CN112130495A - 一种数字化可配置声信号滤波装置及滤波方法 - Google Patents

一种数字化可配置声信号滤波装置及滤波方法 Download PDF

Info

Publication number
CN112130495A
CN112130495A CN202011004929.3A CN202011004929A CN112130495A CN 112130495 A CN112130495 A CN 112130495A CN 202011004929 A CN202011004929 A CN 202011004929A CN 112130495 A CN112130495 A CN 112130495A
Authority
CN
China
Prior art keywords
configurable
order
butterworth
programmable
acoustic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011004929.3A
Other languages
English (en)
Inventor
罗显志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN202011004929.3A priority Critical patent/CN112130495A/zh
Publication of CN112130495A publication Critical patent/CN112130495A/zh
Priority to AU2021102936A priority patent/AU2021102936A4/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/21Pc I-O input output
    • G05B2219/21126Signal processing, filter input

Abstract

本发明公开一种数字化可配置声信号滤波装置及滤波方法,装置包括:两个二阶可配置巴特沃斯高通滤波器组成的四阶可配置巴特沃斯高通滤波器、两个二阶可配置巴特沃斯低通滤波器组成的四阶可配置巴特沃斯低通滤波器和一个控制四个二阶巴特沃斯滤波器的控制逻辑。控制逻辑通过CPU或FPGA的GPIO口实现对两个二阶可配置巴特沃斯高通滤波器和两个二阶可配置巴特沃斯低通滤波器的参数配置;声信号先经四阶可配置巴特沃斯高通滤波器进行高通滤波,再经四阶可配置巴特沃斯低通滤波器进行低通滤波,实现声信号的带通滤波。本发明使用完全数字化的滤波器控制方案、可编程电阻阵列和可编程电容阵列技术方案,实现对1KHz~2.5MHz频率范围内声信号的全数字化可配置滤波。

Description

一种数字化可配置声信号滤波装置及滤波方法
技术领域
本发明属于声信号处理技术领域,具体涉及一种数字化可配置声信号滤波装置及滤波方法。
背景技术
在水声信号处理领域、语音信号处理领域和声发射信号处理领域,噪声干扰都会严重影响信号处理的效果,某些情况下甚至导致无法采集到有效信号,因此声信号滤波器在声信号处理领域必不可少。声信号的频率范围分布在1KHz~2.5MHz范围内,这需要声信号处理设备需要针对此范围内的有用信号进行分析,同时对有用信号之外的噪声和干扰进行滤波,从而提高分析性能。
现有的解决方法是针对某个目标信号设计专门的带通滤波器,在保留有用信号的同时,滤除带外干扰。这种声信号处理方案导致声信号处理设备的模拟前端需根据某一种声信号类型专门设计滤波器,不能适应千变万化的声信号类型,造成声信号处理设备不具有通用性。
国内有些文章和专利进行了可配置滤波器的尝试,但大多是通过调整电位器输出的电阻值的变化来调整滤波器参数,从而实现对滤波器的配置,这种调整方式大都是手动或机械调整,而且调整范围经常不满足声信号发生设备产生信号的多样性处理需求。
发明内容
针对上述问题,本发明的目的是提供一种数字化可配置声信号滤波装置,该装置能够实现1KHz~2.5MHz范围内带通滤波器中心频率和滤波带宽的数字化可配置,即可通过CPU和控制逻辑实现对声信号的可配置滤波。本发明的另一目的是提供一种数字化可配置声信号滤波方法。
为实现上述目的,本发明采取以下技术方案:
一种数字化可配置声信号滤波装置,包括由两个二阶可配置巴特沃斯高通滤波器组成的四阶可配置巴特沃斯高通滤波器、由两个二阶可配置巴特沃斯低通滤波器组成的四阶可配置巴特沃斯低通滤波器以及一个对四个二阶巴特沃斯滤波器进行控制的控制逻辑;声信号先经过所述四阶可配置巴特沃斯高通滤波器进行高通滤波,再经过所述四阶可配置巴特沃斯低通滤波器进行低通滤波,最终实现声信号的带通滤波。
进一步的,所述二阶可配置巴特沃斯高通滤波器包括放大器、两个可编程电阻阵列和两个可编程电容阵列;所述放大器、所述两个可编程电阻阵列和所述两个可编程电容阵列组成二阶Sallen-Key高通滤波器。
进一步的,所述二阶可配置巴特沃斯低通滤波器包括放大器、两个可编程电阻阵列和两个可编程电容阵列;所述放大器、所述两个可编程电阻阵列和所述两个可编程电容阵列组成二阶Sallen-Key低通滤波器。
进一步的,所述可编程电阻阵列采用三个99阶数字电位器串联组成高精度数字电位器阵列,其覆盖范围为10Ω~100KΩ,分辨率为10Ω。
进一步的,所述可编程电容阵列为10路开关和10路电容组成的电容阵列,通过开关的开路和闭合实现10路电容的并联组成电容阵列,总电容的覆盖范围和分辨率取决于10路电容的大小和开关是否闭合。
进一步的,所述控制逻辑指通过CPU或FPGA的GPIO口实现对两个所述二阶可配置巴特沃斯高通滤波器和两个所述二阶可配置巴特沃斯低通滤波器的参数配置。
本发明还提供一种数字化可配置声信号滤波方法,包括:
控制逻辑通过CPU或FPGA的GPIO口实现对两个二阶可配置巴特沃斯高通滤波器和两个二阶可配置巴特沃斯低通滤波器的参数配置;
声信号先经过所述四阶可配置巴特沃斯高通滤波器进行高通滤波,再经过所述四阶可配置巴特沃斯低通滤波器进行低通滤波,最终实现声信号的带通滤波。
进一步的,所述方法,具体步骤如下:
S101)CPU根据声信号的中心频率和带宽产生四个巴特沃斯滤波器的八个可编程电容阵列和八个可编程电阻阵列的参数;
S102)CPU和控制逻辑通过GPIO接口向八个可编程电容阵列和八个可编程电阻阵列下发控制参数;
S103)八个可编程电容阵列和八个可编程电阻阵列接收控制参数,并对控制参数进行译码,根据译码器的输出对每个电容阵列和电阻阵列的开关进行控制;
S104)八个可编程电容阵列和八个可编程电阻阵列在各自译码器控制下形成一个四阶巴特沃斯高通滤波器和一个四阶巴特沃斯低通滤波器;
S105)外部输入的声信号先经过四阶巴特沃斯高通滤波器再经过四阶巴特沃斯低通滤波器实现带通滤波。
有益效果:本发明提出使用完全数字化的滤波器控制方案,能够全部通过计算机指令完成滤波器参数配置。同时本发明提出可编程电阻阵列和可编程电容阵列技术方案,大大扩展了高通滤波器和低通滤波器的工作范围。
附图说明
图1是本发明数字化可配置声信号滤波装置的总体结构示意图;
图2是本发明可编程电阻阵列的原理示意图;
图3是本发明可编程电容阵列的原理示意图。
具体实施方式
以下参照具体的实施例来说明本发明。本领域技术人员能够理解,这些实施例仅用于说明本发明,其不以任何方式限制本发明的范围。
如图1所示,本发明的数字化可配置声信号滤波装置包括由两个二阶可配置巴特沃斯高通滤波器组成的四阶可配置巴特沃斯高通滤波器、由两个二阶可配置巴特沃斯低通滤波器组成的四阶可配置巴特沃斯低通滤波器以及一个对四个二阶巴特沃斯滤波器进行控制的控制逻辑。声信号先经过所述四阶可配置巴特沃斯高通滤波器进行高通滤波,再经过所述四阶可配置巴特沃斯低通滤波器进行低通滤波,最终实现声信号的带通滤波。
如图1所示,可编程电容阵列1和2、可编程电阻阵列3和4与放大器5组成第一路二阶Sallen-Key高通滤波器;可编程电容阵列6和7、可编程电阻阵列8和9与放大器10组成第二路二阶Sallen-Key高通滤波器;第一路二阶Sallen-Key高通滤波器和第二路二阶Sallen-Key高通滤波器串联组成可配置四阶高通滤波器。可编程电阻阵列11和12、可编程电容阵列13和14与放大器15组成第一路二阶Sallen-Key低通滤波器;可编程电阻阵列16和17、可编程电容阵列18和19与放大器20组成第二路二阶Sallen-Key低通滤波器;第一路二阶Sallen-Key低通滤波器和第二路二阶Sallen-Key低通滤波器串联组成可配置四阶低通滤波器。控制逻辑21指通过CPU或FPGA的GPIO口实现对两个二阶可配置巴特沃斯高通滤波器和两个二阶可配置巴特沃斯低通滤波器的参数配置。
具体的,如图1所示,可编程电容阵列2两端分别可编程电阻阵列3、4的一端相连接,可编程电容阵列2和可编程电阻阵列4的连接端一起接到放大器5的正极,可编程电阻阵列4的另一端接地,可编程电容阵列2和可编程电阻阵列3的连接端与可编程电容阵列1的一端相连接,可编程电容阵列1的另一端供电信号输入,可编程电阻阵列3另一端接到放大器5的负极,从而构成第一路二阶Sallen-Key高通滤波器。同样地,可编程电容阵列7两端分别可编程电阻阵列8、9的一端相连接,可编程电容阵列7和可编程电阻阵列9的连接端一起接到放大器10的正极,可编程电阻阵列9的另一端接地,可编程电容阵列7和可编程电阻阵列8的连接端与可编程电容阵列6的一端相连接,可编程电容阵列6的另一端与放大器5的输出端连接,可编程电阻阵列8另一端接到放大器10的负极,从而构成第二路二阶Sallen-Key高通滤波器。
具体的,如图1所示,可编程电阻阵列12两端分别可编程电容阵列13、14的一端相连接,可编程电阻阵列12和可编程电容阵列14的连接端一起接到放大器15的正极,可编程电容阵列14的另一端接地,可编程电阻阵列12和可编程电容阵列13的连接端与可编程电阻阵列11的一端相连接,可编程电阻阵列11的另一端供放大器10的输出端连接,可编程电容阵列13另一端接到放大器15的负极,从而构成第一路二阶Sallen-Key低通滤波器。同样地,可编程电阻阵列17两端分别可编程电容阵列18、19的一端相连接,可编程电阻阵列17和可编程电容阵列19的连接端一起接到放大器20的正极,可编程电容阵列19的另一端接地,可编程电阻阵列17和可编程电容阵列18的连接端与可编程电阻阵列16的一端相连接,可编程电阻阵列16的另一端与放大器15的输出端连接,可编程电容阵列18另一端接到放大器20的负极,从而构成第二路二阶Sallen-Key低通滤波器。
如图2所示,本发明的可编程电阻阵列由三个数字电位器24、27、30串联而成,三个数字电位器24、27、30阶数均为99阶;数字电位器24最大阻值为1KΩ,数字电位器27最大阻值为10KΩ,数字电位器30最大阻值为100KΩ。控制接口22通过译码器23实现对数字电位器24的控制;控制接口25通过译码器26实现对数字电位器27的控制;控制接口28通过译码器29实现对数字电位器30的控制。三个数字电位器242730串联而成的可编程电阻阵列可等效为分辨率10Ω覆盖范围10Ω~100KΩ的可配置电阻。
如图3所示,本发明的可编程电容阵列由译码器31、阵列开关32和电容阵列33组成,译码器31通过控制接口34接收控制参数,并根据参数控制阵列开关32的10路开关的打开和关闭,10路开关与电阻阵列33的10路电容相对应。可编程电容阵列可等效为1~10路电容的并联,10路电容的容量由设计参数确定。例如可假设10路电容的容量均为1nF,则可编程电容阵列最大等效电容总容量为1.023uF,最小等效电容容量为1nF,分辨率为1nF。
一种数字化可配置声信号滤波装置,具体工作步骤如下:
S101)CPU根据声信号的中心频率和带宽产生四个巴特沃斯滤波器的八个可编程电容阵列和八个可编程电阻阵列的参数;
S102)CPU和控制逻辑通过GPIO接口向八个可编程电容阵列和八个可编程电阻阵列下发控制参数;
S103)八个可编程电容阵列和八个可编程电阻阵列接收控制参数,并对控制参数进行译码,根据译码器的输出对每个电容阵列和电阻阵列的开关进行控制;
S104)八个可编程电容阵列和八个可编程电阻阵列在各自译码器控制下形成一个四阶巴特沃斯高通滤波器和一个四阶巴特沃斯低通滤波器;
S105)外部输入的声信号先经过四阶巴特沃斯高通滤波器再经过四阶巴特沃斯低通滤波器实现带通滤波。
综上所述,本发明提出使用完全数字化的滤波器控制方案、可编程电阻阵列和可编程电容阵列技术方案,实现对1KHz~2.5MHz频率范围内声信号的全数字化可配置滤波。

Claims (8)

1.一种数字化可配置声信号滤波装置,其特征在于,包括由两个二阶可配置巴特沃斯高通滤波器组成的四阶可配置巴特沃斯高通滤波器、由两个二阶可配置巴特沃斯低通滤波器组成的四阶可配置巴特沃斯低通滤波器以及一个对四个二阶巴特沃斯滤波器进行控制的控制逻辑;声信号先经过所述四阶可配置巴特沃斯高通滤波器进行高通滤波,再经过所述四阶可配置巴特沃斯低通滤波器进行低通滤波,最终实现声信号的带通滤波。
2.如权利要求1所述的数字化可配置声信号滤波装置,其特征在于,所述二阶可配置巴特沃斯高通滤波器包括放大器、两个可编程电阻阵列和两个可编程电容阵列;两个可编程电容阵列和一个可编程电阻阵列相连接,一起接到放大器的正极;另一个可编程电阻阵列一端接到其中一个可编程电容阵列的一端,其可编程电阻阵列另一端接到放大器的负极;可编程电容阵列,可编程电阻阵列,放大器三者相连构成二阶Sallen-Key高通滤波器。
3.如权利要求1所述的数字化可配置声信号滤波装置,其特征在于,所述二阶可配置巴特沃斯低通滤波器包括放大器、两个可编程电阻阵列和两个可编程电容阵列;两个可编程电阻阵列和一个可编程电容阵列相连接,一起接到放大器的正极;另一个可编程电容阵列一端接到其中一个可编程电阻阵列的一端,其可编程电容阵列的另一端接到放大器的负极;可编程电阻阵列,可编程电容阵列,放大器三者相连接构成二阶Sallen-Key低通滤波器。
4.如权利要求2或3所述的数字化可配置声信号滤波装置,其特征在于,所述可编程电阻阵列采用三个99阶数字电位器串联组成高精度数字电位器阵列,三个数字电位器的总阻值分别为1K、10K和100K,分辨率为1/100,三个99阶数字电位器串联组成高精度数字电位器阵列的阻值覆盖范围为10Ω~100KΩ,分辨率为10Ω。
5.如权利要求2或3所述的数字化可配置声信号滤波装置,其特征在于,所述可编程电容阵列为10路开关和10路电容组成的电容阵列,通过开关的开路和闭合实现10路电容的并联组成电容阵列,总电容的覆盖范围和分辨率取决于10路电容的大小和开关是否闭合。
6.如权利要求1所述的数字化可配置声信号滤波装置,其特征在于,所述控制逻辑指通过CPU或FPGA的GPIO口实现对两个所述二阶可配置巴特沃斯高通滤波器和两个所述二阶可配置巴特沃斯低通滤波器的参数配置。
7.一种数字化可配置声信号滤波方法,基于如权利要求1所述的数字化可配置声信号滤波装置,其特征在于,包括:
控制逻辑通过CPU或FPGA的GPIO口实现对两个二阶可配置巴特沃斯高通滤波器和两个二阶可配置巴特沃斯低通滤波器的参数配置;
声信号先经过所述四阶可配置巴特沃斯高通滤波器进行高通滤波,再经过所述四阶可配置巴特沃斯低通滤波器进行低通滤波,最终实现声信号的带通滤波。
8.如权利要求7所述的数字化可配置声信号滤波方法,其特征在于,具体步骤如下:
S101)CPU根据声信号的中心频率和带宽产生四个巴特沃斯滤波器的八个可编程电容阵列和八个可编程电阻阵列的参数;
S102)CPU和控制逻辑通过GPIO接口向八个可编程电容阵列和八个可编程电阻阵列下发控制参数;
S103)八个可编程电容阵列和八个可编程电阻阵列接收控制参数,并对控制参数进行译码,根据译码器的输出对每个电容阵列和电阻阵列的开关进行控制;
S104)八个可编程电容阵列和八个可编程电阻阵列在各自译码器控制下形成一个四阶巴特沃斯高通滤波器和一个四阶巴特沃斯低通滤波器;
S105)外部输入的声信号先经过四阶巴特沃斯高通滤波器再经过四阶巴特沃斯低通滤波器实现带通滤波。
CN202011004929.3A 2020-09-22 2020-09-22 一种数字化可配置声信号滤波装置及滤波方法 Pending CN112130495A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011004929.3A CN112130495A (zh) 2020-09-22 2020-09-22 一种数字化可配置声信号滤波装置及滤波方法
AU2021102936A AU2021102936A4 (en) 2020-09-22 2021-05-28 Digital configurable acoustic signal filtering device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011004929.3A CN112130495A (zh) 2020-09-22 2020-09-22 一种数字化可配置声信号滤波装置及滤波方法

Publications (1)

Publication Number Publication Date
CN112130495A true CN112130495A (zh) 2020-12-25

Family

ID=73842620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011004929.3A Pending CN112130495A (zh) 2020-09-22 2020-09-22 一种数字化可配置声信号滤波装置及滤波方法

Country Status (2)

Country Link
CN (1) CN112130495A (zh)
AU (1) AU2021102936A4 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189664A (zh) * 1997-01-29 1998-08-05 合泰半导体股份有限公司 语音编码的子音识别方法
CN106131726A (zh) * 2016-07-22 2016-11-16 歌尔科技有限公司 主动降噪耳机和适配不同耳套材质的耳机主动降噪方法
CN206114295U (zh) * 2016-09-22 2017-04-19 攀枝花学院 基于fpga的便携式轴承状态监测系统
CN106878866A (zh) * 2017-03-03 2017-06-20 广东欧珀移动通信有限公司 音频信号处理方法、装置及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189664A (zh) * 1997-01-29 1998-08-05 合泰半导体股份有限公司 语音编码的子音识别方法
CN106131726A (zh) * 2016-07-22 2016-11-16 歌尔科技有限公司 主动降噪耳机和适配不同耳套材质的耳机主动降噪方法
CN206114295U (zh) * 2016-09-22 2017-04-19 攀枝花学院 基于fpga的便携式轴承状态监测系统
CN106878866A (zh) * 2017-03-03 2017-06-20 广东欧珀移动通信有限公司 音频信号处理方法、装置及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周德俊: "基于MAX274芯片的带通滤波器设计", 《数字技术与应用》 *
田聪: "RC有源滤波器的优化设计", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Also Published As

Publication number Publication date
AU2021102936A4 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
Hussin et al. Design of butterworth band-pass filter
KR101477699B1 (ko) 디지털 코드에 따라 지수적으로 제어되는 차단주파수 특성을 갖는 필터 및 증폭기
CN112130495A (zh) 一种数字化可配置声信号滤波装置及滤波方法
CN111865344B (zh) 一种可变增益和带宽的模拟基带电路
CN207820219U (zh) 一种音频输出装置
AU2021102937A4 (en) Lotus root powder-flavored steamed bread without peeling and cracking and preparation method thereof
US20020000927A1 (en) A circuit device for cancelling out spurious pulses in a switched capacitance low-pass filter, and a filter incorporating it
CN102075154B (zh) 一种低功耗可编程增益放大器装置
CN213243950U (zh) 一种参数可调的滤波器
CN201898489U (zh) 数控跳频滤波器
CN109975433A (zh) 一种用于声发射信号的动态可配置带通滤波装置及方法
CN215990722U (zh) 一种滤波器以及电子设备
CN105048984A (zh) 射频信号收发机芯片中的中频滤波器
CN213186061U (zh) 数字调谐带通滤波电路和滤波器
Sladok et al. Universal pseudo-differential filter using DDCC and DVCCs
CN104716409A (zh) 一种可调节宽带滤波器装置
CN209120140U (zh) 信号增益可调电路
CN201887730U (zh) 一种程控滤波装置
Hollman et al. A 2.7 V CMOS dual-mode baseband filter for GSM and WCDMA
CN106023998A (zh) 摄像头音频输入装置、去噪方法和摄像头
CN111478681A (zh) 模拟复合滤波电路的设计方法及模拟滤波电路
CN201084874Y (zh) 双向滤波器
CN116108791A (zh) 一种高性能声纳带通滤波器设计方法
CN218568017U (zh) 红外触摸框的采样电路、红外触摸屏以及终端设备
CN209218050U (zh) 基于rc双t选频网络的立体声仿真器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201225

RJ01 Rejection of invention patent application after publication