CN112128935B - 空调器的智能控制方法与智能控制设备 - Google Patents
空调器的智能控制方法与智能控制设备 Download PDFInfo
- Publication number
- CN112128935B CN112128935B CN202010887137.9A CN202010887137A CN112128935B CN 112128935 B CN112128935 B CN 112128935B CN 202010887137 A CN202010887137 A CN 202010887137A CN 112128935 B CN112128935 B CN 112128935B
- Authority
- CN
- China
- Prior art keywords
- air conditioner
- season
- intelligent control
- operating
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000011217 control strategy Methods 0.000 claims abstract description 64
- 230000008859 change Effects 0.000 claims abstract description 41
- 230000007613 environmental effect Effects 0.000 claims description 55
- 238000012549 training Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000005057 refrigeration Methods 0.000 claims description 15
- 238000010801 machine learning Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 7
- 230000015654 memory Effects 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000007791 dehumidification Methods 0.000 claims description 4
- 230000001932 seasonal effect Effects 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2130/00—Control inputs relating to environmental factors not covered by group F24F2110/00
- F24F2130/10—Weather information or forecasts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明提供了一种空调器的智能控制方法与智能控制设备。其中空调器的智能控制方法包括:判断空调器的工作环境是否处于换季时期;若是,提供多个备选控制策略供空调器的用户选择,备选控制策略包括:至少一个备选智能控制策略以及手动控制策略;根据选择结果确定空调器的目标控制策略。本发明的方案,在换季时期环境变化较多,用户的环境舒适性要求并不确定的情况下,提供多个备选控制策略供空调器的用户选择,根据选择结果确定智能空调器的目标控制策略,目标控制策略更加符合环境时期特殊多变的环境调节需求,从而提高了用户的使用体验,提高了智能家电的智能化水平。
Description
技术领域
本发明涉及智能家电控制,特别是涉及空调器的智能控制方法与智能控制设备。
背景技术
随着生活水平的日益提高,消费者对家电的选择不再是单单注重产品的质量,而是更注重产品能够带来的使用体验。
对于空调器之类的环境调节设备,用户的需求在于获得高舒适性的环境体验。为了满足用户的需求,空调器的功能逐渐扩展,控制也更加精细化。因此,空调器的使用也越来越复杂。现有技术中已经使用终端App来进行控制,然而这也使得用户学习使用的门槛越来越高,操作也越来越复杂。这反而给用户带来的不便。
随着人工智能、机器学习等技术的快速发展,在空调器中使用相关智能技术的也逐渐成为技术研究热点。然而现有应用人工智能技术的空调器的智能控制方法的使用结果还不能完全满足用户的使用需求,部分用户甚至反馈智能空调器提供的环境不够舒适,反而带来了更多困扰。特别对于环境数据变化较为剧烈的换季时期,由于空调器的运行参数比较难于判断,智能控制方案很难满足用户的需求。
发明内容
本发明的一个目的是要提供一种至少在一定程度上解决上述相关技术中的技术问题任一方面的空调器的智能控制方法与智能控制设备。
本发明一个进一步的目的是要空调器根据用户行为实现智能自调整,提高用户使用感受。
本发明另一个进一步的目的是使得空调器在换季期间也可以智能地提供用户所需的舒适环境。
特别地,本发明提供了一种空调器的智能控制方法,该智能控制方法包括:判断空调器的工作环境是否处于换季时期;若是,提供多个备选控制策略供空调器的用户选择,备选控制策略包括:至少一个备选智能控制策略以及手动控制策略;根据选择结果确定空调器的目标控制策略。
可选地,判断空调器的工作环境是否处于换季时期的步骤包括:获取工作环境的环境参数;根据环境参数判断工作环境是否处于换季时期。
可选地,根据环境参数判断工作环境是否处于换季时期的步骤包括:获取空调器所在区域的气候规律;将环境参数与气候规律进行匹配;若环境参数与换季时期的气候相匹配,则确定工作环境处于换季时期。
可选地,根据环境参数判断工作环境是否处于换季时期的步骤包括:提取环境参数的变化幅值;在环境参数的变化幅值超出设定阈值并且具有随机性的情况下,则确定工作环境是否处于换季时期。
可选地,判断空调器的工作环境是否处于换季时期的步骤包括:获取由天气平台发布的空调器所在区域的季节信息;根据季节信息判断工作环境是否处于换季时期。
可选地,在工作环境未处于换季时期的情况下,确定空调器所处的运行季;获取与运行季对应的自调整模型,自调整模型利用运行季中的空调器的运行状态及对应的环境数据作为训练样本通过机器学习算法训练得到;获取空调器的运行状态以及环境参数;将运行状态和环境参数输入自调整模型;利用自调整模型进行预测计算得到空调器的智能控制策略;以及按照智能控制策略对空调器进行控制。
可选地,在按照智能控制策略对空调器进行控制的步骤之后还包括:获取空调器的手动调整记录;判断手动调整记录是否超过设定次数阈值;若是,将动调整记录以及手动调整期间的环境参数作为训练样本,对自调整模型进行迭代训练。
可选地,多个备选控制策略分别与多个运行季对应,并分别由对应的运行季的自调整模型进行预测计算得到。
可选地,运行季包括以下任意一项或多项:制冷季节、采暖季节、梅雨季节、除霾季节,其中制冷季节对应于制冷优先控制策略;采暖季节对应于制热优先控制策略;制冷季节对应于除湿优先控制策略;除霾季节对应于除霾优先控制策略。
根据本发明的另一个方面,还提供了一种空调器的智能控制设备。该空调器的智能控制设备包括:处理器;以及存储器,存储器内存储有控制程序,控制程序被处理器执行时用于实现上述任一种的空调器的智能控制方法。
本发明的空调器的智能控制方法,在对空调器的运行状态进行智能调整前,首先判断空调器的工作环境是否处于换季时期,在换季时期环境变化较多,用户的环境舒适性要求并不确定的情况下,提供多个备选控制策略供空调器的用户选择,根据选择结果确定空调器的目标控制策略,目标控制策略更加符合环境时期特殊多变的环境调节需求,从而提高了用户的使用体验。
进一步地,本发明的空调器的智能控制方法,针对单一的空调器自调整模型无法满足各种中运行条件下的调整要求,选取具有明确使用特征的运行季,针对每种运行季分别训练得到自调整模型,利用自调整模型对空调器的运行状态以及环境参数进行预测计算,从而按照得出的自调整策略对空调器进行控制。本发明的方法由于按照运行季的数据进行人工学习模型的训练,减小了自调整模型的预测计算难度,得到的自调整策略更加符合运行季的环境调节需求,从而提高了用户的使用体验。
更进一步地,本发明的空调器的智能控制方法,可以根据空调器的安装区域选择制冷季节、采暖季节、梅雨季节、除霾季节中的一项或多项作为运行季,由于这些运行季一般具有优先运行模式,那么通过自调整模型的预测计算的不确定性大大降低。相对于智能家电(智慧家电)及智能空调(智慧空调)等领域中的现有技术,本发明的方案更加智能高效,提高了智能化水平。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调器的数据交互示意图;
图2是根据本发明一个实施例的空调器的智能控制设备的示意图;
图3是根据本发明一个实施例的空调器的智能控制方法的示意图;以及
图4是根据本发明一个实施例的空调器的智能控制方法应用实例的流程图。
具体实施方式
图1是根据本发明一个实施例的空调器10的数据交互示意图。终端设备20(包括但不限于各种移动终端)上安装有空调器控制应用程序(App)或者其他控制控制客户端(Client)。空调器10的用户可以通过应用程序或者客户端来配置空调器10的功能以及应用场景。
网络数据平台30可以用于采集并记录空调器10运行数据、采集并记录用户行为信息等。网络数据平台30可以通过对空调器10运行数据以及用户行为信息进行机器学习模型的训练,并利用训练得到的模型进行空调器10的预测计算。其中预测计算的决策条件包括空调器10的室内外环境(温度、湿度、污染情况、风力、天气等)、用户信息(各项生理指标、位置、穿衣指数等),预测的目标包括:空调器10的开关状态(包括开机参数)、运行模式(制冷、制热、净化、除湿等)、设定参数(风力、风向、温度、湿度等)。
空调器10获取自身运行状态以及室内外环境数据,并按照网络数据平台30预测得到的自调整策略对空调器10进行控制。
另外,网络数据平台30还可以向空调器10和终端设备20发送各种提醒消息,并接收用户通过空调器10以及终端设备20回复的信息。
本实施例中使用的机器学习模型(自调整模型)可以是能够从已有数据(空调器10的运行状态以及环境参数)中学习到一定的知识和能力用于处理新数据,并可以被设计用于执行各种任务,在本实施例中用于对空调器10控制策略的确定。机器学习模型的示例包括但不限于各类深度神经网络(DNN)、支持向量机(SVM)、决策树、随机森林模型等等。在实施例中,机器学习模型也可以被称为“学习网络”。其中神经网络控制模型可以采用各种已知的适合有监督学习的网络结构,例如感知器模型,分类器模型,Hopfield网络等基本的神经网络结构,各种相应的主流训练方法也都可以用于本实施例的模型参数的确定。示例机器学习模型包括神经网络或其他多层非线性模型。示例神经网络包括前馈神经网络、深度神经网络、递归神经网络和卷积神经网络。
机器学习模型可以包括在服务器计算系统(网络数据平台30)中或以其他方式由服务器计算系统(网络数据平台30)存储和实现,服务器计算系统(网络数据平台30)根据客户端-服务器关系(或者应用程序-服务器)与终端设备20或者空调器10通信。例如,机器学习模型可以由服务器计算系统(网络数据平台30)实现为web服务的一部分。因此,可以在终端设备20处存储和实现一个或多个模型和/或可以在服务器计算系统(网络数据平台30)处存储和实现一个或多个模型。
服务器计算系统(网络数据平台30)可以包括一个或多个服务器计算设备或以其他方式由一个或多个服务器计算设备实现。在服务器计算系统包括多个服务器计算设备的情况下,这样的服务器计算设备可以根据顺序计算架构、并行计算架构或其一些组合来操作。
终端设备20或者空调器10和/或服务器计算系统(网络数据平台30)可以经由与通过网络通信地耦接的训练计算系统的交互来训练模型。训练计算系统可以与服务器计算系统(网络数据平台30)分离,或者可以是服务器计算系统(网络数据平台30)的一部分。
终端设备20或者空调器10和服务器计算系统网络之间可以通过任何类型的通信网络进行交互,诸如局域网(例如内联网)、广域网(例如因特网)或其一些组合,并且可以包括任何数量的有线或无线链路。通常,通过网络的通信可以经由任何类型的有线和/或无线连接,使用各种通信协议(例如,TCP/IP、HTTP、SMTP、FTP)、编码或格式(例如、HTML、XML)和/或保护方案(例如、VPN、安全HTTP、SSL)来承载。
本领域技术人员可以根据需要在终端设备20、空调器10、网络数据平台30分配数据的处理和运算功能。例如在终端设备20和空调器10中对数据进行一定的预处理,以提高数据传输的效率。
图2是根据本发明一个实施例的空调器的智能控制设备300的示意图。该智能控制设备300可以包括一般性地可以包括:存储器320以及处理器310,其中存储器320内存储有控制程序321,控制程序321被处理器310执行时用于实现本实施例的空调器的智能控制方法。处理器310可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器310通过通信接口收发数据。存储器320用于存储处理器310执行的程序。存储器320是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器的组合。上述控制程序321可以从计算机可读存储介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载并安装到智能控制设备300。
智能控制设备300可根据布置于上述网络数据平台30中。此外,智能控制设备300的功能也可以基于计算机的系统的固有灵活性允许在网络数据平台30、终端20、空调器10之间进行配置、组合以及划分。
图3是根据本发明一个实施例的空调器的智能控制方法的示意图,该空调器的智能控制方法可以包括:
步骤S302,判断空调器的工作环境是否处于换季时期;换季时期是指空调器具有典型应用环境的运行季之间的过渡时间,在该过渡时间内,环境参数的的变化较为频繁而且不具有规律性。换季时期的空调器的使用特点为:使用频率相对较低且运行模式和运行参数存在较大的不确定性。
运行季根据空调器的运行状态进行确定,一般可为空调器具有典型应用环境的时间段。例如运行季包括以下任意一项或多项:制冷季节、采暖季节、梅雨季节(或称为雨季或潮湿季节)、除霾季节(或称为净化季),本领域技术人员可以根据空调器所在区域的气候特点以及用户对环境的需求,配置运行季。例如对于热带区域,可以仅配置制冷季节以及潮湿季节;对于四季分明的区域,可以配置制冷季节、采暖季节;对于具有季风气候且环境较为恶劣的区域,可以增加设置除霾季节。
在制冷季节中,空调器的优先运行模式为制冷模式;在采暖季节中,空调器的优先运行模式为制热模式;在制冷季节中,空调器的优先运行模式为除湿模式;在除霾季节中,空调器的优先运行模式为净化模式。相对应地,制冷季节对应于制冷优先控制策略;采暖季节对应于制热优先控制策略;制冷季节对应于除湿优先控制策略;除霾季节对应于除霾优先控制策略。换季时期可以为上述运行季交替过程中的时期。
判断空调器的工作环境是否处于换季时期的一种可选方式可以为:获取工作环境的环境参数;根据环境参数判断工作环境是否处于换季时期。环境参数可以包括但不限于:室内外温度、室内外湿度、天气、空气颗粒数据、空气成分等。根据环境参数判断工作环境是否处于换季时期的一种实现方式为:获取空调器所在区域的气候规律;将环境参数与气候规律进行匹配;若环境参数与换季时期的气候相匹配,则确定工作环境处于换季时期。
根据环境参数判断工作环境是否处于换季时期的另一种实现方式为:提取环境参数的变化幅值;在环境参数的变化幅值超出设定阈值并且具有随机性的情况下,则确定工作环境处于换季时期。例如在室外环境温度的日均值在持续5至10天内变化超过5℃,并且并非持续升高或者持续降低的情况下,可以确定工作环境确定处于换季时期。
判断空调器的工作环境是否处于换季时期的另一种实现方式为:获取由天气平台发布的空调器所在区域的季节信息;根据季节信息判断工作环境是否处于换季时期。例如对于北京区域,11月中旬至次年3月中旬可以为采暖季节,而6月中旬至次年3月中旬可以为制冷季节;又例如对于上海区域,6月中旬至7月上旬是梅雨季节;12月中旬至2月底可以为采暖季节。天气平台可以根据气象数据对季节信息进行通告,从而根据通告中的季节信息可以确定空调器所处的运行季。处于运行季外之外的时期可以认为属于换季时期。
此外,本实施例的空调器的智能控制方法,还可以确定空调器的工作环境是否处于运行季内,如果工作环境处于运行季之外,也可以认定空调器的工作环境处于换季时期。
确定空调器所处的运行季的一种可选方式为:获取空调器的安装位置信息;根据安装位置信息确定空调器所在区域的气候规律;将运行环境此前设定时间段内的环境数据与气候规律进行匹配,以确定得出空调器所处的运行季。空调器的安装位置信息可以通过空调器的销售及维护记录确定,也可以通过空调器的用户上报确定,还可以通过与空调器绑定的终端的位置确定。例如运行环境此前5天至10天的环境数据与气候规律进行匹配,可以确定得出空调器所处的运行季。
由于不同的区域,其气候规律存在较大的差别,可以通过气候规律来确定运行季,如上文所介绍的,不同的区域可以根据气候设置相应运行季。例如可以将空调器设定时间内(例如5天至10天)的室外环境数据与上述气候规律进行匹配,例如对于中国华北区域,连续5天日平均气温低于10℃,即可认为进入采暖季节;连续5天日平均气温高于22℃,即可认为进入制冷季节。
确定空调器所处的运行季的另一种可选方式为:获取由天气平台发布的空调器所在区域的季节信息;根据季节信息确定空调器所处的运行季。例如对于北京区域,11月中旬至次年3月中旬可以为采暖季节,而6月中旬至次年3月中旬可以为制冷季节;又例如对于上海区域,6月中旬至7月上旬是梅雨季节;12月中旬至2月底可以为采暖季节。天气平台可以根据气象数据对季节信息进行通告,从而根据通告中的季节信息可以确定空调器所处的运行季。
确定空调器所处的运行季的方式并不局限于上述方式,在一些实施例中还可以通过人工设定方式来确定。
步骤S304,在工作环境处于换季时期的情况下,提供多个备选控制策略供空调器的用户选择,备选控制策略包括:至少一个备选智能控制策略以及手动控制策略。多个备选控制策略可以分别与多个运行季对应,并分别由对应的运行季的自调整模型进行预测计算得到。上述自调整模型利用运行季中的空调器的运行状态及对应的环境数据作为训练样本通过机器学习算法训练得到。也就是说本实施例的方法分别针对典型型性的运行季分别训练相应的自调整模型,其预测计算的准确性更高。
步骤S306,根据选择结果确定空调器的目标控制策略。在选择结果为手动控制策略的情况下,可以禁用智能控制,按照用户的操作指令进行空调器的控制,例如触控、声控方式对空调器来进行控制。
在选择智能控制策略时,调用与被选择的智能控制策略对应的自调整模型。获取空调器的运行状态以及环境参数,将运行状态和环境参数输入自调整模型,利用自调整模型进行预测计算得到空调器的自调整策略,按照自调整策略对空调器进行控制。空调器可以根据自调整测量智能调整,满足用户的舒适性要求。自调整策略并非单纯的设定参数阈值,而包括空调器各种运行参数的调整依据以及调整方式,包括但不限于:各种设定参数、状态的变化速度、忽略或者采用的环境数据类型、开关机条件等等。
在按照智能控制策略对空调器进行控制的步骤之后还包括:获取空调器的手动调整记录;判断手动调整记录是否超过设定次数阈值;若是,将动调整记录以及手动调整期间的环境参数作为训练样本,对自调整模型进行迭代训练。通过利用手动调整记录以及手动调整期间的环境参数对自调整模型进行迭代训练可以更好地匹配用户的个性化需求。例如可以将最近若干次(例如5次、10次)的手动调整记录以及手动调整期间的环境参数作为训练样本。设置次数阈值是为了排除用户的误操作以及特殊情况的临时调整。
在工作环境未处于换季时期的情况下,本实施例的空调器的智能控制方法可以确定空调器所处的运行季;获取与运行季对应的自调整模型,自调整模型利用运行季中的空调器的运行状态及对应的环境数据作为训练样本通过机器学习算法训练得到;获取空调器的运行状态以及环境参数;将运行状态和环境参数输入自调整模型;利用自调整模型进行预测计算得到空调器的智能控制策略;以及按照智能控制策略对空调器进行控制。
与运行季对应的空调器自调整模型优选使用在上一年度的相同的运行季中使用过的自调整模型。由于上一年度的相同的运行季中使用过的自调整模型一般利用空调器的实际运行数据进行了迭代训练,更加符合该空调器的用户的实际需求。因此获取与运行季对应的空调器自调整模型的步骤可以包括:获取空调器的运行记录;根据运行记录判断空调器是否调用过与运行季对应的自调整模型;若是,则获取之前调用过的与运行季对应的自调整模型。上述运行记录可以用于记录空调器的各项运行数据,包括但不限于:开关机记录、参数调整记录、模型使用记录、模型训练记录、用户手动调整记录、环境数据等。空调器的运行记录可以确定出上一年度的相同的运行季中使用过的自调整模型,或者当前确定出的自调整模型是否被该用户调用过。优选采用使用的自调整模型,可以更加满足用户的使用习惯。
在空调器未调用过与运行季对应的自调整模型的情况下还包括:获取为空调器所在区域配置的运行季初始自调整模型,将运行季初始自调整模型作为自调整模型。运行季初始自调整模型可以利用空调器所在区域的运行数据进行训练得到,优先利用大数据样本训练充分可以反映地域的气候特点以及该区域内用户的空调器使用偏好。也就是说,在被控的空调器之前未调用过与运行季对应的自调整模型的情况下,使用其所在区域的初始模型进行预测计算,其在很大概率上可以满足大多数用户的舒适性要求。
在新的运行季到来时,优选使用此前相同的运行季的运行记录的自调整模型进行智能调整,其次可以采用采用大数据训练的初始自调整模型。通过对自调整模型的迭代训练,可以进一步满足了用户的需求,并且可以满足用户习惯不断变化的要求。
本实施例的空调器的智能控制方法,针对单一的空调器自调整模型无法满足各种中运行条件下的调整要求,选取具有明确使用特征的运行季,针对每种运行季分别训练得到自调整模型,利用自调整模型对空调器的运行状态以及环境参数进行预测计算,从而按照得出的自调整策略对空调器进行控制,可以有效地发挥空调器的功能。在运行季交替期间的换季时间,可以向用户提供多种备选控制策略,由用户进行选择,避免智能控制策略不能满足用户的环境舒适性要求。
图4是根据本发明一个实施例的空调器的智能控制方法应用实例的流程图。在该应用实例中可以包括以下步骤:
步骤S402,判断空调器的工作环境是否处于换季时期,判断依据可以包括气候规律、接收气候平台的广播消息、时间判断等。
步骤S404,若处于换季时期;则提供多个备选控制策略供空调器的用户选择;
步骤S406,获取用户的选择结果,判断用户是否选择任一智能控制策略;
步骤S408,若选择结果为手动控制策略,可以禁用智能控制,按照用户的操作指令进行空调器的控制;
步骤S410,若选择结果为智能控制策略,调用与被选择的智能控制策略对应的自调整模型;
步骤S412,若工作环境处于非换季时期,确定空调器所处的运行季;获取与运行季对应的自调整模型;
步骤S414,获取空调器的运行状态以及环境参数,将运行状态和环境参数输入自调整模型,利用自调整模型进行预测计算得到空调器的自调整策略;
步骤S416,按照自调整策略对空调器进行控制;
步骤S418,获取空调器的手动调整指令;
步骤S420,判断手动调整次数是否超过设定次数阈值;
步骤S422,在超过设定次数阈值时,将手动调整记录以及手动调整期间的环境参数作为训练样本,对自调整模型进行迭代训练。
本领域技术人员应该了解上述流程仅为一个应用实例,可以在本实施例对空调器的智能控制方法的介绍的基础上调整步骤的执行顺序以及增删部分步骤。
本实施例的空调器的智能控制方法,在对空调器的运行状态进行智能调整前,首先判断空调器的工作环境是否处于换季时期,在换季时期环境变化较多,用户的环境舒适性要求并不确定的情况下,提供多个备选控制策略供空调器的用户选择,根据选择结果确定空调器的目标控制策略,目标控制策略更加符合环境时期特殊多变的环境调节需求,从而提高了用户的使用体验。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (7)
1.一种空调器的智能控制方法,包括:
判断所述空调器的工作环境是否处于换季时期;
若是,提供多个备选控制策略供所述空调器的用户选择,所述备选控制策略包括:至少一个备选智能控制策略以及手动控制策略;
根据选择结果确定所述空调器的目标控制策略;
所述判断所述空调器的工作环境是否处于换季时期的步骤包括:
获取所述工作环境的环境参数;
根据所述环境参数判断所述工作环境是否处于换季时期;
所述根据所述环境参数判断所述工作环境是否处于换季时期的步骤包括:
获取所述空调器所在区域的气候规律;
将所述环境参数与所述气候规律进行匹配;
若所述环境参数与换季时期的气候相匹配,则确定工作环境处于换季时期;
所述根据所述环境参数判断所述工作环境是否处于换季时期的步骤还包括:
提取所述环境参数的变化幅值;
在所述环境参数的变化幅值超出设定阈值并且具有随机性的情况下,则确定工作环境是否处于换季时期。
2.根据权利要求1所述的空调器的智能控制方法,其中所述判断所述空调器的工作环境是否处于换季时期的步骤包括:
获取由天气平台发布的所述空调器所在区域的季节信息;
根据所述季节信息判断所述工作环境是否处于换季时期。
3.根据权利要求1所述的空调器的智能控制方法,其中
在所述工作环境未处于换季时期的情况下,确定所述空调器所处的运行季;
获取与所述运行季对应的自调整模型,所述自调整模型利用所述运行季中的空调器的运行状态及对应的环境数据作为训练样本通过机器学习算法训练得到;
获取所述空调器的运行状态以及环境参数;
将所述运行状态和所述环境参数输入所述自调整模型;
利用所述自调整模型进行预测计算得到所述空调器的智能控制策略;以及
按照所述智能控制策略对所述空调器进行控制。
4.根据权利要求3所述的空调器的智能控制方法,其中在所述按照所述智能控制策略对所述空调器进行控制的步骤之后还包括:
获取所述空调器的手动调整记录;
判断所述手动调整记录是否超过设定次数阈值;
若是,将所述手动调整记录以及手动调整期间的环境参数作为训练样本,对所述自调整模型进行迭代训练。
5.根据权利要求3所述的空调器的智能控制方法,其中,
多个所述备选控制策略分别与多个所述运行季对应,并分别由对应的所述运行季的自调整模型进行预测计算得到。
6.根据权利要求5所述的空调器的智能控制方法,其中,
所述运行季包括以下任一项或多项:制冷季节、采暖季节、梅雨季节、除霾季节,其中
所述制冷季节对应于制冷优先控制策略;
所述采暖季节对应于制热优先控制策略;
所述制冷季节对应于除湿优先控制策略;
所述除霾季节对应于除霾优先控制策略。
7.一种空调器的智能控制设备,包括:
处理器;以及
存储器,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据权利要求1至6中任一项所述的空调器的智能控制方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010887137.9A CN112128935B (zh) | 2020-08-28 | 2020-08-28 | 空调器的智能控制方法与智能控制设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010887137.9A CN112128935B (zh) | 2020-08-28 | 2020-08-28 | 空调器的智能控制方法与智能控制设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112128935A CN112128935A (zh) | 2020-12-25 |
CN112128935B true CN112128935B (zh) | 2023-03-21 |
Family
ID=73848686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010887137.9A Active CN112128935B (zh) | 2020-08-28 | 2020-08-28 | 空调器的智能控制方法与智能控制设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112128935B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113479032B (zh) * | 2021-07-22 | 2022-10-14 | 泰铂(上海)环保科技股份有限公司 | 驻车空调控制方法及系统 |
CN118224706A (zh) * | 2022-12-20 | 2024-06-21 | 青岛海尔空调器有限总公司 | 空调器的控制方法与空调器 |
KR102628717B1 (ko) * | 2023-07-31 | 2024-01-24 | 김용엽 | 실내 공기 종합관리시스템 및 실내 공기 종합관리방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106547897B (zh) * | 2016-10-31 | 2020-04-03 | 广东美的制冷设备有限公司 | 基于地理位置匹配空调器的方法及装置 |
CN110131843B (zh) * | 2019-05-15 | 2020-06-16 | 珠海格力电器股份有限公司 | 基于大数据的空调的智能调控方法及系统 |
CN110736231A (zh) * | 2019-10-29 | 2020-01-31 | 珠海格力电器股份有限公司 | 空调控制方法、装置、空调、存储介质以及处理器 |
-
2020
- 2020-08-28 CN CN202010887137.9A patent/CN112128935B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112128935A (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112128936B (zh) | 空调器的智能控制方法与智能控制设备 | |
CN112128935B (zh) | 空调器的智能控制方法与智能控制设备 | |
Korkas et al. | Grid-connected microgrids: Demand management via distributed control and human-in-the-loop optimization | |
KR102648234B1 (ko) | 데이터 학습 서버 및 이의 학습 모델 생성 및 이용 방법 | |
CN110131843B (zh) | 基于大数据的空调的智能调控方法及系统 | |
CN112128934A (zh) | 空调器的智能控制方法与智能控制设备 | |
US10971949B2 (en) | Systems and methods for performing building energy management | |
WO2021179958A1 (zh) | 空调器的智能控制方法与空调器的智能控制设备 | |
CN108052010B (zh) | 智能电器自调节的方法、装置、计算机设备及存储介质 | |
US10731886B2 (en) | HVAC system including energy analytics engine | |
CN111895625A (zh) | 基于神经网络算法的室内环境改善方法、系统及存储介质 | |
CN114442697B (zh) | 一种温度控制方法、设备、介质及产品 | |
CN110736231A (zh) | 空调控制方法、装置、空调、存储介质以及处理器 | |
CN115437302B (zh) | 一种大型中央空调ai智能控制方法及系统 | |
CN114838470A (zh) | 一种暖通空调的控制方法和系统 | |
CN117555248A (zh) | 智能家居系统及其控制方法、装置、储存介质和程序产品 | |
CN108419439A (zh) | 家用设备学习方法、及服务器 | |
CN116996546A (zh) | 物联网设备的控制方法、装置、设备及存储介质 | |
CN115051374B (zh) | 电采暖设备参与电力调峰的控制方法、装置和存储介质 | |
CN110567113B (zh) | 一种空调控制方法及系统 | |
Korkas et al. | Adaptive optimization for smart operation of cyber-physical systems: A thermostatic zoning test case | |
CN114065898B (zh) | 基于决策技术的空调机能量使用测控方法及系统 | |
CN118011844A (zh) | 调节方法、装置、设备及存储介质 | |
CN117287806A (zh) | 一种基于大数据的空调除湿功能优化方法 | |
Platero-Horcajadas et al. | Enhancing Greenhouse Efficiency: Integrating IoT and Reinforcement Learning for Optimised Climate Control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Song Yujun Inventor after: Song Shifang Inventor after: Li Xiwu Inventor after: Guo Li Inventor after: Wu Liqin Inventor after: Liu Wentao Inventor before: Song Shifang Inventor before: Guo Li Inventor before: Wu Liqin Inventor before: Liu Wentao |