CN112115043A - Image-based on-end intelligent page quality inspection method - Google Patents
Image-based on-end intelligent page quality inspection method Download PDFInfo
- Publication number
- CN112115043A CN112115043A CN202010807204.1A CN202010807204A CN112115043A CN 112115043 A CN112115043 A CN 112115043A CN 202010807204 A CN202010807204 A CN 202010807204A CN 112115043 A CN112115043 A CN 112115043A
- Authority
- CN
- China
- Prior art keywords
- page
- empty
- resource
- elements
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000007689 inspection Methods 0.000 title claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 26
- 230000002159 abnormal effect Effects 0.000 claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 19
- 238000013145 classification model Methods 0.000 claims description 43
- 230000002452 interceptive effect Effects 0.000 claims description 32
- 238000005516 engineering process Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 9
- 238000012216 screening Methods 0.000 claims description 8
- 238000013135 deep learning Methods 0.000 claims description 5
- 238000010801 machine learning Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 230000009191 jumping Effects 0.000 claims description 3
- 238000013468 resource allocation Methods 0.000 claims 2
- 238000012360 testing method Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 5
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000012015 optical character recognition Methods 0.000 description 7
- 238000013515 script Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/3668—Testing of software
- G06F11/3672—Test management
- G06F11/3688—Test management for test execution, e.g. scheduling of test suites
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0641—Shopping interfaces
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- General Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Data Mining & Analysis (AREA)
- Computer Hardware Design (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Quality & Reliability (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明属于测试技术、计算机视觉技术领域,尤其涉及一种基于图像的端上智能化页面质量巡检方法。The invention belongs to the fields of testing technology and computer vision technology, and in particular relates to an image-based on-device intelligent page quality inspection method.
背景技术Background technique
随着移动互联网的蓬勃发展,商品对象信息服务系统已然由PC时代转到无线时代。在数字电商行业,由于营销促销活动种类繁多,变动灵活,营销活动的会场H5页面发布往往支持营销规则制定者(非技术人员)随时根据运营及营销需求灵活新建配置或变更配置。变更的灵活性则可能会带来更大的线上质量风险,而这些页面的线上质量往往直接影响到用户体验、营销活动效果,甚至成交。但页面的强分散性大大提升了质量保障难度,尤其是大促期间数百甚至数千个H5活动/会场页数千次变更发布导致投入人力测试成本极高(多人交互沟通、多平台切换操作、任务零碎且分散)。因此,需要一套通用、低成本方案对页面可能出现的空屏、空窗(某些资源位缺失)“空楼层”(模块内容缺失)等共性严重问题进行有效探测进而高效保障页面线上质量。With the vigorous development of the mobile Internet, the commodity object information service system has shifted from the PC era to the wireless era. In the digital e-commerce industry, due to the wide variety of marketing promotion activities and flexible changes, the H5 page release of the venue of the marketing activities often supports the marketing rule makers (non-technical personnel) to flexibly create or change the configuration at any time according to operational and marketing needs. The flexibility of change may bring greater online quality risks, and the online quality of these pages often directly affects user experience, marketing campaign effectiveness, and even sales. However, the strong decentralization of the page greatly increases the difficulty of quality assurance, especially during the promotion period, hundreds or even thousands of H5 events/site pages are changed and released thousands of times, resulting in extremely high cost of human testing (multi-person interactive communication, multi-platform switching) operations, tasks are fragmented and dispersed). Therefore, a general and low-cost solution is needed to effectively detect common serious problems such as empty screens, empty windows (missing some resource bits), and "empty floors" (missing module content) that may appear on the page, so as to efficiently ensure the online quality of the page. .
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术的不足,提供一种基于图像的端上智能化页面质量巡检方法。The purpose of the present invention is to provide an image-based on-device intelligent page quality inspection method in view of the deficiencies of the prior art.
本发明的目的是通过以下技术方案来实现的:一种基于图像的端上智能化页面质量巡检方法,包括以下步骤:The object of the present invention is achieved through the following technical solutions: an image-based on-end intelligent page quality inspection method, comprising the following steps:
S1:获取页面的DOM元素位置信息和页面截图,所述页面截图包括正常态页面截图和异常态页面截图;所述异常态截图包括含有空坑的页面截图和含有文案重叠覆盖问题的页面截图;并额外获取空坑区域和文案重叠覆盖区域对应的DOM元素位置信息;S1: Obtain DOM element location information and page screenshots of the page, where the page screenshots include normal page screenshots and abnormal state page screenshots; the abnormal state screenshots include page screenshots containing empty pits and page screenshots containing copywriting overlay problems; And additionally obtain the DOM element position information corresponding to the empty pit area and the overlapping coverage area of the copy;
S2:根据步骤S1获得的DOM元素位置信息和页面截图,分别训练条状模块分类模型、资源位模块分类模型、空坑类异常检测模型和文案重叠覆盖识别模型;S2: According to the DOM element location information and page screenshots obtained in step S1, respectively train a strip module classification model, a resource bit module classification model, an anomaly detection model for empty pits, and a copywriting overlap coverage recognition model;
所述条状模块分类模型和资源位模块分类模型的训练过程具体为:根据步骤S1获得的DOM元素位置信息和页面截图,筛选并截取得到条状元素和资源位元素;根据条状元素ROI及其对应的类别采用深度学习残差网络或自动机器学习技术训练得到条状模块分类模型,输入为条状元素,输出为条状元素类别;根据资源位元素及其对应的类别采用深度学习残差网络或自动机器学习技术训练得到资源位模块分类模型,输入为资源位元素,输出为资源位元素类别;The training process of the strip module classification model and the resource bit module classification model is specifically: according to the DOM element position information and page screenshots obtained in step S1, screening and intercepting to obtain strip elements and resource bit elements; The corresponding category is trained by deep learning residual network or automatic machine learning technology to obtain a strip module classification model, the input is strip element, and the output is strip element category; according to resource bit elements and their corresponding categories, deep learning residuals are used The network or automatic machine learning technology is trained to obtain the resource bit module classification model, the input is the resource bit element, and the output is the resource bit element category;
所述条状元素的类别包括电梯导航模块、楼层标题、底部Tab导航栏和其它类;所述资源位元素的类别包括商品资源位类、卡券类、店铺类和其它类;The categories of the strip elements include elevator navigation module, floor title, bottom Tab navigation bar and other categories; the categories of the resource element include commodity resource category, coupon category, store category and other categories;
所述空坑类异常检测模型的训练过程具体为:批量执行S1后,首先对于S1中获得的含有空坑的页面截图及空坑元素对应的DOM的包围框坐标的标签进行一轮人工复核打标,即删除实际为非空坑标签的样本和增加标注未标注的空坑区域,得到复核后的含有空坑的页面截图和其标记包围框样本数据后,采用R-FCN目标检测框架训练得到空坑类检测模型,模型的输入为图像,输出为是否含有空坑;The training process of the empty pit anomaly detection model is specifically as follows: after executing S1 in batches, firstly, a round of manual review is performed on the screenshot of the page containing the empty pit and the label of the bounding box coordinates of the DOM corresponding to the empty pit element obtained in S1. That is, delete the samples that are actually non-empty pit labels and add the unlabeled empty pit areas, and obtain the reviewed page screenshots containing empty pits and their marked bounding box sample data, and use the R-FCN target detection framework to train to get Empty pit detection model, the input of the model is an image, and the output is whether it contains an empty pit;
所述文案重叠覆盖识别模型的训练过程具体为:根据步骤S1获得的含有文案重叠覆盖问题的页面截图和问题区域的DOM元素位置信息后,采用R-FCN目标检测框架训练得到文案重叠覆盖类检测模型,输入为页面截图,输出为是否存在文案重叠覆盖;The training process of the copywriting overlapping recognition model is specifically as follows: after obtaining the screenshot of the page containing the copywriting overlapping coverage problem and the DOM element position information of the problem area obtained in step S1, using the R-FCN target detection framework to train to obtain the copywriting overlapping coverage class detection Model, the input is a screenshot of the page, and the output is whether there is overlap of copywriting;
S3:获取待检查页面的DOM元素位置信息和待检查页面截图,筛选并截取待检查条状元素和待检查资源位元素;S3: Obtain the position information of the DOM element of the page to be checked and the screenshot of the page to be checked, and filter and intercept the strip element to be checked and the resource bit element to be checked;
S4:利用步骤S2得到的条状模块分类模型和资源位模块分类模型,分别对步骤S3得到的待检查条状元素和待检查资源位元素进行分类;S4: Using the strip module classification model and the resource bit module classification model obtained in step S2, respectively classify the strip elements to be checked and the resource bit elements to be checked obtained in step S3;
S5:针对不同页面问题进行识别,具体为:S5: Identify problems on different pages, specifically:
(1)针对空坑类页面问题,利用步骤S2得到的空坑类异常检测模型检测步骤S3获取的待检查页面是否存在空坑;(1) for the empty pit class page problem, utilize the empty pit class anomaly detection model obtained in step S2 to detect whether there is an empty pit on the page to be checked obtained in step S3;
(2)针对空楼层类页面问题,判断步骤S4分类的楼层标题类条状元素的数量是否大于等于2且相邻的两个楼层标题类条状元素的纵向相对距离小于设定的空楼层阈值;如是,则待检查页面存在空楼层,否则不存在空楼层;(2) For the problem of empty floor pages, determine whether the number of floor title bar elements classified in step S4 is greater than or equal to 2 and the longitudinal relative distance between two adjacent floor title bar elements is less than the set empty floor threshold ; If yes, there is an empty floor on the page to be checked, otherwise there is no empty floor;
(3)针对空屏类页面问题,取步骤S3得到的待检查页面截图的中间区域,提取该中间区域内的SURF特征关键点,若提取到的SURF特征关键点的数量小于设定的关键点阈值,则判断待检查页面存在空屏问题,否则不存在空屏问题;(3) For the blank screen type page problem, take the middle area of the screenshot of the page to be checked obtained in step S3, and extract the SURF feature key points in the middle area. If the number of SURF feature key points extracted is less than the set key point If the threshold is set, it is judged that there is a blank screen problem on the page to be checked, otherwise there is no blank screen problem;
(4)针对重复素材问题,对比步骤S5分类的商品资源位类资源位元素的每两个的相似度,判断是否存在不同商品资源位类资源位元素关联相同目标对象信息的异常问题,相似度大于设置的阈值为异常;(4) For the problem of duplicate materials, compare the similarity of every two commodity resource bit class resource bit elements classified in step S5, and determine whether there is an abnormal problem that different commodity resource bit class resource bit elements are associated with the same target object information, and the similarity If it is greater than the set threshold, it is abnormal;
(5)针对文案重叠覆盖类页面问题,利用步骤S2得到的文案重叠覆盖识别模型检测步骤S3得到的待检查页面截图是否存在文案重叠覆盖。(5) For the problem of overlapping pages of copywriting, use the overlapping and covering recognition model obtained in step S2 to check whether the screenshot of the page to be checked obtained in step S3 has overlapping coverage of copying.
进一步地,利用条状模块分类模型和资源位模块分类模型识别页面中不同类别的条状元素和资源位元素,设置对应的可交互控件位置;配置需要检查的可交互控件位置及顺序,根据配置模拟点击页面中指定的可交互控件位置并获取点击后的页面的DOM元素位置信息和页面截图;若当前屏幕的页面截图中不存在指定点击的可交互控件位置,执行下滑操作到达下一屏位置,继续模拟点击指定的可交互控件位置并获取点击后的页面的DOM元素位置信息和页面截图。Further, use the strip module classification model and the resource bit module classification model to identify strip elements and resource bit elements of different categories in the page, and set the corresponding interactive control positions; configure the interactive control positions and sequences that need to be checked, according to the configuration. Simulate clicking the specified interactive control position on the page and obtain the DOM element position information and page screenshot of the clicked page; if the specified clicked interactive control position does not exist in the page screenshot of the current screen, perform a sliding operation to reach the next screen position , continue to simulate clicking the specified interactive control position and obtain the DOM element position information and page screenshot of the clicked page.
进一步地,所述利用条状模块分类模型和资源位模块分类模型识别页面中不同类别的条状元素和资源位元素,设置对应的可交互控件位置具体为:Further, using the strip module classification model and the resource bit module classification model to identify strip elements and resource bit elements of different categories in the page, and setting the corresponding interactive control positions are specifically:
(a)识别出的商品资源位类、卡券类、店铺类的资源位元素的位置直接作为其可交互控件位置;(a) The position of the identified resource position element of commodity resource class, coupon class and store class is directly used as the position of its interactive control;
(b)对识别出的电梯导航模块条状元素,采用OCR技术识别得到电梯导航模块中用于到达某一楼层的可交互控件位置,利用模板匹配方法识别得到用于展开电梯导航模块内全部内容的箭头按钮的可交互控件位置;(b) For the identified strip elements of the elevator navigation module, use the OCR technology to identify the position of the interactive controls in the elevator navigation module for reaching a certain floor, and use the template matching method to identify all the contents used to expand the elevator navigation module. The interactive control position of the arrow button of ;
(c)对识别出的底部Tab导航栏条状元素采用OCR技术识别得到用于跳转到其他栏目页面的可交互的控件位置。(c) Using OCR technology to identify the identified bottom Tab navigation bar strip elements to obtain the interactive control positions for jumping to other column pages.
进一步地,所述模板匹配方法为SURF特征提取算法结合FLANN。Further, the template matching method is SURF feature extraction algorithm combined with FLANN.
进一步地,所述DOM元素位置信息包括DOM元素的矩形包围框在页面截图中的相对坐标、矩形包围框的长宽比、矩形包围框与截图对应的各边之比和矩形包围框的面积。Further, the DOM element position information includes the relative coordinates of the rectangle bounding box of the DOM element in the page screenshot, the aspect ratio of the rectangle bounding box, the ratio of the sides of the rectangle bounding box to the screenshot, and the area of the rectangle bounding box.
进一步地,所述条状元素的筛选条件为w/h∈(5,6),w/W∈[1,3);所述资源位元素的筛选条件为h/w<3且w/h<3.5且15W<h*w<150W;w为元素的宽度,h为元素的高度,W为元素所在图像的宽度。Further, the screening condition of the strip element is w/h∈(5,6), w/W∈[1,3); the screening condition of the resource bit element is h/w<3 and w/h <3.5 and 15W<h*w<150W; w is the width of the element, h is the height of the element, and W is the width of the image where the element is located.
进一步地,所述步骤S5中的所述空楼层阈值为10~20像素。Further, the threshold value of the empty floor in the step S5 is 10-20 pixels.
进一步地,所述步骤S5中的所述中间区域的高和宽均大于待检查页面截图对应的高和宽一半。Further, the height and width of the middle area in the step S5 are both greater than half of the height and width corresponding to the screenshot of the page to be checked.
进一步地,所述步骤S5中的所述关键点阈值为10~100。Further, the threshold value of the key point in the step S5 is 10-100.
进一步地,所述步骤S5中的所述对比步骤S4分类的商品资源位类资源位元素的每两个的相似度具体为:提取步骤S4分类的商品资源位类资源位元素的HOG特征,计算每两个商品资源位类资源位元素的HOG特征的余弦相似度。Further, in the step S5, the similarity of every two commodity resource bit class resource bit elements classified in the comparison step S4 is specifically: extracting the HOG feature of the commodity resource bit class resource bit element classified in step S4, calculating The cosine similarity of the HOG features of each two commodity resource bit class resource bit elements.
本发明的有益效果是:本发明是针对电商活动会场类页面的常见页面质量问题的一种通用型自动化检查的解决方案,对线下门店型新兴业务和传统电子商务业务都普遍适用。常见页面异常问题的检查能力是模拟测试人员视觉上对异常问题的检查能力;对可交互控件位置的检测和识别,并通过javaScript脚本对控件进行点击操作,可实现页面内的位置切换、浮层弹出等视图变化和页面间的自动化跳转,是解放测试人员的操作成本。因此,本发明实现自动化的线上页面质量巡检,在电商活动集中的期间,针对大规模的线上页面变更,采用本发明可解放测试人员进行重复的手工测试工作,会对测试工作和线上监控巡检工作有着显著的降本提效的作用。The beneficial effects of the present invention are as follows: the present invention is a universal automatic inspection solution for common page quality problems of e-commerce event venue pages, and is generally applicable to both offline store-type emerging businesses and traditional e-commerce businesses. The ability to check common page abnormal problems is to simulate the visual inspection ability of testers for abnormal problems; to detect and identify the position of interactive controls, and to click on the controls through JavaScript scripts, which can realize position switching and floating layers in the page. View changes such as pop-ups and automatic jumps between pages are liberating the operation cost of testers. Therefore, the present invention realizes automatic online page quality inspection. During the period when e-commerce activities are concentrated, for large-scale online page changes, using the present invention can free testers to perform repetitive manual testing work, which will affect the testing work and Online monitoring and inspection work has a significant effect of reducing costs and improving efficiency.
附图说明Description of drawings
图1为本发明的一种基于图像的端上智能化页面质量巡检方法的流程示意图;1 is a schematic flowchart of an image-based on-device intelligent page quality inspection method according to the present invention;
图2为本发明的一种基于图像的端上智能化页面质量巡检方法应用实例示意图;FIG. 2 is a schematic diagram of an application example of an image-based on-device intelligent page quality inspection method of the present invention;
图3为本方法的异常问题识别示意图;其中,(a)为空坑类问题示意图;(b)为空屏类问题示意图;(c)为空楼层问题示意图;(d)为相同素材类问题示意图。Fig. 3 is a schematic diagram of abnormal problem identification of this method; wherein, (a) is a schematic diagram of an empty pit problem; (b) is a schematic diagram of an empty screen problem; (c) is a schematic diagram of an empty floor problem; (d) is the same material problem Schematic.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art fall within the protection scope of this application.
本发明一种基于图像的端上智能化页面质量巡检方法,包括若干基于学习的图像分类模型和图像目标检测模型来进行页面常见模块的分类和页面异常态的识别;其中,条状模块分类模型、资源位模块分类模型和文案重叠/覆盖问题识别模型为图像分类模型,空坑类异常检测模型为图像目标检测模型,上述基于学习的模型包括训练阶段和测试阶段(即应用阶段),如图1所示,包括以下步骤:The present invention is an image-based on-device intelligent page quality inspection method, which includes several learning-based image classification models and image target detection models to classify common modules of pages and identify abnormal states of pages; wherein, the classification of strip modules The model, resource location module classification model, and copywriting overlap/coverage problem recognition model are image classification models, and empty pit anomaly detection models are image target detection models. The above learning-based models include a training phase and a testing phase (ie, the application phase), such as As shown in Figure 1, it includes the following steps:
S1:移动设备上运行脚本以保存页面的DOM元素位置信息和截图。S1: Run a script on the mobile device to save the page's DOM element location information and screenshots.
在基于学习的模型的训练阶段,通过在移动设备上运行javaScript脚本来保存H5页面当前屏幕展示范围内的所有DOM元素位置信息和截图并控制页面滑动;所述DOM元素位置信息包括DOM元素的矩形包围框在截图中的相对坐标、矩形包围框的长宽比、矩形包围框的长/宽与对应的截图的长/宽之比和矩形包围框的面积等特征;所述截图包括正常态页面截图和通过操控修改过页面元素HTML结构和CSS形成的异常态页面截图。其中,所述异常态截图包括含有空坑的页面截图和含有文案重叠覆盖问题的图像,javaScript脚本还额外保存空坑元素对应的DOM的包围框坐标和其标记包围框样本数据,以及文案重叠覆盖区域对应的DOM的包围框坐标和其标记包围框样本数据。所述空坑指资源位的内容为空或缺少资源位;如,页面展示商品、店铺的区域内的图片等主要信息缺失属于资源位的内容为空;某区域所使用模块为一排展示三个资源位的规范模块,实际只展示两个资源位属于缺少资源位。In the training phase of the learning-based model, the position information and screenshots of all DOM elements within the current screen display range of the H5 page are saved by running the JavaScript script on the mobile device, and the page sliding is controlled; the DOM element position information includes the rectangle of the DOM element. The relative coordinates of the bounding box in the screenshot, the aspect ratio of the rectangular bounding box, the ratio of the length/width of the rectangular bounding box to the length/width of the corresponding screenshot, and the area of the rectangular bounding box; the screenshots include normal pages. Screenshots and screenshots of abnormal pages formed by manipulating and modifying the HTML structure and CSS of page elements. The abnormal state screenshots include screenshots of pages containing empty pits and images containing overlapping coverage of copywriting. The JavaScript script additionally saves the coordinates of the DOM bounding box corresponding to the empty pit element and the sample data of its marked bounding box, as well as the overlapping coverage of copywriting. The coordinates of the bounding box of the DOM corresponding to the region and the sample data of its marked bounding box. The empty pit means that the content of the resource slot is empty or lacks a resource slot; for example, the content of the resource slot is empty if the main information such as the product displayed on the page and the pictures in the area of the store is missing; the modules used in a certain area are displayed in three rows in a row. The specification module of 1 resource bits actually only shows that two resource bits belong to the missing resource bits.
S2:对页面正常态、异常态图像数据打标或沉淀后,分别训练条状模块分类模型、资源位模块分类模型、空坑类异常检测模型以及文案重叠覆盖识别模型;S2: After marking or precipitating the image data in the normal state and abnormal state of the page, train the strip module classification model, the resource bit module classification model, the empty pit type anomaly detection model and the copywriting overlap coverage recognition model respectively;
所述条状模块分类模型和资源位模块分类模型的训练过程具体为:The training process of the strip module classification model and the resource bit module classification model is specifically:
(1)针对条状模块分类模型、资源位模块分类模型的训练,利用S1输出的截图和该截图范围内所有DOM元素位置信息,根据一定的规则约束筛选出满足条件的条状元素ROI(Region of Interest,感兴趣区域)和资源位元素ROI。所述条状元素的筛选条件为w/h∈(5,6),w/W∈[1,3);所述资源位元素的筛选条件为h/w<3且w/h<3.5且15W<h*w<150W;w为元素的宽度,h为元素的高度,W为元素所在图像的宽度。(1) For the training of the strip module classification model and the resource bit module classification model, use the screenshot output by S1 and the position information of all DOM elements within the screenshot range, and screen out the strip element ROI (Region) that meets the conditions according to certain rule constraints of Interest, region of interest) and resource bit element ROI. The filter condition of the strip element is w/h∈(5,6), w/W∈[1,3); the filter condition of the resource bit element is h/w<3 and w/h<3.5 and 15W<h*w<150W; w is the width of the element, h is the height of the element, and W is the width of the image where the element is located.
(2)批量得到(1)中的条状元素ROI后,按其元素类型进行打标,常见条状元素类别包括电梯导航模块、楼层标题、底部Tab导航栏和其他类;同理,对资源位元素ROI进行打标,常见资源位元素类别包括商品资源位、卡券类、店铺类和其他类。所述电梯导航模块为用于实现点击对应分类会跳转到下面具体楼层的导航模块;所述其他类根据不同业务的常用页面布局方式和常用模块进行划分。(2) After obtaining the strip element ROI in (1) in batches, mark it according to its element type. Common strip element categories include elevator navigation module, floor title, bottom Tab navigation bar and other categories; similarly, for resource Bit element ROI is used for marking. Common resource bit element categories include commodity resource bits, cards and coupons, store categories and other categories. The elevator navigation module is a navigation module for realizing that clicking on the corresponding category will jump to the following specific floor; the other categories are divided according to the common page layout modes and common modules of different services.
(3)得到步骤(2)所述的批量打标数据后,采用成熟的深度学习残差网络Resnet或自动机器学习AutoML技术来分别训练得到条状模块分类模型和资源位模块分类模型。条状模块分类模型的输入为条状元素,输出为条状元素类别;资源位模块分类模型的输入为资源位元素,输出为资源位元素类别。(3) After obtaining the batch marking data described in step (2), a mature deep learning residual network Resnet or automatic machine learning AutoML technology is used to train the strip module classification model and the resource position module classification model respectively. The input of the strip module classification model is the strip element, and the output is the strip element category; the input of the resource bit module classification model is the resource bit element, and the output is the resource bit element category.
所述空坑类异常检测模型用于检查页面是否存在空坑或者掉坑的问题,训练过程具体为:批量执行S1后,首先对于S1中获得的含有空坑的页面截图及空坑元素对应的DOM的包围框坐标的标签进行一轮人工复核打标,即删除实际为非空坑标签的样本和增加标注未标注的空坑区域,得到复核后的含有空坑的页面截图和其标记包围框样本数据后,采用R-FCN目标检测框架训练得到空坑类检测模型,模型的输入为图像,输出为是否含有空坑。The empty pit type anomaly detection model is used to check whether there is a problem of empty pits or dropped pits on the page. The training process is specifically as follows: after executing S1 in batches, first, the screenshots of the pages containing empty pits obtained in S1 and the corresponding empty pit elements are performed. A round of manual review and marking is performed on the labels of the bounding box coordinates of the DOM, that is, the samples that are actually non-empty pit labels are deleted and the unlabeled empty pit areas are added to obtain the reviewed page screenshots containing empty pits and their marked bounding boxes. After the sample data, the R-FCN target detection framework is used to train the empty pit detection model. The input of the model is an image, and the output is whether it contains empty pits.
所述文案重叠覆盖识别模型的训练过程具体为:批量执行S1后,首先对于S1中获得的含有文案重叠显示问题的区域的包围框坐标标签进行一轮人工复核打标,即删除实际为非文案重叠覆盖的样本和增加标注未标注的文案重叠覆盖区域,得到复核后的含有文案重叠覆盖问题的图像和其标记包围框样本数据后,采用R-FCN目标检测框架训练得到文案重叠覆盖类检测模型,输入为图像,输出为是否存在文案重叠覆盖。The specific training process of the copywriting overlap recognition model is as follows: after executing S1 in batches, firstly perform a round of manual review and marking on the bounding box coordinate label of the area containing the copywriting overlapping display problem obtained in S1, that is, delete the actual non-copywriting Overlapping and covering samples and increasing the overlapping coverage area of labeled and unlabeled texts, after obtaining the reviewed images with copywriting overlapping coverage problems and their labeled bounding box sample data, the R-FCN target detection framework is used to train to obtain a copywriting overlapping coverage class detection model , the input is an image, and the output is whether there is a copy overlay.
S3:各模型训练完成后,在应用阶段,通过在移动设备上运行javaScript脚本以保存当前待检查H5页面中当前屏幕展示范围内的所有DOM元素包围框坐标信息和截图;S3: After the training of each model is completed, in the application stage, run the JavaScript script on the mobile device to save the coordinate information and screenshots of the bounding boxes of all DOM elements within the current screen display range in the H5 page to be checked;
S4:按DOM元素位置分布特征对各类别模块预分类,对S3输出的图像和该图像范围内所有DOM元素的包围框坐标信息,根据每个包围框的长宽比和面积,在图像中的相对位置等特征筛选出候选的条状元素ROI和候选的资源位元素ROI。S4: Pre-classify each category module according to the position distribution characteristics of DOM elements, and for the image output by S3 and the bounding box coordinate information of all DOM elements within the image range, according to the aspect ratio and area of each bounding box, the size of the bounding box in the image The relative position and other features are used to screen out the candidate strip element ROI and the candidate resource bit element ROI.
S5:利用S2得到的条状模块分类模型和资源位模块分类模型,分别对S4得到的条状元素和资源位元素进行分类,即常见元素语义识别。S5: Using the strip module classification model and the resource bit module classification model obtained in S2, classify the strip elements and resource bit elements obtained in S4 respectively, that is, common element semantic recognition.
S6:针对不同页面问题进行识别,具体为:S6: Identify problems on different pages, specifically:
(1)针对空坑类页面问题,利用S2得到的空坑类异常检测模型对S3中得到的当前屏幕截图进行检测,判断是否存在空坑。(1) For the problem of empty pit pages, use the empty pit abnormal detection model obtained in S2 to detect the current screen shot obtained in S3 to determine whether there are empty pits.
(2)针对空楼层类页面问题,若S5输出的楼层标题类条状元素数量大于等于2项且相邻两项楼层标题类条状元素ROI的纵向相对距离Δy小于某一阈值,通常为10~20像素,则判断该页面存在“空楼层”,指整个资源位模块内容为空。(2) For the problem of empty floor pages, if the number of floor title strip elements output by S5 is greater than or equal to 2, and the longitudinal relative distance Δy of the ROI of two adjacent floor title strip elements is less than a certain threshold, usually 10 ~20 pixels, it is judged that there is an "empty floor" on the page, which means that the content of the entire resource bit module is empty.
(3)针对空屏类页面问题,取S3中当前屏幕截图在空间上的中间区域ROI,该中间区域ROI的高和宽大于S3中当前屏幕截图中高和宽的1/2;在该中间区域ROI内,提取SURF特征关键点,若提取到的SURF特征关键点的数量小于设定的阈值,该阈值根据实际中间区域ROI尺度和具体业务需求场景设置,通常为10~100,则判断该页面存在空屏问题。(3) For the problem of blank screen pages, take the ROI in the middle area of the current screenshot in S3 in space, and the height and width of the ROI in the middle area are greater than 1/2 of the height and width of the current screenshot in S3; in the middle area In the ROI, extract the SURF feature key points. If the number of SURF feature key points extracted is less than the set threshold, the threshold is set according to the actual middle area ROI scale and specific business demand scenarios, usually 10 to 100, and the page is judged There is a blank screen problem.
(4)针对重复素材问题,取S5输出的所有商品资源位类元素ROI,对比不同区域的商品资源位类元素ROI的相似度,提取各商品资源位类元素ROI的HOG特征,两两计算所有商品资源位类元素ROI的HOG特征的余弦相似度作为每对商品资源位类元素ROI的相似度计算结果,设置相似度阈值,判断是否存在不同商品资源位元素关联相同目标对象信息的异常问题,相似度大于阈值为异常。(4) For the problem of duplicate materials, take all the commodity resource bit class element ROIs output by S5, compare the similarity of commodity resource bit class element ROI in different regions, extract the HOG feature of each commodity resource bit class element ROI, and calculate all the commodity resource bit class elements in pairs. The cosine similarity of the HOG feature of the commodity resource bit class element ROI is used as the similarity calculation result of each pair of commodity resource bit class element ROI, and the similarity threshold is set to determine whether there is an abnormal problem that different commodity resource bit elements are associated with the same target object information. Similarity greater than the threshold is abnormal.
(5)针对文案重叠覆盖类页面问题,利用S2得到的文案重叠覆盖识别模型对S3中得到的当前屏幕截图进行检测,判断是否存在文案重叠覆盖。(5) Aiming at the problem of overlapping and covering pages of copywriting, the current screen shot obtained in S3 is detected by using the overlapping and covering recognition model of copying obtained in S2 to determine whether there is overlapping and covering of copying.
若上述S6中识别到页面存在如图3所示的异常问题,输出该页面质量告警信息。同时,用户可在系统中配置希望系统对页面自动化检查的指定操作路径,如希望从当前某一会场活动页面点击任一店铺类控件跳转到店铺承接页来进行继续检查,则需在系统中配置“店铺类”作为脚本下一步执行点击操作的控件的一个指定类别。If it is identified in the above S6 that the page has an abnormal problem as shown in FIG. 3 , the page quality alarm information is output. At the same time, the user can configure the specified operation path in the system for the system to automatically check the page. If you want to click any store type control from the current event page of a certain venue to jump to the store acceptance page to continue the inspection, you need to check in the system. Configure "shop class" as a specified class for the control that the script will perform the click action on next.
对于系统javaScript脚本需执行的下一步操作交互的位置,按类型识别交互操作点,利用元素语义识别模型识别出商品资源位、卡券、店铺资源位等区域,直接作为该类别交互操作点;利用元素语义识别模型识别出电梯、底部Tab导航栏的ROI,再结合OCR技术和模板匹配方法,作为模块点击直达交互点和其他主要栏目点击直达交互点,具体为:For the position of the next operation interaction to be performed by the system JavaScript script, identify the interaction operation points by type, and use the element semantic recognition model to identify areas such as commodity resource slots, coupons, store resource slots, etc., which are directly used as the interaction operation points of this category; The element semantic recognition model identifies the ROI of the elevator and the bottom Tab navigation bar, and then combines the OCR technology and template matching method as a module to click directly to the interaction point and other main columns to click directly to the interaction point, specifically:
(1)利用S5条状模块分类模型识别得到电梯导航模块,在该模块中采用OCR光学字符识别技术检测和识别得到电梯导航模块中某一楼层的控件;利用模板匹配方法识别得到展开电梯导航模块内全部内容的箭头按钮,例如SURF(Speeded Up Robust Features)特征提取算法结合快速最近邻逼近搜索函数库(Fast Approximate Nearest Neighbor SearchLibrary,FLANN)。(1) The elevator navigation module is obtained by identifying the S5 strip module classification model. In this module, the OCR optical character recognition technology is used to detect and identify the controls of a certain floor in the elevator navigation module; the template matching method is used to identify and expand the elevator navigation module. Arrow buttons for all content, such as SURF (Speeded Up Robust Features) feature extraction algorithm combined with Fast Approximate Nearest Neighbor Search Library (FLANN).
(2)底部Tab导航模块,利用S5条状模块分类模型识别得到的底部Tab导航栏模块,在该模块中采用OCR技术,通过捕捉关键文本的位置,可得到点击后可产生某些交互动作的控件位置,即可交互的控件位置,交互动作一般指跳转到其他栏目页面。(2) Bottom Tab navigation module, the bottom Tab navigation bar module identified by the S5 strip module classification model, OCR technology is used in this module, and by capturing the position of key text, some interactive actions can be obtained after clicking. The position of the control is the position of the interactive control. The interactive action generally refers to jumping to other column pages.
(3)对于S5资源位模块分类模型识别得到的商品资源位、卡券资源位和店铺资源位等元素位置,可作为商品类可交互控件、卡券类可交互控件和店铺类可交互控件直接输出。(3) The element positions of commodity resource positions, card coupon resource positions and store resource positions identified by the S5 resource position module classification model can be directly used as commodity interactive controls, card and coupon interactive controls, and store interactive controls. output.
对于识别得到的该屏页面中所有上述类别的可交互控件位置,系统可通过用户配置的相应类别来执行点击该类别对应的所有可交互操作点位置中的任一个位置或遍历执行所有位置;如用户希望执行电梯导航模块中某一楼层的控件、卡券类控件等。若该屏页面截图中不存在指定类别交互操作点,默认对该页面执行一定步长的下滑操作,到达页面的下一屏位置,进而重复执行步骤S3。For the identified interactive control positions of all the above categories in the screen page, the system can click on any position of all the interactive operation point positions corresponding to the category or traverse all positions through the corresponding category configured by the user; The user wishes to execute the controls of a certain floor in the elevator navigation module, the coupon-type controls, etc. If there is no interaction operation point of the specified category in the screenshot of the screen page, a sliding operation of a certain step is performed on the page by default to reach the next screen position of the page, and then step S3 is repeated.
用户可在页面变更后直接触发该系统执行当前变更后页面的自动化检查,页面交互操作方式支持用户配置或默认下滑,输出的检查结果实时通知用户。After the page is changed, the user can directly trigger the system to perform the automatic inspection of the current page after the change. The interactive operation mode of the page supports user configuration or default sliding, and the output inspection result is notified to the user in real time.
作为本发明的应用实例,图2是本发明的应用实例的示意图,输入为一张典型的移动端电商大促会场页面截图。经过按该截图范围内DOM元素的长宽比、面积、相对位置等特征进行预分类筛选,分别得到条状元素和资源位元素两类ROI,再利用训练好的条状模块分类模型和资源位模块分类模型对ROI进行识别,进而得到商品资源位ROI、卡券资源位ROI、电梯ROI、楼层标题ROI、底部Tab导航栏ROI、其他类ROI。得到楼层标题ROI后,可进而判断是否存在空楼层问题;得到商品资源位ROI后,可进而判断是否存在相同商品类问题。同时,得到电梯和底部导航栏ROI后,通过OCR和模板匹配技术可在该ROI区域内检测该类可交互操作点。As an application example of the present invention, FIG. 2 is a schematic diagram of an application example of the present invention, and the input is a screenshot of a typical mobile terminal e-commerce promotion site page. After pre-classification and screening according to the aspect ratio, area, relative position and other characteristics of the DOM elements within the screenshot range, two types of ROIs of strip elements and resource bit elements are obtained respectively, and then the trained strip module is used to classify the model and resource bit. The module classification model identifies the ROI, and then obtains the ROI of the commodity resource position, the ROI of the card and coupon resource position, the ROI of the elevator, the ROI of the floor title, the ROI of the bottom tab navigation bar, and other types of ROI. After obtaining the floor title ROI, it can be further judged whether there is an empty floor problem; after obtaining the commodity resource position ROI, it can be further judged whether there is the same commodity type problem. At the same time, after obtaining the ROI of the elevator and the bottom navigation bar, this type of interactive operation point can be detected in the ROI area through OCR and template matching technology.
对于本领域的技术人员来说,可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。For those skilled in the art, the technical solutions described in the foregoing examples can be modified, or some technical features thereof can be equivalently replaced. All modifications and equivalent replacements made within the spirit and principle of the invention shall be included within the protection scope of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010807204.1A CN112115043B (en) | 2020-08-12 | 2020-08-12 | An image-based on-device intelligent page quality inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010807204.1A CN112115043B (en) | 2020-08-12 | 2020-08-12 | An image-based on-device intelligent page quality inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112115043A true CN112115043A (en) | 2020-12-22 |
CN112115043B CN112115043B (en) | 2021-10-08 |
Family
ID=73804087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010807204.1A Active CN112115043B (en) | 2020-08-12 | 2020-08-12 | An image-based on-device intelligent page quality inspection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112115043B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113935026A (en) * | 2021-10-13 | 2022-01-14 | 支付宝(杭州)信息技术有限公司 | Data processing method and device |
CN114816610A (en) * | 2021-01-29 | 2022-07-29 | 华为技术有限公司 | Page classification method, page classification device and terminal equipment |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077221A (en) * | 2014-06-27 | 2014-10-01 | 百度在线网络技术(北京)有限公司 | Style test method and device for front-end page |
US20180157386A1 (en) * | 2016-12-05 | 2018-06-07 | Jiawen Su | System and Method for detection, exploration, and interaction of graphic application interface |
CN109086203A (en) * | 2018-07-20 | 2018-12-25 | 百度在线网络技术(北京)有限公司 | The detection method and device of the page |
US20190213116A1 (en) * | 2018-01-10 | 2019-07-11 | Accenture Global Solutions Limited | Generation of automated testing scripts by converting manual test cases |
US20200004667A1 (en) * | 2018-06-29 | 2020-01-02 | Wipro Limited | Method and system of performing automated exploratory testing of software applications |
CN110674442A (en) * | 2019-09-17 | 2020-01-10 | 中国银联股份有限公司 | Page monitoring method, device, equipment and computer readable storage medium |
CN110705596A (en) * | 2019-09-04 | 2020-01-17 | 北京三快在线科技有限公司 | White screen detection method and device, electronic equipment and storage medium |
CN110955590A (en) * | 2019-10-15 | 2020-04-03 | 北京海益同展信息科技有限公司 | Interface detection method, image processing method, device, electronic equipment and storage medium |
CN110968822A (en) * | 2018-09-30 | 2020-04-07 | 阿里巴巴集团控股有限公司 | Page detection method and device, electronic equipment and storage medium |
CN111078552A (en) * | 2019-12-16 | 2020-04-28 | 腾讯科技(深圳)有限公司 | Method and device for detecting page display abnormity and storage medium |
-
2020
- 2020-08-12 CN CN202010807204.1A patent/CN112115043B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077221A (en) * | 2014-06-27 | 2014-10-01 | 百度在线网络技术(北京)有限公司 | Style test method and device for front-end page |
US20180157386A1 (en) * | 2016-12-05 | 2018-06-07 | Jiawen Su | System and Method for detection, exploration, and interaction of graphic application interface |
US20190213116A1 (en) * | 2018-01-10 | 2019-07-11 | Accenture Global Solutions Limited | Generation of automated testing scripts by converting manual test cases |
US20200004667A1 (en) * | 2018-06-29 | 2020-01-02 | Wipro Limited | Method and system of performing automated exploratory testing of software applications |
CN109086203A (en) * | 2018-07-20 | 2018-12-25 | 百度在线网络技术(北京)有限公司 | The detection method and device of the page |
CN110968822A (en) * | 2018-09-30 | 2020-04-07 | 阿里巴巴集团控股有限公司 | Page detection method and device, electronic equipment and storage medium |
CN110705596A (en) * | 2019-09-04 | 2020-01-17 | 北京三快在线科技有限公司 | White screen detection method and device, electronic equipment and storage medium |
CN110674442A (en) * | 2019-09-17 | 2020-01-10 | 中国银联股份有限公司 | Page monitoring method, device, equipment and computer readable storage medium |
CN110955590A (en) * | 2019-10-15 | 2020-04-03 | 北京海益同展信息科技有限公司 | Interface detection method, image processing method, device, electronic equipment and storage medium |
CN111078552A (en) * | 2019-12-16 | 2020-04-28 | 腾讯科技(深圳)有限公司 | Method and device for detecting page display abnormity and storage medium |
Non-Patent Citations (1)
Title |
---|
李旬 等: "基于异常特征的社交网页检测技术研究", 《信息网络安全》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114816610A (en) * | 2021-01-29 | 2022-07-29 | 华为技术有限公司 | Page classification method, page classification device and terminal equipment |
WO2022160958A1 (en) * | 2021-01-29 | 2022-08-04 | 华为技术有限公司 | Page classification method, page classification apparatus, and terminal device |
CN114816610B (en) * | 2021-01-29 | 2024-02-02 | 华为技术有限公司 | Page classification method, page classification device and terminal equipment |
CN113935026A (en) * | 2021-10-13 | 2022-01-14 | 支付宝(杭州)信息技术有限公司 | Data processing method and device |
Also Published As
Publication number | Publication date |
---|---|
CN112115043B (en) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210326245A1 (en) | AI Software Testing System and Method | |
CN108985041B (en) | Verification code identification input method and system based on sliding verification | |
CN111080622A (en) | Neural network training method, workpiece surface defect classification and detection method and device | |
CN112101335A (en) | APP violation monitoring method based on OCR and transfer learning | |
CN106294107A (en) | The method and apparatus generating the test case of Webpage | |
US11195004B2 (en) | Method and system for extracting information from document images | |
US20210406337A1 (en) | System and method for automatic detection of webpage zones of interest | |
CN114202543B (en) | Method, device, equipment and medium for detecting dirt defects of PCB (printed circuit board) | |
CN112115043B (en) | An image-based on-device intelligent page quality inspection method | |
CN113657361A (en) | Page abnormity detection method and device and electronic equipment | |
Dlamini et al. | Developing a surface mount technology defect detection system for mounted devices on printed circuit boards using a MobileNetV2 with Feature Pyramid Network | |
CN111738252B (en) | Text line detection method, device and computer system in image | |
CN112308069A (en) | Click test method, device, equipment and storage medium for software interface | |
US10970531B2 (en) | Digitization of industrial inspection sheets by inferring visual relations | |
CN114972880A (en) | Label identification method and device, electronic equipment and storage medium | |
Chai et al. | Amex: Android multi-annotation expo dataset for mobile gui agents | |
Ghosh et al. | Scene text understanding: recapitulating the past decade | |
Voon et al. | Computer-vision-based integrated circuit recognition using deep learning | |
Wang et al. | Scene table structure recognition with segmentation collaboration and alignment | |
Yesilkanat et al. | Full-page music symbols recognition: State-of-the-art deep model comparison for handwritten and printed music scores | |
Żarski et al. | KrakN: Transfer learning framework and dataset for infrastructure thin crack detection | |
Gu et al. | ADoPD: A large-scale document page decomposition dataset | |
CN115018783A (en) | Video watermark detection method and device, electronic equipment and storage medium | |
TW201705021A (en) | An information retrieving method utilizing webpage visual features and webpage language features and a system using thereof | |
Bao et al. | Enhancing developer interactions with programming screencasts through accurate code extraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |