是本发明具体实施例一种心室图像分割方法的示意图;
图4是本发明具体实施例全局注意力上采样(GAU)操作的示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
如图1所示,本发明提供了一种心室图像分割方法,该方法包括以下步骤:
S101、获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图;
S102、引入DAPIS损失函数对特征图进行处理,生成预测图像和对应的概率值;
S103、结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像。
具体地,参照图1和图3,本发明的方法流程可分为三个阶段,具体包括多层次多尺度特征提取阶段、整体语义特征融合阶段和分层中继监督阶段。
进一步作为本方法的优选实施例,所述特征金字塔架构包括膨胀率为1的第一特征提取块、膨胀率为1的第二特征提取块、膨胀率为2的第三特征提取块、膨胀率为4的第四特征提取块、膨胀率为8的第五特征提取块和金字塔池,所述第一特征提取块、第二特征提取块、第三特征提取块、第四特征提取块、第五特征提取块和金字塔池依次连接。
具体地,深度特征金字塔模块设计为深度金字塔级体系结构。它包括5个级别的SE扩张密集块(SAD)即特征提取块,以提取多级别和多级别的整体语义特征。多层次信息捕获了LV的全局几何特征,而多尺度信息则增强了薄弱区域,从而有助于完善LV的边界。不同SAD块中不同的膨胀率生成了一个深而密集的金字塔层次结构,随着接受域的增加,特征提取的规模也随之增加,从而有助于在多尺度空间中搜索LV结构。五个SAD块的膨胀率分别为1、1、2、4和8。
另外,一个SAD块包含T个紧密连接层,其中包含空洞卷积和嵌入的SE块,从第t层到第(t+1)前馈信息的传播公式如下:
Xt+1=Yt=H(Y1,Y2,Y3,......,Yt-1)
Yt=Q(Xt)
其中Xt和Yt是第t层的输入和输出特征图,H(·)表示前一层的输出特征图的串联。将Q(·)定义为以下四个连续操作的复合函数:嵌入SE块,批处理归一化(BN),然后一个整流线性单元(ReLU)和一个空洞卷积。
空洞卷积运算可表示为:
其中r是膨胀率,m和n是k的坐标偏移,k是空洞卷积核,Yt(i,j)是第t层在(i,j)处的输出特征图值。
进一步作为本方法的优选实施例,所述获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图这一步骤,其具体包括:
获取心室图像;
基于五个特征提取块对心室图像进行处理,生成五张高度抽象的低级特征图;
接收来自第五体征提取块的输出特征并基于金字塔池输出金字塔池特征图。
具体地,五个抽象级别生成的低级特征图(f1~f5),将第五特征提取块的输出特征作为金字塔池的输入特征,以提取更多的全局上下文信息并减少最大接受域中的全局上下文信息丢失,金字塔池模块采用四个并行池化和卷积操作来得到不同比例(1×1、2×2、3×3和6×6)的特征图。然后,将四个特征图以相同比例上采样并连接在一起,再经过1×1卷积以减少通道数。金字塔池模块的输出的金字塔池特征图具有4个通道数目,并发送到整体语义特征融合网络。
进一步作为本方法优选实施例,所述生成预测图像还包括将预测图像与参考标准图像进行比较得到像素级相似度、重叠度和空间欧几里得距离。
具体地,DAPIS借助修改的跳过路径,GAU块和上采样操作在所有抽象级别上输出全分辨率特征图,并进一步生成多个预测(P0~P5),这些预测可以发展为中继监督。我们将所有级别的预测都暴露于左心室分割的参考标准中,并将DAPIS损失函数引入每个整体语义特征融合级别生成多个损耗函数(loss0~loss5)会产生分层中继监督,这有助于在反向传播期间增强梯度信号。利用每个级别的损失函数来引入新计算的梯度,并分别减P0~P5与参考标准之间的差异。它们将反馈直接传播到特征提取网络中的所有卷积层,从而最小化了梯度消失问题。同时,在分级中继监督的影响下,多重预测之间的竞争和相互正则化有助于有效地缓解过度拟合的问题。这种机制还可以促进分层信息流,并在细微尺度上适合潜在的分层特征,这有助于约束LV边界并学习更好的语义表示,从而使DAPIS能够获得出色的LV分割性能。
关于像素级相似性,利用像素级加权二进制交叉熵损失(lWBCE)并公式化为:
lWBCE=-[(1-G)·log(1-P)+k·ω·G·log P],
关于重叠度,广义骰子损失(lGDL)是一种从骰子得分系数修改而来的广义骰子指数,用于评估分割效果。可以表示为:
对于空间欧几里得距离,可以使用softplus函数来修改平均绝对误差并获得修改后的平均绝对误差损失(lCMAE),从而有助于对该损失函数的优化:
lCMAE(G,P)=log(1+e|G-P|),
将以上三个损失函数的组合应用于多个预测(P0~P5)中,其描述如下:
其中λCMAE,λWBCE和λGDL分别是lCMAE,lWBCE和lGDL的对应平衡系数。
进一步作为本方法优选实施例,所述结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像这一步骤,其具体包括:
根据低级特征图得到低级语义特征;
根据金字塔池特征图得到高级语义特征;
将低级语义特征和高级语义特征按顺序执行池化卷积操作并结合预测图像融合产生最终的分割图像。
具体地,由五个抽象级别生成的低级特征图(f1~f5)和金字塔池模块的高级特征按顺序依次执行GAU操作。级联操作达到1级和2级时,需要进行升采样操作以匹配下一级特征图的比例。最后,将五个抽象的GAU级联特征图上采样到256×256(与输入图像相同)以生成生成多个预测(表示为P1~P5),并将P1~P5融合以产生最终预测P0
进一步作为本方法优选实施例,所述将低级语义特征和高级语义特征按顺序执行池化卷积操作并结合预测图像融合产生最终的分割图像这一步骤,其具体还包括:
将高级语义特征依次执行归一化、ReLU非线性和1x1内核卷积处理,得到处理后的高级语义特征;
将低级语义特征执行3x3卷积处理,得到处理后的低级语义特征;
将处理后的高级语义特征和处理后的低级语义特征相乘得到加权的低级特征;
根据加权的低级特征和预测图像,得到最终的分割图像。
如图2所示,一种心室图像分割系统,包括:
特征提取模块,用于获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图;
预测模块,用于引入DAPIS损失函数对特征图进行处理,生成预测图像和对应的概率值;
拼接融合模块,用于结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像。
进一步作为本系统的优选实施例,
上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
一种心室图像分割装置:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上所述一种心室图像分割方法。
上述方法实施例中的内容均适用于本装置实施例中,本装置实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
一种存储介质,其中存储有处理器可执行的指令,其特征在于:所述处理器可执行的指令在由处理器执行时用于实现如上所述一种心室图像分割方法。
上述方法实施例中的内容均适用于本存储介质实施例中,本存储介质实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
Claims (9)
1.一种心室图像分割方法,其特征在于,包括以下步骤:
获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图;
引入DAPIS损失函数对特征图进行处理,生成预测图像和对应的概率值;
结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像。
2.根据权利要求1所述一种心室图像分割方法,其特征在于,所述特征金字塔架构包括膨胀率为1的第一特征提取块、膨胀率为1的第二特征提取块、膨胀率为2的第三特征提取块、膨胀率为4的第四特征提取块、膨胀率为8的第五特征提取块和金字塔池,所述第一特征提取块、第二特征提取块、第三特征提取块、第四特征提取块、第五特征提取块和金字塔池依次连接。
3.根据权利要求2所述一种心室图像分割方法,其特征在于,所述获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图这一步骤,其具体包括:
获取心室图像;
基于五个特征提取块对心室图像进行处理,生成五张高度抽象的低级特征图;
接收来自第五体征提取块的输出特征并基于金字塔池输出金字塔池特征图。
4.根据权利要求3所述一种心室图像分割方法,其特征在于,所述生成预测图像还包括将预测图像与参考标准图像进行比较得到像素级相似度、重叠度和空间欧几里得距离。
5.根据权利要求4所述一种心室图像分割方法,其特征在于,其特征在于,所述结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像这一步骤,其具体包括:
根据低级特征图得到低级语义特征;
根据金字塔池特征图得到高级语义特征;
将低级语义特征和高级语义特征按顺序执行池化卷积操作并结合预测图像融合产生最终的分割图像。
6.根据权利要求5所述一种心室图像分割方法,其特征在于,其特征在于,所述将低级语义特征和高级语义特征按顺序执行池化卷积操作并结合预测图像融合产生最终的分割图像这一步骤,其具体还包括:
将高级语义特征依次执行归一化、ReLU非线性和1x1内核卷积处理,得到处理后的高级语义特征;
将低级语义特征执行3x3卷积处理,得到处理后的低级语义特征;
将处理后的高级语义特征和处理后的低级语义特征相乘得到加权的低级特征;
根据加权的低级特征和预测图像,得到最终的分割图像。
7.一种心室图像分割系统,其特征在于,包括:
特征提取模块,用于获取心室图像并基于特征金字塔架构对心室图像进行特征提取,得到特征图;
预测模块,用于引入DAPIS损失函数对特征图进行处理,生成预测图像和对应的概率值;
拼接融合模块,用于结合语义特征融合网络和预测图像对特征图进行拼接融合,得到分割图像。
8.一种心室图像分割装置,其特征在于,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-6任一项所述一种心室图像分割方法。
9.一种存储介质,其中存储有处理器可执行的指令,其特征在于,所述处理器可执行的指令在由处理器执行时用于实现如权利要求1-6任一项所述一种心室图像分割方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010986714.XA CN112132834B (zh) | 2020-09-18 | 2020-09-18 | 一种心室图像分割方法、系统、装置及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010986714.XA CN112132834B (zh) | 2020-09-18 | 2020-09-18 | 一种心室图像分割方法、系统、装置及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112132834A true CN112132834A (zh) | 2020-12-25 |
CN112132834B CN112132834B (zh) | 2023-09-29 |
Family
ID=73841366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010986714.XA Active CN112132834B (zh) | 2020-09-18 | 2020-09-18 | 一种心室图像分割方法、系统、装置及存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112132834B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284047A (zh) * | 2021-05-27 | 2021-08-20 | 平安科技(深圳)有限公司 | 基于多重特征的目标物分割方法、装置、设备及存储介质 |
CN113657388A (zh) * | 2021-07-09 | 2021-11-16 | 北京科技大学 | 一种融合图像超分辨率重建的图像语义分割方法 |
CN113744287A (zh) * | 2021-10-13 | 2021-12-03 | 推想医疗科技股份有限公司 | 一种图像处理方法、装置、电子设备及存储介质 |
CN115393272A (zh) * | 2022-07-15 | 2022-11-25 | 北京长木谷医疗科技有限公司 | 基于深度学习的膝关节髌骨置换三维术前规划系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180260956A1 (en) * | 2017-03-10 | 2018-09-13 | TuSimple | System and method for semantic segmentation using hybrid dilated convolution (hdc) |
US20190050667A1 (en) * | 2017-03-10 | 2019-02-14 | TuSimple | System and method for occluding contour detection |
CN111192278A (zh) * | 2019-12-31 | 2020-05-22 | 北京迈格威科技有限公司 | 语义分割方法、装置、计算机设备和计算机可读存储介质 |
CN111259983A (zh) * | 2020-02-13 | 2020-06-09 | 电子科技大学 | 基于深度学习的图像语义分割方法及存储介质 |
CN111563507A (zh) * | 2020-04-14 | 2020-08-21 | 浙江科技学院 | 一种基于卷积神经网络的室内场景语义分割方法 |
-
2020
- 2020-09-18 CN CN202010986714.XA patent/CN112132834B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180260956A1 (en) * | 2017-03-10 | 2018-09-13 | TuSimple | System and method for semantic segmentation using hybrid dilated convolution (hdc) |
US20190050667A1 (en) * | 2017-03-10 | 2019-02-14 | TuSimple | System and method for occluding contour detection |
CN111192278A (zh) * | 2019-12-31 | 2020-05-22 | 北京迈格威科技有限公司 | 语义分割方法、装置、计算机设备和计算机可读存储介质 |
CN111259983A (zh) * | 2020-02-13 | 2020-06-09 | 电子科技大学 | 基于深度学习的图像语义分割方法及存储介质 |
CN111563507A (zh) * | 2020-04-14 | 2020-08-21 | 浙江科技学院 | 一种基于卷积神经网络的室内场景语义分割方法 |
Non-Patent Citations (1)
Title |
---|
JUN CHEN 等: "Multiview Two-Task Recursive Attention Model for Left Atrium and Atrial Scars Segmentation", 《SPRINGER NATURE SWITZERLAND AG 2018》, pages 455 - 463 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113284047A (zh) * | 2021-05-27 | 2021-08-20 | 平安科技(深圳)有限公司 | 基于多重特征的目标物分割方法、装置、设备及存储介质 |
WO2022247006A1 (zh) * | 2021-05-27 | 2022-12-01 | 平安科技(深圳)有限公司 | 基于多重特征的目标物分割方法、装置、设备及存储介质 |
CN113657388A (zh) * | 2021-07-09 | 2021-11-16 | 北京科技大学 | 一种融合图像超分辨率重建的图像语义分割方法 |
CN113657388B (zh) * | 2021-07-09 | 2023-10-31 | 北京科技大学 | 一种融合图像超分辨率重建的图像语义分割方法 |
CN113744287A (zh) * | 2021-10-13 | 2021-12-03 | 推想医疗科技股份有限公司 | 一种图像处理方法、装置、电子设备及存储介质 |
CN115393272A (zh) * | 2022-07-15 | 2022-11-25 | 北京长木谷医疗科技有限公司 | 基于深度学习的膝关节髌骨置换三维术前规划系统及方法 |
WO2024011943A1 (zh) * | 2022-07-15 | 2024-01-18 | 北京长木谷医疗科技有限公司 | 基于深度学习的膝关节髌骨置换三维术前规划方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112132834B (zh) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023077816A1 (zh) | 边界优化的遥感图像语义分割方法、装置、设备及介质 | |
CN109165660B (zh) | 一种基于卷积神经网络的显著物体检测方法 | |
CN112132834A (zh) | 一种心室图像分割方法、系统、装置及存储介质 | |
WO2023231329A1 (zh) | 一种医学图像的语义分割方法及装置 | |
CN111325750B (zh) | 一种基于多尺度融合u型链神经网络的医学图像分割方法 | |
CN111210446B (zh) | 一种视频目标分割方法、装置和设备 | |
CN113378933A (zh) | 甲状腺超声图像分类和分割网络、训练方法、装置及介质 | |
CN115147598B (zh) | 目标检测分割方法、装置、智能终端及存储介质 | |
CN111784762B (zh) | X光造影图像血管中心线提取方法及装置 | |
CN114972231B (zh) | 一种基于先验-后验概率编码器的多模态mr图像分割方法 | |
CN112270366B (zh) | 基于自适应多特征融合的微小目标检测方法 | |
CN118134952B (zh) | 一种基于特征交互的医学图像分割方法 | |
CN112767417A (zh) | 一种基于级联U-Net网络的多模态图像分割方法 | |
CN117078930A (zh) | 基于边界感知和注意力机制的医学图像分割方法 | |
CN116645592B (zh) | 一种基于图像处理的裂缝检测方法和存储介质 | |
CN117437423A (zh) | 基于sam协同学习和跨层特征聚合增强的弱监督医学图像分割方法及装置 | |
CN116228792A (zh) | 一种医学图像分割方法、系统及电子装置 | |
Zhang et al. | Deep multiphase level set for scene parsing | |
CN113436224B (zh) | 一种基于显式构图规则建模的智能图像裁剪方法及装置 | |
CN117474796B (zh) | 一种图像生成方法、装置、设备及计算机可读存储介质 | |
CN110942463B (zh) | 一种基于生成对抗网络的视频目标分割方法 | |
CN116758005A (zh) | 一种面向pet/ct医学图像的检测方法 | |
AU2021104479A4 (en) | Text recognition method and system based on decoupled attention mechanism | |
CN113610856B (zh) | 训练图像分割模型和图像分割的方法和装置 | |
CN112164078A (zh) | 基于编码器-解码器的rgb-d多尺度语义分割方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |