CN112114303A - 单向无源相阵控扫描识别盗砂船的方法 - Google Patents

单向无源相阵控扫描识别盗砂船的方法 Download PDF

Info

Publication number
CN112114303A
CN112114303A CN202010825012.3A CN202010825012A CN112114303A CN 112114303 A CN112114303 A CN 112114303A CN 202010825012 A CN202010825012 A CN 202010825012A CN 112114303 A CN112114303 A CN 112114303A
Authority
CN
China
Prior art keywords
identifying
sand
scanning
ship
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010825012.3A
Other languages
English (en)
Inventor
陈尚林
朱琛
夏军
许兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Jienasen Electronic Technology Co ltd
Original Assignee
Anhui Jienasen Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Jienasen Electronic Technology Co ltd filed Critical Anhui Jienasen Electronic Technology Co ltd
Priority to CN202010825012.3A priority Critical patent/CN112114303A/zh
Publication of CN112114303A publication Critical patent/CN112114303A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/417Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • G01S2013/0263Passive array antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Astronomy & Astrophysics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了单向无源相阵控扫描识别盗砂船的方法,所述方法包括如下步骤:Sep1.单向识别河岸边界;Sep2.识别障碍物和定位;Sep3.识别障碍物是否为盗砂船;Sep4.单向扫描完整个河岸边界;Sep5.转向后重复识别对岸障碍物;Sep6.分析定位所有船只是否采砂船只;Sep7.上报数据并预警。本发明通过单向无源相阵控雷达扫描识别水域中的船只,可以识别出停靠在岸边的船只还是正在水域中作业的船只,由于采用单向无源相阵控雷达扫描,其不受天气、时间的限制;通过构建基于深度学习的神经网络识别,识别精度高;通过北斗定位和/或GPS定位和修订,其位置信息准确。

Description

单向无源相阵控扫描识别盗砂船的方法
技术领域
本发明属于图像识别技术领域,尤其涉及一种单向无源相阵控扫描识别盗砂船的方法。
背景技术
采砂船,在河道里采砂的专用机器,由浮体浮起整体装置,配有挖掘装置、筛选装置、提升装置、传送装置等,其通过动力装置驱动挖斗上料,石块通过筛选后由输送带传出,砂子由输送带传到指定地点。
盗砂船,即是“三无”采砂船(无船名船号、无船籍港、无船舶证书),根据《长江河道采砂管理条例》规定,即使现场没有发现非法采砂行为,执法人员应依法对盗砂船拆解,拆除其采砂泵、输砂管。
近些年来,由于长江河砂品质好,需求量看涨,价格水涨船高。受利益驱使,一些“三无”采砂船经常在长江水域违法采砂,给航道和生态带来危害。现有技术一般采用人工察看监控大屏的办法,不仅需要手动操作录取跟踪目标,还需要人工报警,自动化程度较低,无法满足实际需求。
此外,现有的盗砂船经常采用“白天隐蔽,夜晚作业”的游击战术,在黑色夜幕的掩护下,经常发生采盗现象,而现有的监控设备通常采用图像对比,在深夜无法监控作业。同样地,在恶劣天气或气象条件不佳时,由于图像识别的杂波较多,很难实现精准监控。
发明内容
本发明正是针对现有技术存在的不足,提供一种单向无源相阵控扫描识别盗砂船的方法。
为解决上述问题,本发明所采取的技术方案如下:
单向无源相阵控扫描识别盗砂船的方法,所述方法包括如下步骤:
Sep1.单向识别河岸边界;
由无人机携带扫面设备,如无源相阵控雷达等,沿水域一侧方向进行电磁波扫描,识别出水域的边界;
Sep2.识别障碍物和定位;
在扫面识别水域边界的同时进行障碍区扫描,对于识别出的障碍物,根据北斗定位和/或GPS定位确定其坐标;
Sep3.识别障碍物是否为盗砂船;
识别障碍物是否为盗砂船,采用深度学习网络进行识别判断;
Sep4.单向扫描完整个河岸边界;
沿水域一侧方向进行扫描,直到确定水域边界为止;在此期间可能扫描发现障碍物,也可能未发现障碍物;
Sep5.转向后重复识别对岸障碍物;
无人机沿自身方向旋转调头后,再沿反方向扫描另一侧的水域边界,重复Sep1~Sep4;
Sep6.分析定位所有船只是否采砂船只;
根据Sep3和Sep5确定的采砂船,根据北斗定位和/或GPS定位确定其坐标,并对坐标进行修订;
Sep7.上报数据并预警;
上报Sep6的数据,判断是否为合法采砂船,如果不是报警并人为干预。
作为上述技术方案的改进,在Sep2中,通过伪距测量确定障碍物的坐标位置。
作为上述技术方案的改进,在Sep3中,识别盗砂船包括如下步骤:
步骤一、构建训练集:利用照相设备分别采样一定数量的船只图片、砂土图片、采砂船图片,进行预处理和数据标注;
步骤二、构建基于深度学习的船只识别神经网络,利用船只图片进行网络训练;
步骤三、构建基于深度学习的砂土识别网络,利用砂土图片进行网络训练;
步骤四、将步骤二和步骤三的网络特征共享,构建识别采砂船只的神经网络,利用采砂船图片进行网络训练;
步骤五、监控设备对监控水域进行实时图像采样和预处理;
步骤六、利用训练好的识别采砂船只的神经网络分析步骤五采样图像中是否有采砂船只。
作为上述技术方案的改进,在Sep6中,根据北斗定位和/或GPS定位确定其坐标,并对坐标进行修订,采用载波相位测量及载波相位定位或实时差分定位进行修订。
本发明与现有技术相比较,本发明的实施效果如下:
本发明所述单向无源相阵控扫描识别盗砂船的方法,通过单向无源相阵控雷达扫描识别水域中的船只,可以识别出停靠在岸边的船只还是正在水域中作业的船只,由于采用单向无源相阵控雷达扫描,其不受天气、时间的限制;由于采用单向扫描,这样大大降低了适时计算量;通过来回两次扫描,可以准确识别水域中的所有船只;通过构建基于深度学习的神经网络识别,识别精度高;通过北斗定位和/或GPS定位和修订,其位置信息准确。
附图说明
图1为本发明所述相阵控扫描识别盗砂船的方法示意图;
图2为本发明所述单向相阵控扫描识别盗砂船示意图;
图3为本发明所述反向相阵控扫描识别盗砂船示意图;
图4为本发明所述盗砂船识别方法中数据标注示意图。
具体实施方式
下面将结合具体的实施例来说明本发明的内容。
如图1所示,本发明所述单向无源相阵控扫描识别盗砂船的方法,包括如下步骤:
Sep1.单向识别河岸边界;
由无人机携带扫面设备,如无源相阵控雷达等,沿水域一侧方向进行电磁波扫描,识别出水域的边界;
Sep2.识别障碍物和定位;
在扫面识别水域边界的同时进行障碍区扫描,对于识别出的障碍物,根据北斗定位和/或GPS定位确定其坐标;
Sep3.识别障碍物是否为盗砂船;
识别障碍物是否为盗砂船,采用深度学习网络进行识别判断;
Sep4.单向扫描完整个河岸边界;
沿水域一侧方向进行扫描,直到确定水域边界为止;在此期间可能扫描发现障碍物,也可能未发现障碍物;
Sep5.转向后重复识别对岸障碍物;
无人机沿自身方向旋转调头后,再沿反方向扫描另一侧的水域边界,重复Sep1~Sep4;
Sep6.分析定位所有船只是否采砂船只;
根据Sep3和Sep5确定的采砂船,根据北斗定位和/或GPS定位确定其坐标,并对坐标进行修订;
Sep7.上报数据并预警;
上报Sep6的数据,判断是否为合法采砂船,如果不是报警并人为干预。
本发明所述扫描识别盗砂船的方法,在Sep1中,利用无人机进行单向雷达扫描,雷达波是一种电磁波,任何物体都能够反射和吸收电磁波,但是反射和吸收的系数不同,于是形成了反差,雷达就是利用反差识别物体和水域边界。
本发明所述扫描识别盗砂船的方法,在Sep2中,通过伪距测量确定障碍物的坐标位置。伪距测量就是测定卫星到接收机的距离,即由卫星发射的测距码信号到达GPS接收机的传播时间乘以光速所得的距离,伪距法单点定位,就是利用GPS接收机在某一时刻测定与4颗以上GPS卫星的伪距,及从卫星导航电文中获得的卫星瞬时坐标,采用距离交会法求出天线在WGS-84坐标系中的三维坐标。
本发明所述扫描识别盗砂船的方法,在Sep3中,识别盗砂船包括如下步骤:
步骤一、构建训练集:利用照相设备分别采样一定数量的船只图片、砂土图片、采砂船图片,进行预处理和数据标注;
步骤二、构建基于深度学习的船只识别神经网络,利用船只图片进行网络训练;
步骤三、构建基于深度学习的砂土识别网络,利用砂土图片进行网络训练;
步骤四、将步骤二和步骤三的网络特征共享,构建识别采砂船只的神经网络,利用采砂船图片进行网络训练;
步骤五、监控设备对监控水域进行实时图像采样和预处理;
步骤六、利用训练好的识别采砂船只的神经网络分析步骤五采样图像中是否有采砂船只。
在步骤一中,包括以下方法:
步骤1.1、图像采集:利用照相设备分别采样多张船只图片、砂土图片和采砂船图片,这里第一类图片,即船只图片,可为任意普通船只,不限定为采砂船,船只图片至少包括:渔船、货船、快艇、巡逻船、巡逻艇、游轮、运砂船;第二类图片,即砂土图片,不限定为正被采砂船采集的砂土,也可以是岸边堆积的砂土;第三类图片即采砂船图片,需要限定为正在采砂或已实施采砂行为的船只;
步骤1.2、预处理:图片尺寸归一化到H*W的三通道RGB图片I,其中H为图片高度,W为图片宽度;
步骤1.3、数据标注:对三类图片,分别以红色目标框标注船只区域、砂土区域和采砂船区域,如图4所示。
在步骤二中,构建基于深度学习的船只识别神经网络,利用步骤一中采集的船只图片进行网络训练;
本发明所述的船只识别神经网络,包括输入层、卷基层、激活层、池化层、全连接层和输出层,从输入到输出,卷积神经网络层与层之间通过不同的计算神经节点建立关系,逐层传递输入信息,连续的卷积-池化结构将原始数据的特征信号解码、演绎、汇聚,映射到隐层特征空间,之后的全连接层根据提取的特征进行分类输出。
在图像处理中,一副数字图像可以看作是一个二维空间的离散函数,记为f(x,y)。假设存在二维卷积函数g(x,y),则会生成输出图像z(x,y),则可表示为:
z(x,y)=f(x,y)*g(x,y)
这样,便利用卷积运算来实现对图片特征的提取。同样在深度学习应用中,当输入船只图片是一副包含RGB三通道的彩色图像时,图像由多个像素点组成,则这样的输入便是一个3*图像宽度*图像长度的高维数组,相应地,卷积核作为计算参数,同样也是一个高维数组。在二维图像作为输入时,相应地卷积运算可以表达为:
Figure RE-967904DEST_PATH_IMAGE001
其积分形式为:
Figure RE-696825DEST_PATH_IMAGE002
如果给定一个尺寸为H*W的卷积核,则有:
Figure RE-775640DEST_PATH_IMAGE003
其中,f代表输入图像,g代表卷积核,H和W为核的大小。
实际上,在运算过程中,卷积运算的实现,通常由矩阵的乘积来表示。假设船只尺寸为M*M,卷积核的尺寸为n*n,在计算时,卷积核与图像的每个n*n大小的图像区域相乘,相当于把n*n的图像区域提取出来,表示成一个长度为n*n的列向量。在0个零填充,步进为1的滑动操作中,一共可以得到(M-n+1)*(M-n+1)个计算结果。当把这些小图像区域均表示为n*n的列向量时,则原始图像可由矩阵[n*n*(M-n+1)*(M-n+1)]来表示。假设卷积核的个数为K,则原始图像经上述卷积操作后得到的输出为K*(M-n+1)*(M-n+1),即输出为:卷积核的个数*卷积后的图像宽度*卷积后的图像长度。
同样地,在步骤三中,构建基于深度学习的砂土图片神经网络,利用步骤一中采集的砂土图片进行网络训练,其计算过程如步骤二相同,输入由原来的船只图片修改为砂土图片。
同样地,在步骤四中,构建基于深度学习的采砂船只神经网络,利用步骤一中采集的采砂船只进行网络训练,其计算过程如步骤二相同,输入由原来的采砂船只修改为砂土图片。
在步骤五中,监控设备对监控水域进行实时图像采样和预处理。本发明采用的高清摄像机进行水域监控,高清摄像机一般每秒采集25帧图像,每帧1080P格式图像尺寸为1920×1080,具有207万个像素点,而每个像素点用3个字节表示彩色RGB分量,因此在1秒钟之内需要处理1.5亿字节,对图像处理的实时性要求极高。为了能快速、高效地处理数据,本发明采用了分模块和多线程并行处理技术。具体方法见中国专利CN201611262691.8,此处不再赘述。
图像预处理,即如步骤1.2所述:将采集到的图片尺寸归一化到H*W的三通道RGB图片I,其中H为图片高度,W为图片宽度。
在步骤六中,利用训练好的识别采砂船只的神经网络,分析步骤五采样图像中是否有采砂船只。
在此步骤中,包括如下步骤:
(1)首先根据步骤二~步骤四的学习方法,构建用于检测的深度网络:包括三个检测任务,即,识别图片中的船只区域,建立船只识别深度网络
Figure RE-211300DEST_PATH_IMAGE004
;识别图片中的砂土区域,建立识别砂土区域深度网络
Figure RE-982947DEST_PATH_IMAGE005
;识别图片中的采砂船区域,建立识别采砂船区域深度网络
Figure RE-933586DEST_PATH_IMAGE006
,这三个检测任务共享一个图片特征提取网络
Figure RE-753774DEST_PATH_IMAGE007
Figure RE-106258DEST_PATH_IMAGE007
依次由J个沙漏卷积网络级联构成将当前采得的图片
Figure RE-48806DEST_PATH_IMAGE008
编码为特征表示
Figure RE-424424DEST_PATH_IMAGE009
(2)在此基础上,三个深度网络
Figure RE-845041DEST_PATH_IMAGE004
Figure RE-317611DEST_PATH_IMAGE005
Figure RE-431060DEST_PATH_IMAGE006
分别将
Figure RE-293974DEST_PATH_IMAGE009
转换为热图表示;其中
Figure RE-518282DEST_PATH_IMAGE004
Figure RE-579779DEST_PATH_IMAGE009
转换成热图
Figure RE-801813DEST_PATH_IMAGE010
Figure RE-214340DEST_PATH_IMAGE004
Figure RE-242338DEST_PATH_IMAGE009
转换成
Figure RE-423921DEST_PATH_IMAGE011
Figure RE-554207DEST_PATH_IMAGE004
Figure RE-454030DEST_PATH_IMAGE009
转换成
Figure RE-20140DEST_PATH_IMAGE012
Figure RE-259492DEST_PATH_IMAGE004
Figure RE-620066DEST_PATH_IMAGE005
Figure RE-7185DEST_PATH_IMAGE006
各自由S个沙漏网络和M个卷积层下采样层级联构成
(3)从热图
Figure RE-376986DEST_PATH_IMAGE010
中解码出船只区域,从热图
Figure RE-205265DEST_PATH_IMAGE011
中解码出砂土区域,从热图
Figure RE-2320DEST_PATH_IMAGE012
中解码出采砂船区域;所述解码方式为:将热图上数值大于0.5 的区域解码为目标区域,将数值小于0.5的部分解码为背景区域;
本发明所述扫描识别盗砂船的方法,在Sep6中,根据北斗定位和/或GPS定位确定其坐标,并对坐标进行修订,采用载波相位测量及载波相位定位或实时差分定位进行修订。
载波相位测量是测定GPS卫星载波信号到接收机天线之间的相位延迟。GPS卫星载波上调制了测距码和导航电文,接收机接收到卫星信号后,先将载波上的测距码和卫星电文去掉,重新获得载波,称为重建载波。GPS接收机将卫星重建载波与接收机内由振荡器产生的本振信号通过相位计比相,即可得到相位差。
实时差分定位是在已有的精确地心坐标点上安放GPS接收机(称为基准站),利用已知的地心坐标和星历计算GPS观测值的校正值,并通过无线电通信设备(称为数据链)将校正值发送给运动中的GPS接收机(称为流动站)。流动站利用校正值对自己的GPS观测值进行修正,以消除上述误差,从而提高实时定位精度。GPS动态差分方法有多种,主要有位置差分、伪距差分( RTD)、载波相位实时差分(RTK)和广域差分等。
如图2所示,为本发明所述单向相阵控扫描识别盗砂船示意图;图3为本发明所述反向相阵控扫描识别盗砂船示意图。自然水域中包括左侧1及相对应的右侧2,在左侧1、右侧2之间的水域上有多个船只3,雷达4沿A向或B向进行单向扫描,即图2中沿A向对左侧1进行扫描,在图3中沿B向对右侧2进行扫描,采集并识别所有船只3是否为盗砂船,并记录其坐标定位。
以上内容是结合具体的实施例对本发明所作的详细说明,不能认定本发明具体实施仅限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明保护的范围。

Claims (4)

1.单向无源相阵控扫描识别盗砂船的方法,其特征在于,所述方法包括如下步骤:
Sep1.单向识别河岸边界;
由无人机携带扫面设备,如无源相阵控雷达等,沿水域一侧方向进行电磁波扫描,识别出水域的边界;
Sep2.识别障碍物和定位;
在扫面识别水域边界的同时进行障碍区扫描,对于识别出的障碍物,根据北斗定位和/或GPS定位确定其坐标;
Sep3.识别障碍物是否为盗砂船;
识别障碍物是否为盗砂船,采用深度学习网络进行识别判断;
Sep4.单向扫描完整个河岸边界;
沿水域一侧方向进行扫描,直到确定水域边界为止;在此期间可能扫描发现障碍物,也可能未发现障碍物;
Sep5.转向后重复识别对岸障碍物;
无人机沿自身方向旋转调头后,再沿反方向扫描另一侧的水域边界,重复Sep1~Sep4;
Sep6.分析定位所有船只是否采砂船只;
根据Sep3和Sep5确定的采砂船,根据北斗定位和/或GPS定位确定其坐标,并对坐标进行修订;
Sep7.上报数据并预警;
上报Sep6的数据,判断是否为合法采砂船,如果不是报警并人为干预。
2.如权利要求1所述的单向无源相阵控扫描识别盗砂船的方法,其特征是,在Sep2中,通过伪距测量确定障碍物的坐标位置。
3.如权利要求1所述的单向无源相阵控扫描识别盗砂船的方法,其特征是,在Sep3中,识别盗砂船包括如下步骤:
步骤一、构建训练集:利用照相设备分别采样一定数量的船只图片、砂土图片、采砂船图片,进行预处理和数据标注;
步骤二、构建基于深度学习的船只识别神经网络,利用船只图片进行网络训练;
步骤三、构建基于深度学习的砂土识别网络,利用砂土图片进行网络训练;
步骤四、将步骤二和步骤三的网络特征共享,构建识别采砂船只的神经网络,利用采砂船图片进行网络训练;
步骤五、监控设备对监控水域进行实时图像采样和预处理;
步骤六、利用训练好的识别采砂船只的神经网络分析步骤五采样图像中是否有采砂船只。
4.如权利要求1所述的单向无源相阵控扫描识别盗砂船的方法,其特征是,在Sep6中,根据北斗定位和/或GPS定位确定其坐标,并对坐标进行修订,采用载波相位测量及载波相位定位或实时差分定位进行修订。
CN202010825012.3A 2020-08-17 2020-08-17 单向无源相阵控扫描识别盗砂船的方法 Pending CN112114303A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010825012.3A CN112114303A (zh) 2020-08-17 2020-08-17 单向无源相阵控扫描识别盗砂船的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010825012.3A CN112114303A (zh) 2020-08-17 2020-08-17 单向无源相阵控扫描识别盗砂船的方法

Publications (1)

Publication Number Publication Date
CN112114303A true CN112114303A (zh) 2020-12-22

Family

ID=73804902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010825012.3A Pending CN112114303A (zh) 2020-08-17 2020-08-17 单向无源相阵控扫描识别盗砂船的方法

Country Status (1)

Country Link
CN (1) CN112114303A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984936A (zh) * 2014-05-29 2014-08-13 中国航空无线电电子研究所 用于三维动态目标识别的多传感器多特征融合识别方法
CN108052940A (zh) * 2017-12-17 2018-05-18 南京理工大学 基于深度学习的sar遥感图像水面目标检测方法
CN108197582A (zh) * 2018-01-10 2018-06-22 武汉理工大学 基于深度学习的海事雷达图像处理方法
US20180211128A1 (en) * 2017-01-24 2018-07-26 Ford Global Technologies, Llc Object Detection Using Recurrent Neural Network And Concatenated Feature Map
CN110111519A (zh) * 2018-07-23 2019-08-09 李苏宁 基于视频图像识别技术的长江河道禁采执法工作系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984936A (zh) * 2014-05-29 2014-08-13 中国航空无线电电子研究所 用于三维动态目标识别的多传感器多特征融合识别方法
US20180211128A1 (en) * 2017-01-24 2018-07-26 Ford Global Technologies, Llc Object Detection Using Recurrent Neural Network And Concatenated Feature Map
CN108052940A (zh) * 2017-12-17 2018-05-18 南京理工大学 基于深度学习的sar遥感图像水面目标检测方法
CN108197582A (zh) * 2018-01-10 2018-06-22 武汉理工大学 基于深度学习的海事雷达图像处理方法
CN110111519A (zh) * 2018-07-23 2019-08-09 李苏宁 基于视频图像识别技术的长江河道禁采执法工作系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓超等: "《数字图像处理与模式识别研究》", 30 June 2018 *

Similar Documents

Publication Publication Date Title
Hou et al. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition
US11521379B1 (en) Method for flood disaster monitoring and disaster analysis based on vision transformer
Chen et al. Ship detection from coastal surveillance videos via an ensemble Canny-Gaussian-morphology framework
CN101214851B (zh) 船舶行驶智能型全天候主动安全预警系统及其预警方法
Bell et al. A temporal waterline approach to mapping intertidal areas using X-band marine radar
Cheng et al. Robust small object detection on the water surface through fusion of camera and millimeter wave radar
Zhu et al. Oil spill contextual and boundary-supervised detection network based on marine SAR images
CN111899568B (zh) 桥梁防撞预警系统、方法、装置和存储介质
Solberg et al. Automatic detection of oil spills in Envisat, Radarsat and ERS SAR images
CN112766221B (zh) 基于船舶方向和位置多任务的sar图像船舶目标检测方法
CN115015911B (zh) 一种基于雷达图像的导航地图制作和使用方法及系统
CN107731011B (zh) 一种港口泊船监测方法、系统及电子设备
CN107025654A (zh) 基于全局迭代检查的sar图像自适应船只检测方法
Yin et al. Improved PSPNet-based water shoreline detection in complex inland river scenarios
CN110765912A (zh) 一种基于统计约束和Mask R-CNN的SAR图片船舶目标检测方法
Moniruzzaman et al. Imaging and classification techniques for seagrass mapping and monitoring: A comprehensive survey
Wu et al. A new multi-sensor fusion approach for integrated ship motion perception in inland waterways
CN117372875A (zh) 一种航空遥感目标识别方法
CN117911885A (zh) 一种赤潮检测方法、系统、介质、计算机设备及终端
Choi et al. Automatic sea fog detection and estimation of visibility distance on CCTV
CN113484864B (zh) 面向无人艇的航海雷达与光电吊舱协同环境感知方法
CN112114303A (zh) 单向无源相阵控扫描识别盗砂船的方法
Dekker SAR change detection techniques and applications
CN114445572B (zh) 一种基于DeeplabV3+的陌生海域中障碍物即时定位与地图构建方法
CN115436966A (zh) 一种激光雷达参考水深控制点批量提取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201222