CN112123329B - 一种机器人3d视觉手眼标定方法 - Google Patents
一种机器人3d视觉手眼标定方法 Download PDFInfo
- Publication number
- CN112123329B CN112123329B CN202010106419.0A CN202010106419A CN112123329B CN 112123329 B CN112123329 B CN 112123329B CN 202010106419 A CN202010106419 A CN 202010106419A CN 112123329 B CN112123329 B CN 112123329B
- Authority
- CN
- China
- Prior art keywords
- calibrated
- coordinate value
- data
- hand
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000009466 transformation Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1653—Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1612—Programme controls characterised by the hand, wrist, grip control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Manipulator (AREA)
Abstract
一种机器人3D视觉手眼标定方法,包括以下具体步骤:S1、根据待标定物的位置调整3D相机和机械手的工作位置,其中,机械手的末端安装多组直线硬体;S2、3D相机运行以直接获得待标定物的端点在3D相机坐标系下的多组坐标值信息,得到坐标值组数据;S3、3D视觉手眼标定系统接收到坐标值组数据,并控制机械手将多组直线硬体的端点接触待标定物的端点,3D视觉手眼标定系统获得机械手个关节转角数据;S4、将关节转角数据带入手臂运动学模型,得到待标定物在机械手的基坐标系下的坐标值数据;S5、调整待标定物的位置以及姿态,重复S2~S4,得到多组坐标值数据。本发明能够提高机器人3D手眼标定的精度。
Description
技术领域
本发明涉及智能机器人技术领域,尤其涉及一种机器人3D视觉手眼标定方法。
背景技术
智能制造的快速推进使得多关节机器人获得了长足发展,工业机器人已经参与到工业制造及生产的各个领域,成为工厂自动化、智能化进程中不可或缺的角色。机器视觉赋予了机器人眼睛,融合先进的图像处理、三维数据分析算法,以及人工智能技术的应用,使机器人动作不再局限于通过示教获得的点对点运动或者既定轨迹,而是在视觉的引导下进行更为灵活而智能的动作,在高精度检测以及工件抓取定位等方面的应用方兴未艾。相对于传统的2D视觉无法提供深度和曲面信息,机器人3D视觉更加符合人类“眼睛”的定义,3D传感器可以给机器人提供产品的位置和姿态信息,因此在工业上的应用也更加的灵活,在物流分拣,上下料,汽车零部件抓取等领域有着非常广阔的应用前景,诚然,相比于传统的2D手眼标定,机器人3D视觉的手眼标定方法和算法更为复杂。
机器人眼在手外的3D视觉手眼标定的核心是计算3D传感器坐标系相对于机器人基坐标系的转换关系,从而将3D传感器下获得的工件位置和姿态信息,转换成机器人基坐标下的位置和姿态。
此外,目前的一些手眼标定方法对于标定过程中的机械手以及标定板等其他辅助设施的物理精度要求很高,增加了标定成本。因此为了满足实际工业应用的手眼标定精度要求和降低标定成本,急需提出一种新的机器人3D视觉手眼标定方法。
发明内容
(一)发明目的
为解决背景技术中存在的技术问题,本发明提出一种机器人3D视觉手眼标定方法。
(二)技术方案
为解决上述问题,本发明提供了一种机器人3D视觉手眼标定方法,包括以下具体步骤:
S1、根据待标定物的位置调整3D相机和机械手的工作位置,其中,3D相机的拍摄端朝向待标定物;机械手的末端安装多组直线硬体;多组直线硬体均指向待标定物;
S2、3D相机运行,通过3D相机直接获得待标定物的端点在3D相机坐标系下的多组坐标值信息,得到坐标值组数据A;
S3、3D视觉手眼标定系统接收到坐标值组数据A,并控制机械手将多组直线硬体的端点接触待标定物的端点,3D视觉手眼标定系统获得机械手个关节转角数据,得到关节转角数据组B;
S4、将关节转角数据组B带入手臂运动学模型,得到待标定物在机械手的基坐标系下的坐标值数据C;
S5、调整待标定物的位置以及姿态,重复S2~S4,得到多组坐标值数据C。
优选的,待标定物选用锥体标定物;其中,直线硬体设有一组。
优选的,3D视觉手眼标定系统包括
机械臂控制模块,用于控制机械手的移动;
图像数据采集与处理模块,用于待标定物图像数据的获取和处理;
手眼相机标定模块,用于获取坐标值组数据A和机器人坐标系之间的变换关系,以将坐标值组数据A转换为以机器人基坐标系来表示。
优选的,坐标值组数据A和机器人坐标系之间的变换关系为:
其中,为机器人基坐标系;为齐次变换关系;为坐标值组数据A。
本发明的上述技术方案具有如下有益的技术效果:
本发明中,通过3D相机直接测量出待标定物在其坐标系下的坐标值,根据当前现有的机械手臂系统,通过3D视觉手眼标定系统操作控制机械手臂运动到目标点,然后根据此刻机械手各关节转角大小,根据运动学模型计算得到末端此刻在基座标系下的坐标信息;
本发明相比现有技术而言更加灵活,更能满足实际工程应用中的精度要求,提高手眼标定精度;本发明除了标定物外不需要额外的硬件设备辅助,操作简单使用方便,大大提高了机器人3D手眼标定的精度。
附图说明
图1为本发明提出的一种机器人3D视觉手眼标定方法的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1所示,本发明提出的一种机器人3D视觉手眼标定方法,包括以下具体步骤:
S1、根据待标定物的位置调整3D相机和机械手的工作位置,其中,3D相机的拍摄端朝向待标定物;机械手的末端安装多组直线硬体;多组直线硬体均指向待标定物;
S2、3D相机运行,通过3D相机直接获得待标定物的端点在3D相机坐标系下的多组坐标值信息,得到坐标值组数据A;
S3、3D视觉手眼标定系统接收到坐标值组数据A,并控制机械手将多组直线硬体的端点接触待标定物的端点,3D视觉手眼标定系统获得机械手个关节转角数据,得到关节转角数据组B;
S4、将关节转角数据组B带入手臂运动学模型,得到待标定物在机械手的基坐标系下的坐标值数据C;
S5、调整待标定物的位置以及姿态,重复S2~S4,得到多组坐标值数据C;
进一步的,在空间中10个不同位置分别采集各自坐标系下的坐标,可以得到待标定物的10个位置分别在两个坐标系下的10个坐标值;采集数据越多,标定结果越准确。
本发明中,通过3D相机直接测量出待标定物在其坐标系下的坐标值,根据当前现有的机械手臂系统,通过3D视觉手眼标定系统操作控制机械手臂运动到目标点,然后根据此刻机械手各关节转角大小,根据运动学模型计算得到末端此刻在基座标系下的坐标信息。
在一个可选的实施例中,待标定物选用锥体标定物;其中,直线硬体设有一组。
在一个可选的实施例中,3D视觉手眼标定系统包括
机械臂控制模块,用于控制机械手的移动;
图像数据采集与处理模块,用于待标定物图像数据的获取和处理;
手眼相机标定模块,用于获取坐标值组数据A和机器人坐标系之间的变换关系,以将坐标值组数据A转换为以机器人基坐标系来表示。
在一个可选的实施例中,坐标值组数据A和机器人坐标系之间的变换关系为:
其中,为机器人基坐标系;为齐次变换关系;为坐标值组数据A。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。
Claims (2)
1.一种机器人3D视觉手眼标定方法,其特征在于,包括以下具体步骤:
S1、根据待标定物的位置调整3D相机和机械手的工作位置,其中,3D相机的拍摄端朝向待标定物;机械手的末端安装多组直线硬体;多组直线硬体均指向待标定物;
S2、3D相机运行,通过3D相机直接获得待标定物的端点在3D相机坐标系下的多组坐标值信息,得到坐标值组数据A;
S3、3D视觉手眼标定系统接收到坐标值组数据A,并控制机械手将多组直线硬体的端点接触待标定物的端点,3D视觉手眼标定系统获得机械手个关节转角数据,得到关节转角数据组B;3D视觉手眼标定系统包括
机械臂控制模块,用于控制机械手的移动;
图像数据采集与处理模块,用于待标定物图像数据的获取和处理;
手眼相机标定模块,用于获取坐标值组数据A和机器人坐标系之间的变换关系,以将坐标值组数据A转换为以机器人基坐标系来表示;
坐标值组数据A和机器人坐标系之间的变换关系为:
其中,为机器人基坐标系;为齐次变换关系;为坐标值组数据A;
S4、将关节转角数据组B带入手臂运动学模型,得到待标定物在机械手的基坐标系下的坐标值数据C;
S5、调整待标定物的位置以及姿态,重复S2~S4,得到多组坐标值数据C。
2.根据权利要求1所述的一种机器人3D视觉手眼标定方法,其特征在于,待标定物选用锥体标定物;其中,直线硬体设有一组。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106419.0A CN112123329B (zh) | 2020-02-21 | 2020-02-21 | 一种机器人3d视觉手眼标定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010106419.0A CN112123329B (zh) | 2020-02-21 | 2020-02-21 | 一种机器人3d视觉手眼标定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112123329A CN112123329A (zh) | 2020-12-25 |
CN112123329B true CN112123329B (zh) | 2024-09-13 |
Family
ID=73850183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010106419.0A Active CN112123329B (zh) | 2020-02-21 | 2020-02-21 | 一种机器人3d视觉手眼标定方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112123329B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115990890B (zh) * | 2023-03-23 | 2023-06-30 | 深圳广成创新技术有限公司 | 一种机械手的标定方法、装置、计算机设备和存储介质 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108942922A (zh) * | 2018-06-11 | 2018-12-07 | 杭州灵西机器人智能科技有限公司 | 基于圆锥标定物的机械臂手眼标定方法、装置及系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2369845A1 (en) * | 2002-01-31 | 2003-07-31 | Braintech, Inc. | Method and apparatus for single camera 3d vision guided robotics |
KR100640743B1 (ko) * | 2004-12-30 | 2006-10-31 | 삼성중공업 주식회사 | 로봇을 이용한 레이저 비젼 시스템 교정방법 |
EP2350750B1 (en) * | 2008-11-25 | 2012-10-31 | ABB Technology Ltd | A method and an apparatus for calibration of an industrial robot system |
JP5450242B2 (ja) * | 2010-05-11 | 2014-03-26 | 株式会社ダイヘン | マニピュレータのキャリブレーション方法及びロボット制御システム |
CN104827480A (zh) * | 2014-02-11 | 2015-08-12 | 泰科电子(上海)有限公司 | 机器人系统的自动标定方法 |
CN109952176B (zh) * | 2017-05-26 | 2022-04-15 | 深圳配天智能技术研究院有限公司 | 一种机器人标定方法、系统、机器人及存储介质 |
CN107498558A (zh) * | 2017-09-19 | 2017-12-22 | 北京阿丘科技有限公司 | 全自动手眼标定方法及装置 |
CN108827250A (zh) * | 2018-05-07 | 2018-11-16 | 深圳市三宝创新智能有限公司 | 一种机器人单目视觉测距技术方法 |
CN108818535B (zh) * | 2018-07-05 | 2020-04-10 | 苏州汉振深目智能科技有限公司 | 机器人3d视觉手眼标定方法 |
CN109129465B (zh) * | 2018-07-25 | 2021-12-14 | 广东奥普特科技股份有限公司 | 一种机器人手眼标定系统及其工作流程 |
CN110238845B (zh) * | 2019-05-22 | 2021-12-10 | 湖南视比特机器人有限公司 | 最优标定点选取和误差自测量的自动手眼标定方法及装置 |
CN110116411B (zh) * | 2019-06-06 | 2020-10-30 | 浙江汉振智能技术有限公司 | 一种基于球目标的机器人3d视觉手眼标定方法 |
-
2020
- 2020-02-21 CN CN202010106419.0A patent/CN112123329B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108942922A (zh) * | 2018-06-11 | 2018-12-07 | 杭州灵西机器人智能科技有限公司 | 基于圆锥标定物的机械臂手眼标定方法、装置及系统 |
Non-Patent Citations (1)
Title |
---|
一种机器人视觉系统非接触式手眼标定方法;曹军杰等;光学技术;20200131;第46卷(第1期);第110-114、123页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112123329A (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109623656B (zh) | 基于厚度在线检测的移动式双机器人协同打磨装置及方法 | |
CN107901041B (zh) | 一种基于图像混合矩的机器人视觉伺服控制方法 | |
CN107139178B (zh) | 一种无人机及其基于视觉的抓取方法 | |
CN108818535B (zh) | 机器人3d视觉手眼标定方法 | |
CN110014426B (zh) | 一种利用低精度深度相机高精度抓取形状对称工件的方法 | |
CN111152229B (zh) | 3d机械视觉的机械手引导方法和装置 | |
CN108827155B (zh) | 一种机器人视觉测量系统及方法 | |
CN113146620B (zh) | 基于双目视觉的双臂协作机器人系统和控制方法 | |
CN109794963B (zh) | 一种面向曲面构件的机器人快速定位方法 | |
CN108098762A (zh) | 一种基于新型视觉引导的机器人定位装置及方法 | |
CN110906863B (zh) | 一种用于线结构光传感器的手眼标定系统及标定方法 | |
CN112648934B (zh) | 一种自动化弯管几何形态检测方法 | |
CN108161991A (zh) | 一种基于力反馈的机器人装配自动寻孔方法 | |
Jiang et al. | The state of the art of search strategies in robotic assembly | |
CN112958960B (zh) | 一种基于光学靶标的机器人手眼标定装置 | |
CN109900251A (zh) | 一种基于视觉技术的机器人定位装置及方法 | |
CN115139283B (zh) | 基于随机标记点阵的机器人手眼标定方法 | |
CN111515928A (zh) | 机械臂运动控制系统 | |
CN111906767A (zh) | 基于双目结构光的视觉纠偏机械臂及纠偏方法 | |
CN113305851A (zh) | 一种机器人微装配用在线检测装置 | |
CN113172632A (zh) | 一种基于图像的简化机器人视觉伺服控制方法 | |
CN112123329B (zh) | 一种机器人3d视觉手眼标定方法 | |
CN110962127A (zh) | 一种用于机械臂末端位姿辅助标定装置及其标定方法 | |
Jian et al. | On-line precision calibration of mobile manipulators based on the multi-level measurement strategy | |
CN115609586A (zh) | 一种基于抓取位姿约束的机器人高精度装配方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |