CN112132789B - 基于级联式神经网络的受电弓在线检测装置及方法 - Google Patents
基于级联式神经网络的受电弓在线检测装置及方法 Download PDFInfo
- Publication number
- CN112132789B CN112132789B CN202010891404.XA CN202010891404A CN112132789B CN 112132789 B CN112132789 B CN 112132789B CN 202010891404 A CN202010891404 A CN 202010891404A CN 112132789 B CN112132789 B CN 112132789B
- Authority
- CN
- China
- Prior art keywords
- pantograph
- image
- neural network
- model
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 100
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000003062 neural network model Methods 0.000 claims abstract description 33
- 238000012549 training Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 24
- 238000002372 labelling Methods 0.000 claims abstract description 10
- 238000012544 monitoring process Methods 0.000 claims abstract description 7
- 230000005540 biological transmission Effects 0.000 claims abstract description 4
- 241000594310 Randia aculeata Species 0.000 claims description 27
- 230000002159 abnormal effect Effects 0.000 claims description 27
- 238000011176 pooling Methods 0.000 claims description 21
- 238000000605 extraction Methods 0.000 claims description 18
- 230000011218 segmentation Effects 0.000 claims description 13
- 230000004927 fusion Effects 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 12
- 238000005299 abrasion Methods 0.000 claims description 10
- 241000883966 Astrophytum capricorne Species 0.000 claims description 9
- 241001494479 Pecora Species 0.000 claims description 9
- 238000010586 diagram Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 6
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 239000013589 supplement Substances 0.000 claims description 5
- 238000003708 edge detection Methods 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 210000001525 retina Anatomy 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
中心线偏移量 | 0-5% | 5%-10% | 10%-15% | >15% |
图像张数 | 2 | 68 | 5 | 0 |
比例 | 2.6% | 90.7% | 6.7% | 0 |
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010891404.XA CN112132789B (zh) | 2020-08-30 | 2020-08-30 | 基于级联式神经网络的受电弓在线检测装置及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010891404.XA CN112132789B (zh) | 2020-08-30 | 2020-08-30 | 基于级联式神经网络的受电弓在线检测装置及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112132789A CN112132789A (zh) | 2020-12-25 |
CN112132789B true CN112132789B (zh) | 2022-10-25 |
Family
ID=73848391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010891404.XA Active CN112132789B (zh) | 2020-08-30 | 2020-08-30 | 基于级联式神经网络的受电弓在线检测装置及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112132789B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112985263B (zh) * | 2021-02-09 | 2022-09-23 | 中国科学院上海微系统与信息技术研究所 | 一种弓网几何参数检测方法、装置及设备 |
CN113436157B (zh) * | 2021-06-18 | 2022-11-22 | 西南交通大学 | 一种用于受电弓故障的车载图像识别方法 |
CN113469994A (zh) * | 2021-07-16 | 2021-10-01 | 科大讯飞(苏州)科技有限公司 | 受电弓检测方法、装置、电子设备和存储介质 |
CN113763326B (zh) * | 2021-08-04 | 2023-11-21 | 武汉工程大学 | 一种基于Mask Scoring R-CNN网络的受电弓检测方法 |
CN113362330B (zh) * | 2021-08-11 | 2021-11-30 | 昆山高新轨道交通智能装备有限公司 | 受电弓羊角实时检测方法、装置、计算机设备及存储介质 |
CN114494186B (zh) * | 2022-01-25 | 2022-11-08 | 国网吉林省电力有限公司电力科学研究院 | 一种高压输变电线路电气设备的故障检测方法 |
CN114549440A (zh) * | 2022-02-11 | 2022-05-27 | 广州科易光电技术有限公司 | 接触网动态几何参数检测方法、装置及电子设备 |
CN115049623A (zh) * | 2022-06-20 | 2022-09-13 | 北京中车赛德铁道电气科技有限公司 | 一种视觉分割分析受电弓轮廓的装置 |
CN115994909B (zh) * | 2023-03-23 | 2023-06-02 | 中铁电气化局集团有限公司 | 基于图像工业算法的接触网接触故障检测方法和装置 |
CN117382426B (zh) * | 2023-09-28 | 2024-06-11 | 中车工业研究院有限公司 | 一种车载受电弓自适应控制方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077613A (zh) * | 2014-07-16 | 2014-10-01 | 电子科技大学 | 一种基于级联多级卷积神经网络的人群密度估计方法 |
CN107590441A (zh) * | 2017-08-21 | 2018-01-16 | 南京理工大学 | 一种基于图像处理的受电弓羊角在线检测装置与方法 |
CN109658387A (zh) * | 2018-11-27 | 2019-04-19 | 北京交通大学 | 电力列车的受电弓碳滑板缺陷的检测方法 |
-
2020
- 2020-08-30 CN CN202010891404.XA patent/CN112132789B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077613A (zh) * | 2014-07-16 | 2014-10-01 | 电子科技大学 | 一种基于级联多级卷积神经网络的人群密度估计方法 |
CN107590441A (zh) * | 2017-08-21 | 2018-01-16 | 南京理工大学 | 一种基于图像处理的受电弓羊角在线检测装置与方法 |
CN109658387A (zh) * | 2018-11-27 | 2019-04-19 | 北京交通大学 | 电力列车的受电弓碳滑板缺陷的检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112132789A (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112132789B (zh) | 基于级联式神经网络的受电弓在线检测装置及方法 | |
CN111047554B (zh) | 一种基于实例分割的复合绝缘子过热缺陷检测方法 | |
CN109977921B (zh) | 一种输电线路隐患检测方法 | |
WO2022237139A1 (zh) | 一种基于LaneSegNet的车道线检测方法及系统 | |
CN110738121A (zh) | 一种前方车辆检测方法及检测系统 | |
CN104517095A (zh) | 一种基于深度图像的人头分割方法 | |
CN111462140B (zh) | 一种基于区块拼接的实时图像实例分割方法 | |
CN111160291A (zh) | 基于深度信息与cnn的人眼检测方法 | |
CN115526864A (zh) | 基于改进的特征金字塔网络和度量学习的钢轨表面缺陷检测方法 | |
CN102063726B (zh) | 一种运动目标分类方法和系统 | |
CN109766780A (zh) | 一种基于深度学习的船舶烟雾排放在线检测和追踪方法 | |
Chen et al. | MS-FPN-based pavement defect identification algorithm | |
CN111079488B (zh) | 一种基于深度学习的公交客流检测系统及方法 | |
CN116977917A (zh) | 一种红外图像行人检测方法 | |
CN111597939A (zh) | 一种基于深度学习的高铁线路鸟窝缺陷检测方法 | |
CN116129329A (zh) | 基于深对空卷积和卡尔曼滤波的早期细小火苗检测方法 | |
Qin et al. | An improved deep learning algorithm for obstacle detection in complex rail transit environments | |
CN113763326A (zh) | 一种基于Mask Scoring R-CNN网络的受电弓检测方法 | |
Ma et al. | Ship Detection Based on LiDAR and Visual Information Fusion | |
Wang et al. | Research on appearance defect detection of power equipment based on improved faster-rcnn | |
CN113239962A (zh) | 一种基于单个固定摄像头的交通参与者的识别方法 | |
Li et al. | Damage detection algorithm based on faster-RCNN | |
Wu et al. | Deep learning based nighttime target enhancement detection algorithm for intelligent vehicles | |
Fan et al. | Lightweight Road Pothole Detection Network Based on FCOS | |
Liu et al. | 3D Object Detection with Fusion of Max-Sum Encoding and Gaussian Filtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Cai Chenxiao Inventor after: Zhu Maoqi Inventor after: Li Jin Inventor after: Long Jing Inventor after: Zheng Biao Inventor after: Huang Yawei Inventor after: Wang Zhihui Inventor before: Zhu Maoqi Inventor before: Li Jin Inventor before: Cai Chenxiao Inventor before: Long Jing Inventor before: Zheng Biao Inventor before: Huang Yawei Inventor before: Wang Zhihui |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |