CN112121648A - Polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and preparation method and application thereof - Google Patents
Polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and preparation method and application thereof Download PDFInfo
- Publication number
- CN112121648A CN112121648A CN202010962237.3A CN202010962237A CN112121648A CN 112121648 A CN112121648 A CN 112121648A CN 202010962237 A CN202010962237 A CN 202010962237A CN 112121648 A CN112121648 A CN 112121648A
- Authority
- CN
- China
- Prior art keywords
- polyvinylidene fluoride
- membrane
- mixed matrix
- preparation
- cleaning performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002033 PVDF binder Substances 0.000 title claims abstract description 83
- 229920002981 polyvinylidene fluoride Polymers 0.000 title claims abstract description 82
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 23
- 239000004941 mixed matrix membrane Substances 0.000 title claims abstract description 18
- 238000004140 cleaning Methods 0.000 title claims abstract description 17
- 239000012528 membrane Substances 0.000 claims abstract description 106
- 229910006404 SnO 2 Inorganic materials 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000007788 liquid Substances 0.000 claims abstract description 27
- 238000005266 casting Methods 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 18
- 238000005191 phase separation Methods 0.000 claims abstract description 17
- 239000002904 solvent Substances 0.000 claims abstract description 12
- 239000002957 persistent organic pollutant Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000002131 composite material Substances 0.000 claims abstract description 6
- 239000010949 copper Substances 0.000 claims description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 239000002114 nanocomposite Substances 0.000 claims description 31
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 28
- 239000008367 deionised water Substances 0.000 claims description 25
- 229910021641 deionized water Inorganic materials 0.000 claims description 25
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 22
- 239000011259 mixed solution Substances 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 10
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 10
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 10
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 9
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 9
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 8
- 150000001879 copper Chemical class 0.000 claims description 8
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 8
- 239000003361 porogen Substances 0.000 claims description 8
- 238000007790 scraping Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 238000006722 reduction reaction Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229940045803 cuprous chloride Drugs 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 2
- 239000003599 detergent Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims 1
- 230000003373 anti-fouling effect Effects 0.000 abstract description 6
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 230000014759 maintenance of location Effects 0.000 abstract description 4
- 239000000654 additive Substances 0.000 abstract description 3
- 239000002105 nanoparticle Substances 0.000 abstract description 3
- 238000000108 ultra-filtration Methods 0.000 description 18
- 239000011521 glass Substances 0.000 description 13
- 239000005591 Pendimethalin Substances 0.000 description 10
- CHIFOSRWCNZCFN-UHFFFAOYSA-N pendimethalin Chemical compound CCC(CC)NC1=C([N+]([O-])=O)C=C(C)C(C)=C1[N+]([O-])=O CHIFOSRWCNZCFN-UHFFFAOYSA-N 0.000 description 10
- 239000011941 photocatalyst Substances 0.000 description 10
- 230000004907 flux Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 238000004321 preservation Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000009285 membrane fouling Methods 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000002715 modification method Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- FWPIDFUJEMBDLS-UHFFFAOYSA-L tin(II) chloride dihydrate Chemical compound O.O.Cl[Sn]Cl FWPIDFUJEMBDLS-UHFFFAOYSA-L 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/34—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling by radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/10—Catalysts being present on the surface of the membrane or in the pores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/36—Hydrophilic membranes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明涉及一种具有光催化自清洁性能的聚偏氟乙烯混合基质膜及其制备方法与应用,制备方法包括:将SnO2‑Cu2O纳米复合材料与聚偏氟乙烯混合并配制得到铸膜液,之后通过非溶剂致相分离法制得聚偏氟乙烯混合基质膜;该混合基质膜可用于提高催化膜反应器装置的抗有机污染物性能。与现有技术相比,本发明将SnO2‑Cu2O以添加剂的形式加入聚偏氟乙烯铸膜液,通过引入无机纳米粒子共混法和NIPS法改性PVDF膜,不仅使得复合膜机械强度提高,同时亲水性也得到大幅增强,并具有更好的抗污染能力和截留性能。
The invention relates to a polyvinylidene fluoride mixed matrix film with photocatalytic self - cleaning performance and a preparation method and application thereof. membrane liquid, and then a polyvinylidene fluoride mixed matrix membrane is prepared by a non-solvent-induced phase separation method; the mixed matrix membrane can be used to improve the anti-organic pollutant performance of the catalytic membrane reactor device. Compared with the prior art, in the present invention, SnO 2 -Cu 2 O is added to the polyvinylidene fluoride casting solution in the form of additives, and the PVDF membrane is modified by introducing the inorganic nanoparticle blending method and the NIPS method, which not only makes the composite membrane mechanically The strength is increased, while the hydrophilicity is also greatly enhanced, and it has better anti-fouling ability and retention performance.
Description
技术领域technical field
本发明属于膜分离技术领域,涉及一种具有光催化自清洁性能的聚偏氟乙烯混合基质膜及其制备方法与应用。The invention belongs to the technical field of membrane separation, and relates to a polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and a preparation method and application thereof.
背景技术Background technique
膜分离技术是水污染控制工程领域的优选技术之一,由于其成本低、出水水质好、集约化程度高、设备简单、操作方便,被广泛应用于饮用水净化和污废水处理及再利用中。然而膜污染现象,尤其是有机物污染,往往造成膜通量的衰减、运行成本的增加和膜使用寿命的缩短,从而成为膜分离技术在饮用水及污、废水处理中广泛应用的主要障碍。Membrane separation technology is one of the preferred technologies in the field of water pollution control engineering. Because of its low cost, good effluent quality, high degree of intensification, simple equipment and convenient operation, it is widely used in drinking water purification and sewage treatment and reuse. . However, membrane fouling, especially organic fouling, often leads to the attenuation of membrane flux, the increase of operating cost and the shortening of membrane service life, thus becoming the main obstacle to the widespread application of membrane separation technology in drinking water, sewage and wastewater treatment.
聚偏氟乙烯(PVDF)是偏氟乙烯均聚物或者偏氟乙烯与其他少量含氟乙烯基单体的共聚物,具有良好的耐化学腐蚀性、耐高温性、耐辐射性和易成膜等特性,作为一种典型的超滤膜材料被广泛地应用于各种水处理领域,如生活污水处理、工业废水处理等。然而,PVDF膜材料的表面能低,与水之间的亲和力差,蛋白质或油类等疏水性有机污染物极易吸附到膜表面而导致膜污染,从而影响膜的经济性与可靠性,制约PVDF膜材料的发展、应用及推广。已知可通过物理和化学手段来改善PVDF膜的抗污染性,改性方法主要可分为膜表面改性和膜材料改性两大类。膜材料改性又可以分为膜材料化学改性和共混改性,后者由于其操作简单,亲水性基团不易脱落,便于大规模推广,是近年来研究的热点。Polyvinylidene fluoride (PVDF) is a vinylidene fluoride homopolymer or a copolymer of vinylidene fluoride and other small amounts of fluorine-containing vinyl monomers. It has good chemical resistance, high temperature resistance, radiation resistance and easy film formation. As a typical ultrafiltration membrane material, it is widely used in various water treatment fields, such as domestic sewage treatment, industrial wastewater treatment, etc. However, PVDF membrane materials have low surface energy and poor affinity with water. Hydrophobic organic pollutants such as proteins or oils are easily adsorbed to the membrane surface and cause membrane fouling, thereby affecting the economy and reliability of the membrane, restricting the Development, application and promotion of PVDF membrane materials. It is known that the fouling resistance of PVDF membranes can be improved by physical and chemical means, and the modification methods can be mainly divided into two categories: membrane surface modification and membrane material modification. Membrane material modification can be further divided into chemical modification and blending modification of membrane materials. The latter is a research hotspot in recent years because of its simple operation, and the hydrophilic group is not easy to fall off, which is convenient for large-scale promotion.
光催化技术是近年来水处理领域中较为新兴、高效、环保的技术手段,该技术利用可再生的光能产生活性基团来实现对水中有机污染物的降解。因此,将光催化技术与膜改性技术相结合,形成复合光催化分离改性膜,能有效提高膜的自清洁能力、亲水性能和截留特性。光催化与膜分离耦合的技术正逐步应用于膜分离研究中,中国专利CN103881122B公布了一种高可见光催化活性的聚氯乙烯/纳米二氧化锡复合膜的制备方法,该膜原料来源广泛,制备方法简单,所得复合膜在可见光下具有优异的光催化活性及稳定性,且极易从降解液中分离回收,适宜于工业化应用。但是该方法制备得到的膜对有机污染物二甲戊灵的抗污染性不足,截留效率低。Photocatalysis technology is a relatively new, efficient and environmentally friendly technical means in the field of water treatment in recent years. This technology uses renewable light energy to generate active groups to achieve the degradation of organic pollutants in water. Therefore, the combination of photocatalytic technology and membrane modification technology to form a composite photocatalytic separation modified membrane can effectively improve the self-cleaning ability, hydrophilic performance and retention characteristics of the membrane. The technology of coupling photocatalysis and membrane separation is gradually being used in membrane separation research. Chinese patent CN103881122B has published a method for preparing a polyvinyl chloride/nano tin dioxide composite membrane with high visible light catalytic activity. The method is simple, the obtained composite film has excellent photocatalytic activity and stability under visible light, and can be easily separated and recovered from the degradation liquid, which is suitable for industrial application. However, the membrane prepared by this method has insufficient anti-fouling property to the organic pollutant pendimethalin, and has low retention efficiency.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是提供一种具有光催化自清洁性能的聚偏氟乙烯混合基质膜及其制备方法与应用,用于解决聚偏氟乙烯膜的膜污染问题。The purpose of the present invention is to provide a polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and its preparation method and application, which are used to solve the membrane pollution problem of the polyvinylidene fluoride membrane.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种具有光催化自清洁性能的聚偏氟乙烯(PVDF)混合基质膜的制备方法,包括:将SnO2-Cu2O纳米复合材料与聚偏氟乙烯混合并配制得到铸膜液,之后通过非溶剂致相分离法(NIPS)制得聚偏氟乙烯混合基质膜。A preparation method of a polyvinylidene fluoride (PVDF) mixed matrix film with photocatalytic self-cleaning performance, comprising: mixing SnO 2 -Cu 2 O nanocomposite material and polyvinylidene fluoride and preparing a casting liquid, and then passing through Polyvinylidene fluoride mixed matrix membranes were prepared by non-solvent induced phase separation (NIPS).
进一步地,所述的SnO2-Cu2O纳米复合材料的制备方法包括:将铜盐、锡盐及盐酸配制成混合溶液,并调节pH至7-12,之后加入还原剂并在室温下进行反应,所得产物依次经过离心、洗涤、干燥、煅烧过程后,即得到所述的SnO2-Cu2O纳米复合材料。Further, the preparation method of the SnO 2 -Cu 2 O nanocomposite material includes: preparing a mixed solution of copper salt, tin salt and hydrochloric acid, adjusting the pH to 7-12, then adding a reducing agent and carrying out the process at room temperature After the reaction, the obtained product undergoes the processes of centrifugation, washing, drying and calcination in sequence, and the SnO 2 -Cu 2 O nanocomposite material is obtained.
进一步地,所述的铜盐包括氯化亚铜,所述的锡盐包括氯化亚锡;Further, the copper salt includes cuprous chloride, and the tin salt includes stannous chloride;
所述的铜盐与锡盐的摩尔比为(1-4):(0.1-2);The mol ratio of described copper salt and tin salt is (1-4): (0.1-2);
所述的盐酸的加入量为10-30mL/mol Cu,盐酸浓度为30-40mol/L;The addition of described hydrochloric acid is 10-30mL/mol Cu, and the concentration of hydrochloric acid is 30-40mol/L;
所述的混合溶液的配制方法包括:将铜盐、锡盐及盐酸加入至去离子水中,并超声15-45min;The preparation method of the mixed solution includes: adding copper salt, tin salt and hydrochloric acid into deionized water, and ultrasonicating for 15-45min;
所述的还原剂包括水合肼,所述的水合肼的加入量为10-30mL/mol Cu;The reducing agent includes hydrazine hydrate, and the addition of the hydrazine hydrate is 10-30 mL/mol Cu;
还原反应中,反应时间为1-4h。In the reduction reaction, the reaction time is 1-4h.
进一步地,所述的洗涤过程中,洗涤剂为乙醇;Further, in the described washing process, the detergent is ethanol;
所述的干燥过程包括在40-80℃下真空干燥;The drying process includes vacuum drying at 40-80°C;
所述的煅烧过程中,煅烧气氛包括氩气,煅烧温度为100-400℃,煅烧时间为1-4h。In the calcination process, the calcination atmosphere includes argon gas, the calcination temperature is 100-400° C., and the calcination time is 1-4 hours.
进一步地,所述的铸膜液的制备方法包括:将SnO2-Cu2O纳米复合材料、致孔剂及聚偏氟乙烯加入至N,N-二甲基甲酰胺中并搅拌均匀,静置脱泡后即得到所述的铸膜液。Further, the preparation method of the casting solution includes: adding SnO 2 -Cu 2 O nanocomposite material, porogen and polyvinylidene fluoride into N,N-dimethylformamide, stirring evenly, The casting liquid is obtained after defoaming.
进一步地,所述的致孔剂包括聚乙烯吡咯烷酮;Further, the porogen includes polyvinylpyrrolidone;
所述的SnO2-Cu2O纳米复合材料、致孔剂及聚偏氟乙烯的质量比为(0.1-1.6):1:(14-20);The mass ratio of the SnO 2 -Cu 2 O nanocomposite material, porogen and polyvinylidene fluoride is (0.1-1.6):1:(14-20);
搅拌过程中,搅拌温度为30-80℃,搅拌时间为8-18h;During the stirring process, the stirring temperature is 30-80℃, and the stirring time is 8-18h;
静置脱泡过程中,静置时间为5-12h。In the process of standing and defoaming, the standing time is 5-12h.
进一步地,所述的非溶剂致相分离法包括:将铸膜液刮涂于基板上,并置于凝胶浴中进行分相,即得到所述的聚偏氟乙烯混合基质膜。Further, the non-solvent-induced phase separation method comprises: scraping the film casting liquid on the substrate, and placing it in a gel bath for phase separation to obtain the polyvinylidene fluoride mixed matrix film.
进一步地,所述的刮膜厚度为100-260μm;Further, the thickness of the scraping film is 100-260 μm;
所述的凝胶浴包括乙醇与水以体积比(0.5-1.5):(0.8-1.3)组成的混合溶液,凝胶浴温度为14-30℃。The gel bath includes a mixed solution of ethanol and water in a volume ratio of (0.5-1.5):(0.8-1.3), and the temperature of the gel bath is 14-30°C.
一种具有光催化自清洁性能的聚偏氟乙烯混合基质膜,采用如上所述的方法制备而成,可用于抗有机污染物,具体为用于提高催化膜反应器装置的抗有机污染物性能。A polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance, prepared by the method as described above, can be used for anti-organic pollutants, specifically for improving the anti-organic pollutant performance of a catalytic membrane reactor device .
本发明的SnO2-Cu2O光催化剂改性的PVDF超滤膜可用于催化膜反应器装置,在可见光灯的照射下实现降解膜表面有机污染物,从而抑制膜污染现象。利用本发明的SnO2-Cu2O光催化剂改性的PVDF超滤膜在可见光照射下实现抗污染的方法如下:The SnO 2 -Cu 2 O photocatalyst-modified PVDF ultrafiltration membrane of the present invention can be used in a catalytic membrane reactor device to degrade organic pollutants on the membrane surface under the irradiation of a visible light lamp, thereby inhibiting membrane fouling. Utilize the SnO 2 -Cu 2 O photocatalyst modified PVDF ultrafiltration membrane of the present invention to realize the anti-pollution method under visible light irradiation as follows:
构建催化膜反应器装置,将污染后的SnO2-Cu2O光催化剂改性的PVDF超滤膜固定于膜组件上,并将LED可见光灯固定于膜表面,光催化30min后将SnO2-Cu2O光催化剂改性的PVDF超滤膜继续用于水通量实验,在LED可见光灯照射下实现抗有机物污染,增强通量恢复。所述的有机污染物包括二甲戊灵。A catalytic membrane reactor device was constructed, the PVDF ultrafiltration membrane modified by the SnO 2 -Cu 2 O photocatalyst after pollution was fixed on the membrane module, and the LED visible light lamp was fixed on the surface of the membrane. After photocatalysis for 30 min, the SnO 2 - The Cu 2 O photocatalyst-modified PVDF ultrafiltration membrane continued to be used in the water flux experiment, which achieved resistance to organic pollution and enhanced flux recovery under LED visible light irradiation. The organic pollutants include pendimethalin.
本发明的SnO2-Cu2O光催化剂改性的PVDF超滤膜在可见光照射下能激活膜表面的SnO2-Cu2O光催化剂产生具有氧化性的活性氧自由基,而活性氧自由基能与有机污染物发生降解反应,将污染物矿化为CO2和H2O。The SnO 2 -Cu 2 O photocatalyst modified PVDF ultrafiltration membrane of the present invention can activate the SnO 2 -Cu 2 O photocatalyst on the surface of the membrane under visible light irradiation to generate oxidative active oxygen radicals, and the active oxygen radicals It can degrade organic pollutants and mineralize pollutants into CO 2 and H 2 O.
本发明的聚偏氟乙烯混合基质膜在对二甲戊灵溶液处理时,膜表现出优异的抗污染性,并且截留率显著提高。这是因为在分相过程中,无机纳米材料嵌入杂化膜表面的凹面导致膜表面更加光滑,光滑的膜表面不易堆积污染物。另一方面,随着亲水性的增强,膜表面的“水合层”有效地防止污垢接近,使得膜孔中的污垢累积更困难,表现出更高的抗污染性能。同时,由于改性膜具有均匀海绵孔的复杂结构以及小于二甲戊灵分子的孔径也可以有效拦截二甲戊灵分子,表现出较高的截留率。When the polyvinylidene fluoride mixed matrix membrane of the present invention is treated with a pendimethalin solution, the membrane exhibits excellent anti-fouling property, and the retention rate is significantly improved. This is because during the phase separation process, the inorganic nanomaterials are embedded in the concave surface of the hybrid membrane surface, resulting in a smoother membrane surface, and the smooth membrane surface is less likely to accumulate contaminants. On the other hand, with the enhancement of hydrophilicity, the "hydration layer" on the membrane surface effectively prevents the fouling from approaching, making the fouling accumulation in the membrane pores more difficult, and showing higher antifouling performance. At the same time, because the modified membrane has a complex structure of uniform sponge pores and a pore size smaller than that of pendimethalin, it can also effectively intercept pendimethalin molecules, showing a high rejection rate.
本发明的制备方法为将已经制备完成的SnO2-Cu2O以添加剂的形式加入聚偏氟乙烯铸膜液,通过引入无机纳米粒子共混法和NIPS法改性PVDF膜不仅使得复合膜机械强度提高,同时亲水性也会大幅提高,具有更好的抗污染能力和截留性能,共混是最简单,也是最常用的膜改性方法。相对于其它方法,共混改性具有以下优点:改性与成膜同步进行,工艺简单,不需要繁琐的后处理步骤;添加剂能同时覆盖膜表面和膜孔内壁且不会引起膜结构的破坏。The preparation method of the present invention is to add the prepared SnO 2 -Cu 2 O to the polyvinylidene fluoride casting solution in the form of an additive, and modifying the PVDF membrane by introducing the inorganic nanoparticle blending method and the NIPS method not only makes the composite membrane mechanically The strength is improved, and the hydrophilicity is also greatly improved, and it has better anti-fouling ability and interception performance. Blending is the simplest and most commonly used membrane modification method. Compared with other methods, blending modification has the following advantages: modification and film formation are carried out simultaneously, the process is simple, and no complicated post-processing steps are required; the additive can cover the membrane surface and the inner wall of the membrane hole at the same time without causing damage to the membrane structure. .
与现有技术相比,本发明具有以下特点:Compared with the prior art, the present invention has the following characteristics:
1)本发明提供的SnO2-Cu2O光催化剂改性的PVDF超滤膜与传统PVDF超滤膜相比亲水性更高,具有显著的光催化性能;SnO2-Cu2O光催化剂中,Cu2O与SnO2的结合可形成异质结结构,在提高二者光响应性能的同时避免了SnO2的光腐蚀现象,而Cu2O的添加提高了其电子传输速率,有效促进了SnO2-Cu2O的可见光响应能力,在可见光照射下具有良好的抗污染效果,可有效减轻膜污染现象并减缓膜通量的下降速率;1) Compared with the traditional PVDF ultrafiltration membrane, the SnO 2 -Cu 2 O photocatalyst modified PVDF ultrafiltration membrane provided by the present invention has higher hydrophilicity and has remarkable photocatalytic performance; SnO 2 -Cu 2 O photocatalyst Among them, the combination of Cu 2 O and SnO 2 can form a heterojunction structure, which can improve the photoresponse performance of the two and avoid the photocorrosion phenomenon of SnO 2 , while the addition of Cu 2 O improves its electron transport rate, effectively promoting The visible light responsiveness of SnO 2 -Cu 2 O has a good anti-fouling effect under visible light irradiation, which can effectively reduce the membrane fouling phenomenon and slow down the decline rate of membrane flux;
2)本发明提供的SnO2-Cu2O光催化剂改性的PVDF超滤膜与紫外光光催化剂(如TiO2)改性的PVDF膜相比显著降低了能耗和成本;2) Compared with the PVDF membrane modified by the SnO 2 -Cu 2 O photocatalyst provided by the present invention, the energy consumption and cost are significantly reduced compared with the PVDF membrane modified by the ultraviolet photocatalyst (such as TiO 2 );
3)本发明制备SnO2-Cu2O光催化剂改性的PVDF超滤膜的方法操作简单易行,所用设备均为本领域常规仪器,工艺周期短,对工艺环境的要求较低,成本低廉,可广泛应用于光催化剂改性PVDF膜的制备;3) The method for preparing the SnO 2 -Cu 2 O photocatalyst-modified PVDF ultrafiltration membrane of the present invention is simple and easy to operate. , which can be widely used in the preparation of photocatalyst modified PVDF membranes;
4)本发明制备SnO2-Cu2O光催化剂改性的PVDF超滤膜的方法为共混改性法,改性膜中的光催化剂SnO2-Cu2O不易在使用过程中随水流溶出,避免了对水体造成毒化及潜在的二次污染,保证膜结构的持久性和稳定性。4) The method for preparing the SnO 2 -Cu 2 O photocatalyst-modified PVDF ultrafiltration membrane of the present invention is a blending modification method, and the photocatalyst SnO 2 -Cu 2 O in the modified membrane is not easy to dissolve with the water flow during use. , to avoid poisoning and potential secondary pollution to the water body, and ensure the durability and stability of the membrane structure.
附图说明Description of drawings
图1为实施例1中制备得到的SnO2-Cu2O颗粒的扫描电镜图;1 is a scanning electron microscope image of SnO 2 -Cu 2 O particles prepared in Example 1;
图2为实施例4中制备得到的均匀聚偏氟乙烯膜的断面扫描电镜图;Fig. 2 is the sectional scanning electron microscope picture of the uniform polyvinylidene fluoride film prepared in embodiment 4;
图3为实施例4-8中制备的SnO2-Cu2O光催化剂改性的PVDF膜(M4-M8)与PVDF原膜M0在可见光光照时降解二甲戊灵溶液的水通量随时间变化的曲线;Figure 3 shows the water flux of the SnO 2 -Cu 2 O photocatalyst-modified PVDF membrane (M4-M8) prepared in Example 4-8 and the original PVDF membrane M0 degrading pendimethalin solution over time under visible light irradiation changing curve;
图4为实施例4-8中制备的SnO2-Cu2O光催化剂改性的PVDF膜(M4-M8)与PVDF原膜M0的水通量、截留率对比图。FIG. 4 is a comparison diagram of the water flux and rejection rate of the SnO 2 -Cu 2 O photocatalyst-modified PVDF membrane (M4-M8) prepared in Example 4-8 and the original PVDF membrane M0.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
一种具有光催化自清洁性能的聚偏氟乙烯(PVDF)混合基质膜的制备方法,包括以下步骤:A preparation method of a polyvinylidene fluoride (PVDF) mixed matrix membrane with photocatalytic self-cleaning performance, comprising the following steps:
1)SnO2-Cu2O纳米复合材料的制备:将氯化亚铜(CuCl2)、二水合氯化亚锡(SnCl2·2H2O)及盐酸加入至去离子水中,并超声15-45min得到混合溶液,之后将混合溶液的pH调节至7-12,加入还原剂水合肼并在室温下反应1-4h,所得产物经离心分离后,取沉淀并用乙醇洗涤,再在40-80℃下真空干燥,最后在氩气氛围中于100-400℃下煅烧1-4h后,即得到SnO2-Cu2O纳米复合材料;1) Preparation of SnO 2 -Cu 2 O nanocomposite: cuprous chloride (CuCl 2 ), stannous chloride dihydrate (SnCl 2 ·2H 2 O) and hydrochloric acid were added to deionized water, and sonicated for 15- After 45 minutes, a mixed solution was obtained, then the pH of the mixed solution was adjusted to 7-12, a reducing agent hydrazine hydrate was added and the reaction was carried out at room temperature for 1-4 hours. After drying under vacuum, and finally calcining at 100-400 ° C for 1-4 h in an argon atmosphere, SnO 2 -Cu 2 O nanocomposite is obtained;
其中,CuCl2与SnCl2·2H2O的摩尔比为(1-4):(0.1-2);盐酸的加入量为10-30mL/mol Cu,盐酸浓度为30-40mol/L;水合肼的加入量为10-30mL/mol Cu;Wherein, the molar ratio of CuCl 2 to SnCl 2 ·2H 2 O is (1-4): (0.1-2); the addition of hydrochloric acid is 10-30mL/mol Cu, and the concentration of hydrochloric acid is 30-40mol/L; hydrazine hydrate The addition amount is 10-30mL/mol Cu;
2)铸膜液的制备:将SnO2-Cu2O纳米复合材料、致孔剂聚乙烯吡咯烷酮(PVP)及聚偏氟乙烯(PVDF)加入至N,N-二甲基甲酰胺(DMF)中并在30-80℃下搅拌8-18h,静置脱泡后即得到铸膜液;2) Preparation of casting solution: SnO 2 -Cu 2 O nanocomposite, porogen polyvinylpyrrolidone (PVP) and polyvinylidene fluoride (PVDF) were added to N,N-dimethylformamide (DMF) and stirring at 30-80°C for 8-18h, and after standing for defoaming, the casting liquid is obtained;
其中,SnO2-Cu2O纳米复合材料、致孔剂及聚偏氟乙烯的质量比为(0.1-1.6):1:(14-20);Wherein, the mass ratio of SnO 2 -Cu 2 O nanocomposite, porogen and polyvinylidene fluoride is (0.1-1.6):1:(14-20);
3)非溶剂致相分离法制备聚偏氟乙烯混合基质膜:将铸膜液刮涂于玻璃板上,刮膜厚度为100-260μm,并置于由乙醇与水以体积比(0.5-1.5):(0.8-1.3)组成的14-30℃的凝胶浴中进行分相,即得到聚偏氟乙烯混合基质膜。3) Preparation of polyvinylidene fluoride mixed matrix film by non-solvent-induced phase separation method: Scratch the casting liquid on a glass plate, the thickness of the scraped film is 100-260 μm, and place it in a volume ratio of ethanol and water (0.5-1.5 μm). ): (0.8-1.3) to conduct phase separation in a gel bath at 14-30° C. to obtain a polyvinylidene fluoride mixed matrix membrane.
以下是更加详细的实施案例,通过以下实施案例进一步说明本发明的技术方案以及所能够获得的技术效果。The following are more detailed implementation cases, which further illustrate the technical solutions of the present invention and the technical effects that can be obtained.
实施例1:Example 1:
本实施例用于制备SnO2-Cu2O纳米复合材料,具体的制备方法如下:This embodiment is used to prepare SnO 2 -Cu 2 O nanocomposite materials, and the specific preparation method is as follows:
1)将0.01mol CuCl2、0.005mol SnCl2·2H2O及0.2mL 35mol/L盐酸加入至200mL去离子水中,并超声处理30min,得到混合溶液;1) adding 0.01mol CuCl 2 , 0.005mol SnCl 2 2H 2 O and 0.2mL 35mol/L hydrochloric acid to 200mL deionized water, and ultrasonically treating for 30min to obtain a mixed solution;
2)向混合溶液中加入氨水至溶液pH=9.0,之后加入0.2mL水合肼,并在室温下进行还原反应2h;2) Ammonia water was added to the mixed solution until pH=9.0, then 0.2 mL of hydrazine hydrate was added, and the reduction reaction was carried out at room temperature for 2 hours;
3)所得产物经乙醇洗涤后,在60℃下真空干燥,之后将干燥粉末在氩气保护中于200℃下煅烧2h以获取SnO2-Cu2O纳米复合材料。3) After the obtained product was washed with ethanol, vacuum-dried at 60° C., and then the dried powder was calcined at 200° C. for 2 h under argon protection to obtain SnO 2 -Cu 2 O nanocomposite.
对所得SnO2-Cu2O纳米复合材料进行扫描电镜表征,结果如图1所示。The obtained SnO 2 -Cu 2 O nanocomposite was characterized by scanning electron microscope, and the results are shown in Fig. 1 .
实施例2:Example 2:
本实施例用于制备SnO2-Cu2O纳米复合材料,具体的制备方法如下:This embodiment is used to prepare SnO 2 -Cu 2 O nanocomposite materials, and the specific preparation method is as follows:
1)将0.04mol CuCl2、0.004mol SnCl2·2H2O及0.4mL 30mol/L盐酸加入至200mL去离子水中,并超声处理15min,得到混合溶液;1) adding 0.04mol CuCl 2 , 0.004mol SnCl 2 ·2H 2 O and 0.4mL 30mol/L hydrochloric acid to 200mL deionized water, and ultrasonically treating for 15min to obtain a mixed solution;
2)向混合溶液中加入氨水至溶液pH=9.0,之后加入0.4mL水合肼,并在室温下进行还原反应1h;2) Ammonia water was added to the mixed solution until pH=9.0, then 0.4 mL of hydrazine hydrate was added, and the reduction reaction was carried out at room temperature for 1 h;
3)所得产物经乙醇洗涤后,在40℃下真空干燥,之后将干燥粉末在氩气保护中于100℃下煅烧1h以获取SnO2-Cu2O纳米复合材料。3) After the obtained product was washed with ethanol, it was vacuum-dried at 40° C., and then the dried powder was calcined at 100° C. for 1 h under argon protection to obtain SnO 2 -Cu 2 O nanocomposite.
实施例3:Example 3:
本实施例用于制备SnO2-Cu2O纳米复合材料,具体的制备方法如下:This embodiment is used to prepare SnO 2 -Cu 2 O nanocomposite materials, and the specific preparation method is as follows:
1)将0.07mol CuCl2、0.035mol SnCl2·2H2O及2.1mL 40mol/L盐酸加入至200mL去离子水中,并超声处理45min,得到混合溶液;1) adding 0.07mol CuCl 2 , 0.035mol SnCl 2 ·2H 2 O and 2.1 mL of 40 mol/L hydrochloric acid to 200 mL of deionized water, and ultrasonically treated for 45 min to obtain a mixed solution;
2)向混合溶液中加入氨水至溶液pH=9.0,之后加入2.1mL水合肼,并在室温下进行还原反应4h;2) Add ammonia water to the mixed solution until pH=9.0, then add 2.1 mL of hydrazine hydrate, and carry out reduction reaction at room temperature for 4 hours;
3)所得产物经乙醇洗涤后,在80℃下真空干燥,之后将干燥粉末在氩气保护中于400℃下煅烧4h以获取SnO2-Cu2O纳米复合材料。3) After the obtained product was washed with ethanol, vacuum dried at 80°C, and then the dried powder was calcined at 400°C for 4 h under argon protection to obtain SnO 2 -Cu 2 O nanocomposite.
实施例4:Example 4:
本实施例采用实施例1中的SnO2-Cu2O纳米复合材料进一步制备聚偏氟乙烯混合基质膜,具体的制备方法如下:In this example, the SnO 2 -Cu 2 O nanocomposite material in Example 1 is used to further prepare a polyvinylidene fluoride mixed matrix film, and the specific preparation method is as follows:
1)将SnO2-Cu2O纳米复合材料、PVP、PVDF以质量比0.3:1:15溶解于DMF中,并在60℃下搅拌10h至充分溶解,再静置脱泡6h,得到铸膜液;1) Dissolve SnO 2 -Cu 2 O nanocomposite, PVP and PVDF in DMF at a mass ratio of 0.3:1:15, stir at 60°C for 10h until fully dissolved, and then stand for defoaming for 6h to obtain a cast film liquid;
2)将铸膜液刮涂于玻璃板上,刮膜厚度为250μm;2) Scraping the casting liquid on the glass plate, the thickness of the scraping film is 250 μm;
3)将带有膜液的玻璃板浸入15℃乙醇和去离子水以体积比1.0:1.2组成的混合物中进行分相;3) Immerse the glass plate with the membrane liquid in a mixture of 15°C ethanol and deionized water in a volume ratio of 1.0:1.2 for phase separation;
4)将分相后的膜转移至去离子水中浸泡以除去多余溶剂,再放入干净的去离子水中保存,获得聚偏氟乙烯混合基质膜,记为M4超滤膜。4) Transfer the phase-separated membrane to deionized water for soaking to remove excess solvent, and then put it into clean deionized water for preservation to obtain a polyvinylidene fluoride mixed matrix membrane, which is recorded as an M4 ultrafiltration membrane.
对获得的M4超滤膜进行断面扫面电镜表征,结果如图2所示。从图中可以看出,膜截面表面致密,但是具有较大的膜孔。The obtained M4 ultrafiltration membrane was characterized by cross-sectional scanning electron microscopy, and the results are shown in Figure 2. It can be seen from the figure that the surface of the membrane section is dense, but has larger membrane pores.
实施例5:Example 5:
本实施例采用实施例1中的SnO2-Cu2O纳米复合材料进一步制备聚偏氟乙烯混合基质膜,具体的制备方法如下:In this example, the SnO 2 -Cu 2 O nanocomposite material in Example 1 is used to further prepare a polyvinylidene fluoride mixed matrix film, and the specific preparation method is as follows:
1)将SnO2-Cu2O纳米复合材料、PVP、PVDF以质量比0.8:1:15溶解于DMF中,并在70℃下搅拌10h至充分溶解,再静置脱泡10h,得到铸膜液;1) Dissolve SnO 2 -Cu 2 O nanocomposite, PVP and PVDF in DMF at a mass ratio of 0.8:1:15, stir at 70°C for 10h until fully dissolved, and then stand for defoaming for 10h to obtain a cast film liquid;
2)将铸膜液刮涂于玻璃板上,刮膜厚度为150μm;2) Scratch the casting liquid on the glass plate, and the thickness of the scraped film is 150 μm;
3)将带有膜液的玻璃板浸入20℃乙醇和去离子水以体积比0.8:1.0组成的混合物中进行分相;3) Immerse the glass plate with the membrane liquid in a mixture of ethanol and deionized water at a volume ratio of 0.8:1.0 at 20°C for phase separation;
4)将分相后的膜转移至去离子水中浸泡以除去多余溶剂,再放入干净的去离子水中保存,获得聚偏氟乙烯混合基质膜,记为M5超滤膜。4) Transfer the phase-separated membrane to deionized water for immersion to remove excess solvent, and then put it into clean deionized water for preservation to obtain a polyvinylidene fluoride mixed matrix membrane, which is denoted as M5 ultrafiltration membrane.
实施例6:Example 6:
本实施例采用实施例1中的SnO2-Cu2O纳米复合材料进一步制备聚偏氟乙烯混合基质膜,具体的制备方法如下:In this example, the SnO 2 -Cu 2 O nanocomposite material in Example 1 is used to further prepare a polyvinylidene fluoride mixed matrix film, and the specific preparation method is as follows:
1)将SnO2-Cu2O纳米复合材料、PVP、PVDF以质量比1.5:1:15溶解于DMF中,并在50℃下搅拌10h至充分溶解,再静置脱泡8h,得到铸膜液;1) Dissolve SnO 2 -Cu 2 O nanocomposite, PVP and PVDF in DMF at a mass ratio of 1.5:1:15, stir at 50°C for 10h until fully dissolved, and then stand for degassing for 8h to obtain a cast film liquid;
2)将铸膜液刮涂于玻璃板上,刮膜厚度为130μm;2) Scratch the casting liquid on the glass plate, and the thickness of the scraped film is 130 μm;
3)将带有膜液的玻璃板浸入25℃乙醇和去离子水以体积比1.2:1.0组成的混合物中进行分相;3) Immerse the glass plate with the membrane liquid in a mixture of ethanol and deionized water at a volume ratio of 1.2:1.0 at 25°C for phase separation;
4)将分相后的膜转移至去离子水中浸泡以除去多余溶剂,再放入干净的去离子水中保存,获得聚偏氟乙烯混合基质膜,记为M6超滤膜。4) Transfer the phase-separated membrane to deionized water and soak it in deionized water to remove excess solvent, and then put it into clean deionized water for preservation to obtain a polyvinylidene fluoride mixed matrix membrane, denoted as M6 ultrafiltration membrane.
实施例7:Example 7:
本实施例采用实施例1中的SnO2-Cu2O纳米复合材料进一步制备聚偏氟乙烯混合基质膜,具体的制备方法如下:In this example, the SnO 2 -Cu 2 O nanocomposite material in Example 1 is used to further prepare a polyvinylidene fluoride mixed matrix film, and the specific preparation method is as follows:
1)将SnO2-Cu2O纳米复合材料、PVP、PVDF以质量比0.1:1:14溶解于DMF中,并在30℃下搅拌8h至充分溶解,再静置脱泡5h,得到铸膜液;1) Dissolve SnO 2 -Cu 2 O nanocomposite, PVP and PVDF in DMF at a mass ratio of 0.1:1:14, stir at 30°C for 8h until fully dissolved, and then stand for defoaming for 5h to obtain a cast film liquid;
2)将铸膜液刮涂于玻璃板上,刮膜厚度为100μm;2) Scratch the casting liquid on the glass plate, and the thickness of the scraped film is 100 μm;
3)将带有膜液的玻璃板浸入14℃乙醇和去离子水以体积比0.5:0.8组成的混合物中进行分相;3) Immerse the glass plate with the membrane liquid in a mixture of 14°C ethanol and deionized water in a volume ratio of 0.5:0.8 for phase separation;
4)将分相后的膜转移至去离子水中浸泡以除去多余溶剂,再放入干净的去离子水中保存,获得聚偏氟乙烯混合基质膜,记为M7超滤膜。4) Transfer the phase-separated membrane to deionized water for soaking to remove excess solvent, and then put it into clean deionized water for preservation to obtain a polyvinylidene fluoride mixed matrix membrane, which is recorded as an M7 ultrafiltration membrane.
实施例8:Example 8:
本实施例采用实施例1中的SnO2-Cu2O纳米复合材料进一步制备聚偏氟乙烯混合基质膜,具体的制备方法如下:In this example, the SnO 2 -Cu 2 O nanocomposite material in Example 1 is used to further prepare a polyvinylidene fluoride mixed matrix film, and the specific preparation method is as follows:
1)将SnO2-Cu2O纳米复合材料、PVP、PVDF以质量比1.6:1:20溶解于DMF中,并在80℃下搅拌18h至充分溶解,再静置脱泡12h,得到铸膜液;1) Dissolve SnO 2 -Cu 2 O nanocomposite, PVP and PVDF in DMF at a mass ratio of 1.6:1:20, stir at 80°C for 18h until fully dissolved, and then stand for defoaming for 12h to obtain a cast film liquid;
2)将铸膜液刮涂于玻璃板上,刮膜厚度为260μm;2) Scratch the casting liquid on the glass plate, and the thickness of the scraped film is 260 μm;
3)将带有膜液的玻璃板浸入30℃乙醇和去离子水以体积比1.5:1.3组成的混合物中进行分相;3) Immerse the glass plate with the membrane liquid in a mixture of ethanol and deionized water at a volume ratio of 1.5:1.3 at 30°C for phase separation;
4)将分相后的膜转移至去离子水中浸泡以除去多余溶剂,再放入干净的去离子水中保存,获得聚偏氟乙烯混合基质膜,记为M8超滤膜。4) Transfer the phase-separated membrane to deionized water for immersion to remove excess solvent, and then put it into clean deionized water for preservation to obtain a polyvinylidene fluoride mixed matrix membrane, which is recorded as an M8 ultrafiltration membrane.
对比例:Comparative ratio:
本实施例采用NIPS法制备不含SnO2-Cu2O纳米复合材料的聚偏氟乙烯平板膜,具体的制备方法如下:In this embodiment, the NIPS method is used to prepare the polyvinylidene fluoride flat film without SnO 2 -Cu 2 O nanocomposite material, and the specific preparation method is as follows:
1)将PVP、PVDF以质量比1:15溶解于DMF中,并在60℃下搅拌10h至充分溶解,再静置脱泡6h,得到铸膜液;1) Dissolve PVP and PVDF in DMF at a mass ratio of 1:15, stir at 60°C for 10 hours until fully dissolved, and then stand for deaeration for 6 hours to obtain a casting solution;
2)将铸膜液刮涂于玻璃板上,刮膜厚度为250μm;2) Scraping the casting liquid on the glass plate, the thickness of the scraping film is 250 μm;
3)将带有膜液的玻璃板浸入15℃乙醇和去离子水以体积比1.0:1.2组成的混合物中进行分相;3) Immerse the glass plate with the membrane liquid in a mixture of 15°C ethanol and deionized water in a volume ratio of 1.0:1.2 for phase separation;
4)将分相后的膜转移至去离子水中浸泡以除去多余溶剂,再放入干净的去离子水中保存,获得未改性聚偏氟乙烯平板膜,记为M0超滤膜。4) Transfer the phase-separated membrane to deionized water for soaking to remove excess solvent, and then put it into clean deionized water for preservation to obtain an unmodified polyvinylidene fluoride flat membrane, which is recorded as M0 ultrafiltration membrane.
实施例9:Example 9:
本实施例用于对实施例4-8及对比例中的的超滤膜进行水通量及二甲戊灵截留率测试,其中水通量及二甲戊灵截留率测试方法参照文献:Y.Wang,Gui-E Chen,Hai-LingWu,Fabrication of GO-Ag/PVDF/F127 modified membrane IPA coagulation bath forcatalytic reduction of 4-nitrophenol,Sep.Purif.Technol.235(2020)116143。测试结果分别如图3及图4所示,从图中可以看出,与原始PVDF膜相比,每种添加纳米粒子的膜都表现出优越的渗透性和更好的分离性能。渗透性增加可能是由于以下两个主要因素的影响:1)添加纳米粒子将赋予膜亲水性,从而使水通过膜的速率增加;2)与原始膜相比,改性膜的孔径和孔隙度扩大,这无疑有利于渗透性。分离性能的提高可以通过以下三个原因来阐述:1)膜的孔径小于污染物的尺寸;2)延迟分相形成的完整的海绵孔的复杂结构可以有效地拦截二甲戊灵分子;3)使用界面水化层增强亲水性的理论,减少污染物与膜表面之间的接触,从而阻止污染物穿透改性膜。同时,相较于用水简单清洗受污染的膜,将膜暴露于可见光下后能有效催化分解附着于膜孔上的二甲戊灵,从而带来更高的通量恢复率。The present embodiment is used to test the water flux and pendimethalin rejection rate of the ultrafiltration membranes in Examples 4-8 and Comparative Examples, wherein the test method of water flux and pendimethalin rejection rate refers to literature: Y . Wang, Gui-E Chen, Hai-Ling Wu, Fabrication of GO-Ag/PVDF/F127 modified membrane IPA coagulation bath for catalytic reduction of 4-nitrophenol, Sep. Purif. Technol. 235(2020) 116143. The test results are shown in Figure 3 and Figure 4, respectively. It can be seen from the figures that each nanoparticle-added membrane exhibits superior permeability and better separation performance compared with the original PVDF membrane. The increase in permeability may be due to two main factors: 1) the addition of nanoparticles will render the membrane hydrophilic, thereby increasing the rate of water passing through the membrane; 2) the pore size and porosity of the modified membrane compared to the pristine membrane degree of expansion, which is undoubtedly conducive to permeability. The improvement of separation performance can be explained by the following three reasons: 1) the pore size of the membrane is smaller than the size of the pollutant; 2) the complex structure of the complete sponge pores formed by delayed phase separation can effectively intercept pendimethalin molecules; 3) Using the theory that the interfacial hydration layer enhances the hydrophilicity, the contact between the contaminants and the membrane surface is reduced, thereby preventing the contaminants from penetrating the modified membrane. At the same time, compared to simply washing the contaminated membrane with water, exposing the membrane to visible light can effectively catalyze the decomposition of pendimethalin attached to the membrane pores, resulting in a higher flux recovery rate.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The foregoing description of the embodiments is provided to facilitate understanding and use of the invention by those of ordinary skill in the art. It will be apparent to those skilled in the art that various modifications to these embodiments can be readily made, and the generic principles described herein can be applied to other embodiments without inventive step. Therefore, the present invention is not limited to the above-mentioned embodiments, and improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010962237.3A CN112121648A (en) | 2020-09-14 | 2020-09-14 | Polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010962237.3A CN112121648A (en) | 2020-09-14 | 2020-09-14 | Polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112121648A true CN112121648A (en) | 2020-12-25 |
Family
ID=73845206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010962237.3A Pending CN112121648A (en) | 2020-09-14 | 2020-09-14 | Polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112121648A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112999874A (en) * | 2021-02-25 | 2021-06-22 | 上海应用技术大学 | Method for preparing PMIA mixed matrix membrane with photocatalytic performance by blending and application |
CN115282787A (en) * | 2022-01-21 | 2022-11-04 | 浙江师范大学 | Composite separation membrane with photocatalytic self-cleaning function, preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59150508A (en) * | 1983-02-17 | 1984-08-28 | Toshiba Corp | Preparation of oxygen gas permselective composite membrane |
CN107198974A (en) * | 2017-07-03 | 2017-09-26 | 四川恒创博联科技有限责任公司 | A kind of photocatalysis hollow fiber ultrafiltration membrane and preparation method thereof |
CN108607567A (en) * | 2018-05-11 | 2018-10-02 | 陕西科技大学 | A kind of Cu-Cu2O/SnO2Efficient visible light catalytic environment scavenging material and preparation method thereof |
-
2020
- 2020-09-14 CN CN202010962237.3A patent/CN112121648A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59150508A (en) * | 1983-02-17 | 1984-08-28 | Toshiba Corp | Preparation of oxygen gas permselective composite membrane |
CN107198974A (en) * | 2017-07-03 | 2017-09-26 | 四川恒创博联科技有限责任公司 | A kind of photocatalysis hollow fiber ultrafiltration membrane and preparation method thereof |
CN108607567A (en) * | 2018-05-11 | 2018-10-02 | 陕西科技大学 | A kind of Cu-Cu2O/SnO2Efficient visible light catalytic environment scavenging material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
顾明: "《二氧化锡基催化剂的构筑及其动力学过程》", 《扬州大学硕士毕业论文》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112999874A (en) * | 2021-02-25 | 2021-06-22 | 上海应用技术大学 | Method for preparing PMIA mixed matrix membrane with photocatalytic performance by blending and application |
CN115282787A (en) * | 2022-01-21 | 2022-11-04 | 浙江师范大学 | Composite separation membrane with photocatalytic self-cleaning function, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110787645B (en) | A PVDF ultrafiltration membrane modified by visible light photocatalyst and its preparation method and application | |
CN106039998A (en) | Beta-FeOOH nanocrystal-loaded photocatalytic composite nanofiltration membrane and preparation method thereof | |
CN112246108B (en) | Polypyrrole-nickel conductive composite separation membrane and preparation method and application thereof | |
CN106669468B (en) | Visible light-catalyzed flat-plate ultrafiltration membrane based on metal-doped g-C3N4 and its preparation method | |
WO2021093832A1 (en) | C3n4 modified organic film preparation method and application | |
CN112452159B (en) | A kind of preparation method of superhydrophilic-underwater superoleophobic microfiltration membrane | |
CN105214524A (en) | Tunica fibrosa of adsorbable heavy-metal ion removal and photocatalysis degradation organic contaminant and preparation method thereof | |
CN112121648A (en) | Polyvinylidene fluoride mixed matrix membrane with photocatalytic self-cleaning performance and preparation method and application thereof | |
CN107337266A (en) | A kind of preparation method of the hollow fiber composite membrane with O3 catalytic oxidation function | |
CN112121642A (en) | A poly-m-phenylene isophthalamide water treatment film with photocatalytic self-cleaning performance and its preparation method and application | |
CN112933997B (en) | A kind of preparation method of inorganic modified membrane based on in-situ reduction and its application | |
CN110975626B (en) | A kind of preparation method of photo-Fenton catalytic self-cleaning superhydrophilic PVDF ultrafiltration membrane | |
CN113289657B (en) | Preparation method and application of nitrogen-doped graphene catalytic membrane | |
CN106943897A (en) | Based on dopen Nano Cu2O visible light catalytic flat-plate ultrafiltration membrane and preparation method | |
CN106731876A (en) | Visible light catalytic flat-plate ultrafiltration membrane and preparation method based on dopen Nano ZnO | |
CN110813099B (en) | A CdS/MIL-101(Cr) photocatalyst modified PVDF ultrafiltration membrane and its preparation method and application | |
CN115779976B (en) | Modified ozonization catalyst and preparation method and application thereof | |
CN117619159A (en) | A kind of cobalt-doped iron oxyhydroxide photo-Fenton self-cleaning film and its preparation method and application | |
CN112999874A (en) | Method for preparing PMIA mixed matrix membrane with photocatalytic performance by blending and application | |
CN217909816U (en) | Integrated photocatalysis ceramic membrane water treatment device | |
CN116392973A (en) | PVDF (polyvinylidene fluoride) photocatalysis self-cleaning film containing Z-type 2D/3D heterojunction and preparation method and application thereof | |
CN112569807A (en) | Polyvinylidene fluoride mixed matrix membrane with photocatalytic performance and preparation and application thereof | |
CN106975359A (en) | Based on dopen Nano Cu2O visible light catalytic hollow fiber ultrafiltration membrane and preparation method | |
CN114042384B (en) | An electrocatalytic hydrophilic/hydrophobic/hydrophilic sandwich structure conductive distillation membrane and its preparation method | |
CN112044288A (en) | Based on F-TiO2/Fe-g-C3N4Self-cleaning PVDF hollow fiber ultrafiltration membrane and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201225 |