CN112103088A - Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell based on composite material electrode - Google Patents
Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell based on composite material electrode Download PDFInfo
- Publication number
- CN112103088A CN112103088A CN201910528695.3A CN201910528695A CN112103088A CN 112103088 A CN112103088 A CN 112103088A CN 201910528695 A CN201910528695 A CN 201910528695A CN 112103088 A CN112103088 A CN 112103088A
- Authority
- CN
- China
- Prior art keywords
- solid
- composite material
- electrode
- capacitor
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 585
- 239000002131 composite material Substances 0.000 title claims abstract description 470
- 239000007787 solid Substances 0.000 claims abstract description 323
- 239000010416 ion conductor Substances 0.000 claims abstract description 190
- 239000000463 material Substances 0.000 claims abstract description 122
- 239000007772 electrode material Substances 0.000 claims abstract description 72
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 239000012528 membrane Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 43
- 150000003839 salts Chemical class 0.000 claims description 15
- 239000003960 organic solvent Substances 0.000 claims description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 9
- 229920000620 organic polymer Polymers 0.000 claims description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 7
- 229910052744 lithium Inorganic materials 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 239000002223 garnet Substances 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 229920002480 polybenzimidazole Polymers 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910005317 Li14Zn(GeO4)4 Inorganic materials 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 239000002228 NASICON Substances 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 3
- 229910021385 hard carbon Inorganic materials 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims description 3
- 150000004678 hydrides Chemical class 0.000 claims description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 238000000053 physical method Methods 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 2
- 239000008187 granular material Substances 0.000 claims 2
- 229910003405 Li10GeP2S12 Inorganic materials 0.000 claims 1
- 229910009297 Li2S-P2S5 Inorganic materials 0.000 claims 1
- 229910009228 Li2S—P2S5 Inorganic materials 0.000 claims 1
- 229910002984 Li7La3Zr2O12 Inorganic materials 0.000 claims 1
- 229910000857 LiTi2(PO4)3 Inorganic materials 0.000 claims 1
- OEMGCAOEZNBNAE-UHFFFAOYSA-N [P].[Li] Chemical compound [P].[Li] OEMGCAOEZNBNAE-UHFFFAOYSA-N 0.000 claims 1
- 239000004926 polymethyl methacrylate Substances 0.000 claims 1
- 230000010220 ion permeability Effects 0.000 abstract description 24
- 238000004146 energy storage Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 41
- -1 poly(vinyl alcohol) Polymers 0.000 description 30
- 239000002245 particle Substances 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 18
- 238000002955 isolation Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000013329 compounding Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 239000002200 LIPON - lithium phosphorus oxynitride Substances 0.000 description 2
- 229910012465 LiTi Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/10—Multiple hybrid or EDL capacitors, e.g. arrays or modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/10—Multiple hybrid or EDL capacitors, e.g. arrays or modules
- H01G11/12—Stacked hybrid or EDL capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
一种基于复合材料电极的固态电容电芯,包括至少一个第一复合材料电容电极和至少一个第二复合材料电容电极;第一复合材料电容电极和第二复合材料电容电极之间交错设置;相邻的第一复合材料电容电极和第二复合材料电容电极之间设有固态离子导体膜;第一复合材料电容电极采用第一电极活性材料与固态离子导体材料Ⅰ的混合物制成;第二复合材料电容电极采用第二电极活性材料与固态离子导体材料Ⅱ的混合物制成。本发明还公开了一种基于复合材料电极的固态叠层电容电芯和一种基于复合材料电极的固态复合电容电芯。本发明基于复合材料电极的固态电容电芯,不仅能够满足储能要求,而且能够有效增强固态离子导体膜与电极之间的亲润性,并能够有效减小固态离子导体膜与电极之间的界面电阻,提高离子渗透率。
A solid-state capacitor cell based on composite material electrodes, comprising at least one first composite material capacitor electrode and at least one second composite material capacitor electrode; the first composite material capacitor electrode and the second composite material capacitor electrode are alternately arranged; A solid ion conductor membrane is arranged between the adjacent first composite material capacitor electrodes and the second composite material capacitor electrodes; the first composite material capacitor electrodes are made of a mixture of the first electrode active material and the solid ion conductor material I; the second composite material capacitor electrode is made of The material capacitor electrode is made of a mixture of the second electrode active material and the solid ionic conductor material II. The invention also discloses a solid laminated capacitor cell based on the composite material electrode and a solid composite capacitor cell based on the composite material electrode. The solid capacitor cell based on the composite material electrode of the present invention can not only meet the requirements of energy storage, but also can effectively enhance the wettability between the solid ion conductor film and the electrode, and can effectively reduce the amount of friction between the solid ion conductor film and the electrode. Interface resistance, improve ion permeability.
Description
技术领域technical field
本发明属于储能设备技术领域,具体的为一种基于复合材料电极的固态电容电芯、叠层电容电芯及复合动力电容电芯。The invention belongs to the technical field of energy storage devices, in particular to a solid capacitor cell, a laminated capacitor cell and a composite power capacitor cell based on a composite material electrode.
背景技术Background technique
固态电容是一种电容科技。与现今普遍使用的锂离子电容和锂离子聚合物电容不同的是,固态电容是一种使用固体电极和固体电解质的电容。传统的液态锂电容又被科学家们形象地称为“摇椅式电容”,摇椅的两端为电容的正负两极,中间为电解质(液态)。而锂离子就像优秀的运动员,在摇椅的两端来回奔跑,在锂离子从正极到负极再到正极的运动过程中,电容的充放电过程便完成了。固态电容的原理与之相同,只不过其电解质为固态,具有的密度以及结构可以让更多带电离子聚集在一端,传导更大的电流,进而提升电容容量。因此,同样的电量,固态电容体积将变得更小。不仅如此,固态电容中由于没有电解液,封存将会变得更加容易,在汽车等大型设备上使用时,也不需要再额外增加冷却管、电子控件等,不仅节约了成本,还能有效减轻重量。Solid state capacitors are a type of capacitive technology. Different from lithium-ion capacitors and lithium-ion polymer capacitors that are commonly used today, solid-state capacitors are capacitors that use solid electrodes and solid electrolytes. Traditional liquid lithium capacitors are also vividly called "rocking chair capacitors" by scientists. The two ends of the rocking chair are the positive and negative poles of the capacitor, and the middle is the electrolyte (liquid). The lithium ion is like an excellent athlete, running back and forth between the two ends of the rocking chair. During the movement of the lithium ion from the positive electrode to the negative electrode and then to the positive electrode, the charging and discharging process of the capacitor is completed. The principle of solid-state capacitors is the same, except that the electrolyte is solid, with a density and structure that allows more charged ions to gather at one end, conduct larger currents, and increase the capacitance. Therefore, for the same amount of electricity, the volume of solid-state capacitors will become smaller. Not only that, since there is no electrolyte in the solid capacitor, the storage will become easier. When using it on large equipment such as automobiles, there is no need to add additional cooling pipes, electronic controls, etc., which not only saves costs, but also effectively reduces the cost. weight.
现有的固态电容虽然在一定程度上能够满足使用要求,但是仍存在以下不足:Although the existing solid capacitors can meet the requirements to a certain extent, they still have the following shortcomings:
1)固体电解质与电极之间的结合力不足;1) The bonding force between the solid electrolyte and the electrode is insufficient;
2)固体电解质与电极之间的亲润性较差;2) The wettability between the solid electrolyte and the electrode is poor;
3)固体电解质与电极之间的界面电阻较大。3) The interface resistance between the solid electrolyte and the electrode is relatively large.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种基于复合材料电极的固态电容电芯、叠层电容电芯及复合动力电容电芯,能够有效提高固态离子导体膜与电极之间的亲润性,并能够有效减小固态离子导体膜与电极之间的界面电阻,提高离子渗透率。In view of this, the purpose of the present invention is to provide a solid capacitor cell, a laminated capacitor cell and a composite dynamic capacitor cell based on a composite material electrode, which can effectively improve the wettability between the solid ionic conductor membrane and the electrode, And can effectively reduce the interface resistance between the solid ion conductor film and the electrode, and improve the ion permeability.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
本发明首先提出了一种基于复合材料电极的固态电容电芯,The present invention first proposes a solid capacitor cell based on a composite material electrode,
包括至少一个第一复合材料电容电极和至少一个第二复合材料电容电极;including at least one first composite capacitor electrode and at least one second composite capacitor electrode;
所述第一复合材料电容电极和第二复合材料电容电极交错设置;The first composite material capacitor electrodes and the second composite material capacitor electrodes are alternately arranged;
相邻的所述第一复合材料电容电极和第二复合材料电容电极之间设有固态离子导体膜;A solid-state ion conductor membrane is arranged between the adjacent first composite material capacitor electrodes and the second composite material capacitor electrodes;
所述第一复合材料电容电极采用第一电极活性材料与固态离子导体材料Ⅰ的合成物或混合物制成;The first composite capacitor electrode is made of the composite or mixture of the first electrode active material and the solid ionic conductor material I;
所述第二复合材料电容电极采用第二电极活性材料与固态离子导体材料Ⅱ的合成物或混合物制成。The second composite material capacitor electrode is made of a composite or a mixture of the second electrode active material and the solid-state ion conductor material II.
进一步,所述第一复合材料电容电极的数量N与所述第二复合材料电容电极的数量M之间满足:Further, the number N of the first composite material capacitor electrodes and the number M of the second composite material capacitor electrodes satisfy:
M=N,或,|M-N|=1。M=N, or, |M-N|=1.
进一步,所述第一复合材料电容电极的侧面为平面,所述固态离子导体膜与所述第一复合材料电容电极的侧面贴合;或,Further, the side surface of the first composite material capacitor electrode is flat, and the solid ion conductor film is attached to the side surface of the first composite material capacitor electrode; or,
所述第一复合材料电容电极的侧面上设有第一凹槽,与对应的所述第一复合材料电容电极侧面贴合的所述固态离子导体膜嵌入到所述第一凹槽内;或,The side surface of the first composite capacitor electrode is provided with a first groove, and the solid ion conductor film attached to the side surface of the corresponding first composite capacitor electrode is embedded in the first groove; or ,
所述第一复合材料电容电极(10)的侧面上阵列设有第一嵌孔,与对应的所述第一复合材料电容电极侧面贴合的所述固态离子导体膜嵌入到所述第一嵌孔内。The side surfaces of the first composite material capacitor electrodes (10) are arrayed with first embedded holes, and the solid ion conductor films attached to the side surfaces of the corresponding first composite material capacitor electrodes are embedded in the first embedded holes. inside the hole.
进一步,所述第一凹槽的宽度沿着槽底指向槽口的方向逐渐增大;Further, the width of the first groove gradually increases along the direction from the groove bottom to the notch;
任意两个垂直于所述第一嵌孔轴线的径向截面在同一个所述第一嵌孔上截得的两个径向截面Ⅰ中,靠近所述第一嵌孔孔底一侧的径向截面Ⅰ的几何尺寸小于等于靠近所述第一嵌孔孔口一侧的径向截面Ⅰ的几何尺寸。In any two radial cross-sections perpendicular to the axis of the first inserting hole, in the two radial cross-sections I cut from the same first inserting hole, the diameter of the side close to the bottom of the first inserting hole is The geometrical dimension of the directional section I is smaller than or equal to the geometrical dimension of the radial section I on the side close to the first insert hole orifice.
进一步,所述第二复合材料电容电极的侧面为平面,所述固态离子导体膜与所述第二复合材料电容电极的侧面贴合;或,Further, the side surface of the second composite material capacitor electrode is flat, and the solid ion conductor film is attached to the side surface of the second composite material capacitor electrode; or,
所述第二复合材料电容电极的侧面上设有第二凹槽,与对应的所述第二复合材料电容电极侧面贴合的所述固态离子导体膜嵌入到所述第二凹槽内;或,The side surface of the second composite capacitor electrode is provided with a second groove, and the solid ion conductor film attached to the side surface of the corresponding second composite capacitor electrode is embedded in the second groove; or ,
所述第二复合材料电容电极的侧面上阵列设有第二嵌孔,与对应的所述第二复合材料电容电极侧面贴合的所述固态离子导体膜嵌入到所述第二嵌孔内。A second embedded hole is arrayed on the side surface of the second composite capacitor electrode, and the solid ion conductor film attached to the side surface of the corresponding second composite capacitor electrode is embedded in the second embedded hole.
进一步,所述第二凹槽的宽度沿着槽底指向槽口的方向逐渐增大;Further, the width of the second groove gradually increases along the direction from the groove bottom to the notch;
任意两个垂直于所述第二嵌孔轴线的径向截面在同一个所述第二嵌孔上截得的两个径向截面Ⅱ中,靠近所述第二嵌孔孔底一侧的径向截面Ⅱ的几何尺寸小于等于靠近所述第二嵌孔孔口一侧的径向截面Ⅱ的几何尺寸。In any two radial cross-sections perpendicular to the axis of the second inserting hole in two radial sections II cut from the same second inserting hole, the diameter of the side close to the bottom of the second inserting hole The geometric dimension of the directional section II is smaller than or equal to the geometric dimension of the radial section II on the side close to the second insert hole orifice.
进一步,所述第一电容电极活性材料和所述第二电容电极活性材料采用但不限于磷酸铁锂、三元材料、含硫导电材料、含有金属或有机材料的多孔碳层空气电容电极、层状金属氧化物材料、含氧有机聚合物材料、金属锂、金属钠、金属铝、金属镁、金属钾、石墨烯、硬碳、氧化硅和硅单质制成中的一种或至少两种的混合物;Further, the first capacitor electrode active material and the second capacitor electrode active material adopt but are not limited to lithium iron phosphate, ternary material, sulfur-containing conductive material, porous carbon layer air capacitor electrode containing metal or organic material, layer One or at least two of metal oxide materials, oxygen-containing organic polymer materials, metal lithium, metal sodium, metal aluminum, metal magnesium, metal potassium, graphene, hard carbon, silicon oxide and silicon mixture;
所述固态离子导体膜采用热压物理方法或化学方法分别与所述复合材料正极和复合材料负极形成良好的电极/电解液界面。The solid-state ion conductor membrane forms a good electrode/electrolyte interface with the composite material positive electrode and the composite material negative electrode respectively by a hot-pressing physical method or a chemical method.
所述固态离子导体膜、固态离子导体材料Ⅰ和固态离子导体材料Ⅱ采用但不限于凝胶、氧化物、硫化物和有机聚合物中的一种或至少两种的混合物制成;The solid ion conductor membrane, solid ion conductor material I and solid ion conductor material II are made of but not limited to one or a mixture of at least two of gels, oxides, sulfides and organic polymers;
所述凝胶为由高分子化合物-金属盐和/或溶剂三元组分组成的电解质,采用但不限于聚(乙烯醇)基衍生物-酸或碱或金属盐、聚(苯并咪唑)基衍生物-金属盐-有机溶剂、聚(偏氟乙烯)基衍生物-金属盐-有机溶剂、聚(环氧乙烷)基衍生物-金属盐-有机溶剂和聚(甲基丙烯酸甲酯)基衍生物-金属盐-有机溶剂的一种或至少两种的混合物制成;The gel is an electrolyte consisting of a polymer compound-metal salt and/or a solvent ternary component, using but not limited to poly(vinyl alcohol)-based derivatives-acid or alkali or metal salt, poly(benzimidazole) base derivative-metal salt-organic solvent, poly(vinylidene fluoride) base derivative-metal salt-organic solvent, poly(ethylene oxide) base derivative-metal salt-organic solvent and poly(methyl methacrylate) ) base derivative-metal salt-organic solvent one or a mixture of at least two;
所述氧化物包括但不限于钠超离子导体(NASICON)型-LiTi2(PO4)3及其衍生物、锂超离子导体(LISICON)型-Li14Zn(GeO4)4及其衍生物和石榴石(Garnet)型-Li7La3Zr2O12及其衍生物;The oxides include but are not limited to sodium superion conductor (NASICON) type-LiTi 2 (PO 4 ) 3 and its derivatives, lithium superion conductor (LISICON) type-Li 14 Zn(GeO 4 ) 4 and its derivatives And garnet (Garnet) type-Li 7 La 3 Zr 2 O 12 and its derivatives;
所述硫化物包括但不限于Li10GeP2S12、Li2S-P2S5及其衍生物、卤化物、氢化物和磷锂氮氧化物;The sulfides include but are not limited to Li 10 GeP 2 S 12 , Li 2 SP 2 S 5 and derivatives thereof, halides, hydrides and lithium phosphorus oxynitride;
所述有机聚合物采用聚(环氧乙烷)(PEO)基衍生物-金属盐、聚(苯并咪唑)基衍生物-金属盐、聚(偏氟乙烯)基衍生物-金属盐中的一种或至少两种的混合物制成。The organic polymer adopts poly(ethylene oxide) (PEO) based derivatives-metal salts, poly(benzimidazole) based derivatives-metal salts, and poly(vinylidene fluoride) based derivatives-metal salts. One or a mixture of at least two.
进一步,所述第一复合材料电容电极内的所述固态离子导体材料Ⅰ与所述第一电极活性材料之间的摩尔比小于等于100%;Further, the molar ratio between the solid ionic conductor material I in the first composite capacitor electrode and the first electrode active material is less than or equal to 100%;
所述第二复合材料电容电极内的所述固态离子导体材料Ⅱ与所述第二电极活性材料之间的摩尔比小于等于100%。The molar ratio between the solid-state ion conductor material II and the second electrode active material in the second composite capacitor electrode is less than or equal to 100%.
进一步,所述第一电极活性材料呈颗粒状均匀分布,且所述第一电极活性材料颗粒的缝隙中填充有所述固态离子导体材料Ⅰ;Further, the first electrode active material is uniformly distributed in the form of particles, and the solid ion conductor material I is filled in the gaps of the first electrode active material particles;
所述第二电极活性材料呈颗粒状均匀分布,且所述第二电极活性材料颗粒的缝隙中填充有所述固态离子导体材料Ⅱ。The second electrode active material is uniformly distributed in the form of particles, and the solid ion conductor material II is filled in the gaps of the second electrode active material particles.
本发明还提出了一种基于复合材料电极的固态叠层电容电芯,The invention also proposes a solid-state laminated capacitor cell based on the composite material electrode,
包括软包体,所述软包体内设有至少两个复合在一起的如权利要求1-9任一项所述的固态电容电芯;It includes a soft package body, and the soft package body is provided with at least two solid capacitor cells as claimed in any one of claims 1-9 that are compounded together;
相邻两个所述固态电容电芯中,其中一个所述固态电容电芯端部的第一复合材料电容电极与另一个所述固态电容电芯端部的第二复合材料电容电极相邻设置,且在该相邻的所述第一复合材料电容电极和第二复合材料电容电极之间设有电子导电但离子隔离的双极集流板。In two adjacent solid capacitor cells, the first composite material capacitor electrode at the end of one of the solid capacitor cells is arranged adjacent to the second composite material capacitor electrode at the end of the other solid capacitor cell , and between the adjacent first composite material capacitor electrodes and the second composite material capacitor electrodes, a bipolar current collector plate with electronic conduction but ion isolation is arranged.
本发明还提出了一种基于复合材料电极的固态复合电容电芯,The invention also proposes a solid-state composite capacitor cell based on the composite material electrode,
包括软包体,所述软包体内设有至少两个复合在一起的如权利要求1-9任一项所述的固态电容电芯;It includes a soft package body, and the soft package body is provided with at least two solid capacitor cells as claimed in any one of claims 1-9 that are compounded together;
相邻的两个所述固态电容电芯中,Among the two adjacent solid-state capacitor cells,
其中一个所述固态电容电芯端部的第一复合材料电容电极与另一个所述固态电容电芯端部的第一复合材料电容电极相邻设置,该相邻的两个所述第一复合材料电容电极之间复合在一起或该相邻的两个所述第一复合材料电容电极之间设有电子导电但离子隔离的双极集流板或该相邻的两个所述第一复合材料电容电极之间设有电子绝缘且离子隔离的绝缘隔膜;One of the first composite material capacitor electrodes at the end of the solid capacitor cell is disposed adjacent to the first composite material capacitor electrode at the end of the other solid capacitor cell, and the two adjacent first composite material capacitor electrodes are adjacent to each other. The material capacitor electrodes are compounded together or the two adjacent first compound material capacitance electrodes are provided with bipolar current collectors that are electrically conductive but ionically isolated, or the adjacent two first compound materials There is an insulating diaphragm with electronic insulation and ion isolation between the material capacitor electrodes;
或,or,
其中一个所述固态电容电芯端部的第二复合材料电容电极与另一个所述固态电容电芯端部的第二复合材料电容电极相邻设置;该相邻的两个所述第二复合材料电容电极之间复合在一起或该相邻的两个所述第二复合材料电容电极之间设有电子导电但离子隔离的双极集流板或该相邻的两个所述第二复合材料电容电极之间设有电子绝缘且离子隔离的绝缘隔膜;One of the second composite material capacitor electrodes at the end of the solid capacitor cell is disposed adjacent to the second composite material capacitor electrode at the end of the other solid capacitor cell; the adjacent two second composite material capacitor electrodes are adjacent to each other. The material capacitor electrodes are combined together or the two adjacent second composite material capacitor electrodes are provided with bipolar current collectors that are electrically conductive but ionically isolated, or the adjacent two second composite materials There is an insulating diaphragm with electronic insulation and ion isolation between the material capacitor electrodes;
或,or,
其中一个所述固态电容电芯端部的第一复合材料电容电极与另一个所述固态电容电芯端部的第二复合材料电容电极相邻设置,且在该相邻的所述第一复合材料电容电极和第二复合材料电容电极之间设有电子绝缘且离子隔离的绝缘隔膜。One of the first composite material capacitor electrodes at the end of one of the solid capacitor cells is disposed adjacent to the second composite material capacitor electrode at the other end of the solid capacitor cell, and the adjacent first composite material capacitor electrodes are located adjacent to each other. An insulating diaphragm with electronic insulation and ion isolation is arranged between the material capacitor electrode and the second composite material capacitor electrode.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明基于复合材料电极的的固态电容电芯,通过将第一复合材料电容电极采用第一电极活性材料与固态离子导体材料的混合物制成,如此,离子可通过固态离子导体膜进入到第一复合材料电容电极中的固态离子导体材料内,能够有效提高离子渗透率以及固态离子导体膜与第一复合材料电容电极之间的亲润性,并减小固态离子导体膜与第一复合材料电容电极之间的界面电阻;同理,通过将第二复合材料电容电极采用第二电极活性材料与固态离子导体材料的混合物制成,离子可通过固态离子导体膜进入到第二复合材料电容电极中的固态离子导体材料内,能够有效提高离子渗透率以及固态离子导体膜与第二复合材料电容电极之间的亲润性,并减小固态离子导体膜与第二复合材料电容电极之间的界面电阻;综上可以,本发明基于复合材料电极的的固态电容电芯,能够有效提高固态离子导体膜与电极之间的亲润性,并能够有效减小固态离子导体膜与电极之间的界面电阻,提高离子渗透率。The solid capacitor cell based on the composite material electrode of the present invention is made by using the mixture of the first electrode active material and the solid ion conductor material for the first composite material capacitor electrode, so that the ions can enter the first electrode through the solid ion conductor membrane. In the solid ion conductor material in the composite capacitor electrode, the ion permeability and the wettability between the solid ion conductor film and the first composite material capacitor electrode can be effectively improved, and the capacitance between the solid ion conductor film and the first composite material capacitor can be reduced. The interface resistance between the electrodes; similarly, by using the second composite material capacitor electrode with a mixture of the second electrode active material and the solid ion conductor material, ions can enter the second composite material capacitor electrode through the solid ion conductor film. In the solid ion conductor material, the ion permeability and the affinity between the solid ion conductor film and the second composite material capacitor electrode can be effectively improved, and the interface between the solid ion conductor film and the second composite material capacitor electrode can be reduced. resistance; to sum up, the solid capacitor cell based on the composite material electrode of the present invention can effectively improve the wettability between the solid ionic conductor membrane and the electrode, and can effectively reduce the interface between the solid ionic conductor membrane and the electrode resistance and increase ion permeability.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical solutions and beneficial effects of the present invention clearer, the present invention provides the following drawings for description:
图1为本发明基于复合材料电极的固态电容电芯实施例1的结构示意图,具体的为第一复合材料电容电极数量N与第二复合材料电容电极数量M满足N=M=1时的结构示意图;1 is a schematic structural diagram of
图2为图1的A详图;Fig. 2 is a detailed view of A of Fig. 1;
图3为第一复合材料电容电极的微观结构示意图;3 is a schematic view of the microstructure of the first composite capacitor electrode;
图4为第二复合材料电容电极的微观结构示意图;4 is a schematic view of the microstructure of the second composite capacitor electrode;
图5为本发明基于复合材料电极的固态电容电芯实施例2的结构示意图,具体的为第一复合材料电容电极数量N=1与第二复合材料电容电极数量M=2时的结构示意图;5 is a schematic structural diagram of Embodiment 2 of a solid-state capacitor cell based on composite material electrodes of the present invention, specifically a schematic structural diagram when the number of first composite material capacitor electrodes is N=1 and the number of second composite material capacitor electrodes M=2;
图6为图5的B详图;FIG. 6 is a detailed view of B of FIG. 5;
图7为本发明基于复合材料电极的固态电容电芯实施例3的结构示意图,具体的为第一复合材料电容电极数量N=2与第二复合材料电容电极数量M=1时的结构示意图;7 is a schematic structural diagram of Embodiment 3 of a solid-state capacitor cell based on composite material electrodes of the present invention, specifically a schematic structural diagram when the number of first composite material capacitor electrodes is N=2 and the number of second composite material capacitor electrodes M=1;
图8为图7的C详图;FIG. 8 is a detailed view of C of FIG. 7;
图9为本发明基于复合材料电极的固态电容电芯实施例4的结构示意图,具体的为第一复合材料电容电极与第二复合材料电容电极的数量相等时的结构示意图;9 is a schematic structural diagram of
图10为第一复合材料电容电极的数量与第二复合材料电容电极的数量之差等于1时的结构示意图;10 is a schematic structural diagram when the difference between the number of the first composite material capacitor electrodes and the number of the second composite material capacitor electrodes is equal to 1;
图11为第二复合材料电容电极的数量与第一复合材料电容电极的数量之差等于1时的结构示意图;11 is a schematic structural diagram when the difference between the number of the second composite material capacitor electrodes and the number of the first composite material capacitor electrodes is equal to 1;
图12为本发明基于复合材料电极的固态叠层电容电芯的第一种结构示意图,具体的为固态电容电芯中的第一复合材料电容电极数量N与第二复合材料电容电极数量M相等时的结构示意图,图中仅在固态叠层电容的两端分别设有第一复合材料电容电极极耳和第二复合材料电容电极极耳;12 is a schematic diagram of the first structure of the solid-state laminated capacitor cell based on composite material electrodes of the present invention, specifically, the number N of the first composite material capacitor electrodes in the solid capacitor cell is equal to the number M of the second composite material capacitor electrodes In the figure, only the first composite material capacitor electrode tabs and the second composite material capacitor electrode tabs are respectively provided at both ends of the solid-state multilayer capacitor;
图13为所有第一复合材料电容电极上均设有第一复合材料电容电极极耳以及所有第二复合材料电容电极上均设有第二复合材料电容电极极耳时的固态叠层电容电芯的结构示意图;FIG. 13 is a solid state laminated capacitor cell when all first composite material capacitor electrodes are provided with first composite material capacitor electrode tabs and all second composite material capacitor electrodes are provided with second composite material capacitor electrode tabs Schematic diagram of the structure;
图14为本发明基于复合材料电极的固态叠层电容电芯的第二种结构示意图,具体的为固态电容电芯中的第一复合材料电容电极数量N与第二复合材料电容电极数量M之间的差值的绝对值等于1时的结构示意图;14 is a schematic diagram of the second structure of the solid-state laminated capacitor cell based on composite material electrodes of the present invention, specifically the number N of the first composite material capacitor electrodes and the number M of the second composite material capacitor electrodes in the solid-state capacitor cell Schematic diagram of the structure when the absolute value of the difference between them is equal to 1;
图15为本发明基于复合材料电极的固态复合电容电芯实施例6的结构示意图,具体的为采用实施例1中的至少两个固态电容电芯组成固态复合电容电芯的第一种结构示意图;15 is a schematic structural diagram of Embodiment 6 of a solid composite capacitor cell based on composite material electrodes of the present invention, and specifically a first structural schematic diagram of a solid composite capacitor cell formed by using at least two solid capacitor cells in Example 1 ;
图16为采用实施例1中的至少两个固态电容电芯组成固态复合电容电芯的第二种结构示意图;16 is a schematic diagram of a second structure of a solid-state composite capacitor cell composed of at least two solid-state capacitor cells in Example 1;
图17为采用实施例2中的至少两个固态电容电芯复合在一起时的第一种结构示意图;17 is a schematic diagram of the first structure when at least two solid capacitor cells in Embodiment 2 are combined together;
图18为采用实施例3中的至少两个固态电容电芯复合在一起时的第一种结构示意图;18 is a schematic diagram of the first structure when at least two solid capacitor cells in Embodiment 3 are combined together;
图19为采用实施例2中的至少两个固态电容电芯复合在一起时的第二种结构示意图;FIG. 19 is a schematic diagram of the second structure when at least two solid capacitor cells in Embodiment 2 are combined together;
图20为采用实施例3中的至少两个固态电容电芯复合在一起时的第二种结构示意图;20 is a schematic diagram of a second structure when at least two solid-state capacitor cells in Embodiment 3 are combined together;
图21为本发明基于复合材料电极的固态复合电容电芯实施例7的结构示意图,具体的为采用实施例1中的至少两个固态电容电芯复合在一起时的结构示意图;21 is a schematic structural diagram of
图22为采用实施例2和实施例3中的至少两个固态电容电芯100复合在一起时的结构示意图。FIG. 22 is a schematic structural diagram when at least two
附图标记说明:Description of reference numbers:
10-第一复合材料电容电极;11-第一电极活性材料;12-第一凹槽;13-固态离子导体材料Ⅰ;14-第一复合材料电容电极极耳;10-The first composite material capacitor electrode; 11-The first electrode active material; 12-The first groove; 13-Solid ion conductor material I; 14-The first composite material capacitor electrode tab;
20-第二复合材料电容电极;21-第二电极活性材料;22-第二凹槽;23-固态离子导体材料Ⅱ;24-第二复合材料电容电极极耳;20-second composite capacitor electrode; 21-second electrode active material; 22-second groove; 23-solid ion conductor material II; 24-second composite capacitor electrode tab;
30-固态离子导体膜;30 - solid ionic conductor membrane;
100-固态电容电芯;101-软包体;102-双极集流板;103-软包体;104-双极集流板;105-绝缘隔膜;106-绝缘隔膜。100-solid capacitor cell; 101-soft enclosure; 102-bipolar collector plate; 103-soft enclosure; 104-bipolar collector plate; 105-insulating diaphragm; 106-insulating diaphragm.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention is further described below with reference to the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the embodiments are not intended to limit the present invention.
实施例1Example 1
如图1所示,为本发明基于复合材料电极的固态电容电芯实施例1的结构示意图。本实施例基于复合材料电极的固态电容电芯,包括至少一个第一复合材料电容电极10和至少一个第二复合材料电容电极20。第一复合材料电容电极10和第二复合材料电容电极20交错设置,且相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有固态离子导体膜30。As shown in FIG. 1 , it is a schematic structural diagram of
本实施例的第一复合材料电容电极10采用第一电极活性材料11与固态离子导体材料Ⅰ13的合成物或混合物制成;具体的,本实施例的第一电极活性材料11呈颗粒状均匀分布,且第一电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅰ13。第一复合材料电容电极10内的固态离子导体材料Ⅰ13与第一电极活性材料11之间的摩尔比小于等于100%。通过将第一复合材料电容电极采用第一电极活性材料11与固态离子导体材料Ⅰ13的混合物制成,混合在第一复合材料电容电极10内的固态离子导体材料Ⅰ13与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅰ13采用与固态离子导体膜30相同的材料制成,当然,固态离子导体材料Ⅰ13与固态离子导体膜30之间也可以采用不同的材料制成,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10之间的界面电阻、增加离子渗透率均可。The first composite
本实施例的第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的合成物或混合物制成;具体的,本实施例的第二电极活性材料21呈颗粒状均匀分布,且第二电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅱ23。第二复合材料电容电极20内的固态离子导体材料Ⅱ23与第二电极活性材料21之间的摩尔比小于等于100%。通过将第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的混合物制成,混合在第二复合材料电容电极20内的固态离子导体材料Ⅱ23与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅱ23采用与固态离子导体膜30相同的材料制成,当然,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的界面电阻、增加离子渗透率均可。The second composite
进一步,第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M之间满足:Further, the number N of the first composite
M=N,或,|M-N|=1。M=N, or, |M-N|=1.
具体的,本实施例的第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M满足:M=N=1。Specifically, the number N of the first composite
进一步,本实施例的第一复合材料电容电极10的侧面为平面,固态离子导体膜30与所述第一复合材料电容电极10的侧面贴合。当然,在一些实施例中,也可以在第一复合材料电容电极10的侧面上设置第一凹槽,与对应的第一复合材料电容电极10侧面贴合的固态离子导体膜30嵌入到第一凹槽内,具体的,第一凹槽可设置为多种结构,如可以采用但不限于波浪槽、三角形锯齿槽、梯形槽、V型槽和矩形槽等。为了提高固态离子导体膜30与第一复合材料电容电极10侧面的结合面积,本实施例的第一凹槽的宽度沿着槽底指向槽口的方向逐渐增大。在一些实施例中,也可以在第一复合材料电容电极10的侧面上阵列设有第一嵌孔,与对应的第一复合材料电容电极10侧面贴合的固态离子导体膜30嵌入到第一嵌孔内。具体的,任意两个垂直于第一嵌孔轴线的径向截面在同一个第一嵌孔上截得的两个径向截面Ⅰ中,靠近第一嵌孔孔底一侧的径向截面Ⅰ的几何尺寸小于等于靠近第一嵌孔孔口一侧的径向截面Ⅰ的几何尺寸。具体的,第一嵌孔可采用多种结构,如采用圆锥形嵌孔、方锥形嵌孔以及喇叭口形嵌孔等,不再累述。通过在第一复合材料电容电极10设置第一凹槽或第一嵌入孔,能够有效增强第一复合材料电容电极10与固态离子导体膜30之间的结合强度和亲润性,并减少第一复合材料电容电极10与固态离子导体膜30之间的界面电阻。Further, the side surface of the first composite
本实施例的第二复合材料电容电极20的侧面为平面,固态离子导体膜30与所述第二复合材料电容电极20的侧面贴合。当热,在一些实施例中,可以在第二复合材料电容电极20的侧面上设置第二凹槽,与对应的第二复合材料电容电极20侧面贴合的固态离子导体膜30嵌入到第二凹槽内。具体的,第一凹槽可设置为多种结构,如可以采用但不限于波浪槽、三角形锯齿槽、梯形槽、V型槽和矩形槽等。为了提高固态离子导体膜30与第二复合材料电容电极20侧面之间的结合面积,第二凹槽的宽度沿着槽底指向槽口的方向逐渐增大。在一些实施例中,也可以在第二复合材料电容电极20的侧面上阵列设有第二嵌孔,与对应的第二复合材料电容电极20侧面贴合的固态离子导体膜30嵌入到第二嵌孔内。任意两个垂直于第二嵌孔轴线的径向截面在同一个第二嵌孔上截得的两个径向截面Ⅱ中,靠近第二嵌孔孔底一侧的径向截面Ⅱ的几何尺寸小于等于靠近第二嵌孔孔口一侧的径向截面Ⅱ的几何尺寸。第二嵌孔均采用多种结构,如采用圆锥形嵌孔、方锥形嵌孔以及喇叭口形嵌孔等,不再累述。通过在第二复合材料电容电极20上设置第二凹槽,增强第二复合材料电容电极20与固态离子导体膜30之间的结合强度和亲润性,并减少第二复合材料电容电极20与固态离子导体膜30之间的界面电阻。The side surface of the second composite
具体的,在一些实施例中,可以仅在第一复合材料电容电极10的侧面上仅设置第一凹槽或第一嵌孔,也可以同时在第一复合材料电容电极10的侧面上设置第一凹槽和第一嵌孔。同理,在一些实施例中,可以仅在第二复合材料电容电极20的侧面上设置第二凹槽或第二嵌孔,也可以同时在第二复合材料电容电极20的侧面上设置第二凹槽和第二嵌孔。Specifically, in some embodiments, only the first groove or the first embedded hole may be provided only on the side surface of the first composite
进一步,第一电容电极活性材料11和第二电容电极活性材料21采用但不限于磷酸铁锂、三元材料、含硫导电材料、含有金属或有机材料的多孔碳层空气电容电极、层状金属氧化物材料、含氧有机聚合物材料、金属锂、金属钠、金属铝、金属镁、金属钾、石墨烯、硬碳、氧化硅和硅单质制成中的一种或至少两种的混合物。具体的,第一电容电极活性材料11和第二电容电极活性材料21可以采用相同的材料制成,也可以分别采用不同的材料制成,不再累述。Further, the first capacitor electrode
所述固态离子导体膜30采用热压物理方法或化学方法分别与所述复合材料正极和复合材料负极形成良好的电极/电解液界面。具体的,所述固态离子导体材料、固态离子导体材料Ⅰ13和固态离子导体材料Ⅱ23采用但不限于凝胶、氧化物、硫化物和有机聚合物中的一种或至少两种的混合物制成。其中,所述凝胶为由高分子化合物-金属盐和/或溶剂三元组分组成的电解质,采用但不限于聚(乙烯醇)基衍生物-酸或碱或金属盐、聚(苯并咪唑)基衍生物-金属盐-有机溶剂、聚(偏氟乙烯)基衍生物-金属盐-有机溶剂、聚(环氧乙烷)基衍生物-金属盐-有机溶剂和聚(甲基丙烯酸甲酯)基衍生物-金属盐-有机溶剂的一种或至少两种的混合物制成。所述氧化物包括但不限于钠超离子导体(NASICON)型-LiTi2(PO4)3及其衍生物、锂超离子导体(LISICON)型-Li14Zn(GeO4)4及其衍生物和石榴石(Garnet)型-Li7La3Zr2O12及其衍生物。所述硫化物包括但不限于Li10GeP2S12、Li2S-P2S5及其衍生物、卤化物、氢化物和磷锂氮氧化物。所述有机聚合物采用聚(环氧乙烷)(PEO)基衍生物-金属盐、聚(苯并咪唑)基衍生物-金属盐、聚(偏氟乙烯)基衍生物-金属盐中的一种或至少两种的混合物制成。具体的,固态离子导体膜、固态离子导体材料Ⅰ13和固态离子导体材料Ⅱ23可以采用相同的材料制成,也可以采用不同的材料制成,但需要能够满足离子导通。The solid
本实施例基于复合材料电极的固态电容电芯,通过将第一复合材料电容电极采用第一电极活性材料与固态离子导体材料的混合物制成,如此,离子可通过固态离子导体膜进入到第一复合材料电容电极中的固态离子导体材料内,能够有效提高离子渗透率以及固态离子导体膜与第一复合材料电容电极之间的亲润性,并减小固态离子导体膜与第一复合材料电容电极之间的界面电阻;同理,通过将第二复合材料电容电极采用第二电极活性材料与固态离子导体材料的混合物制成,离子可通过固态离子导体膜进入到第二复合材料电容电极中的固态离子导体材料内,能够有效提高离子渗透率以及固态离子导体膜与第二复合材料电容电极之间的亲润性,并减小固态离子导体膜与第二复合材料电容电极之间的界面电阻;综上可以,本实施例基于复合材料电极的固态电容电芯,能够有效提高固态离子导体膜与电极之间的亲润性,并能够有效减小固态离子导体膜与电极之间的界面电阻,提高离子渗透率。This embodiment is based on a solid-state capacitor cell based on a composite material electrode. The first composite material capacitor electrode is made of a mixture of a first electrode active material and a solid-state ion conductor material. In this way, ions can enter the first electrode through the solid-state ion conductor membrane. In the solid ion conductor material in the composite capacitor electrode, the ion permeability and the wettability between the solid ion conductor film and the first composite material capacitor electrode can be effectively improved, and the capacitance between the solid ion conductor film and the first composite material capacitor can be reduced. The interface resistance between the electrodes; similarly, by using the second composite material capacitor electrode with a mixture of the second electrode active material and the solid ion conductor material, ions can enter the second composite material capacitor electrode through the solid ion conductor film. In the solid ion conductor material, the ion permeability and the affinity between the solid ion conductor film and the second composite material capacitor electrode can be effectively improved, and the interface between the solid ion conductor film and the second composite material capacitor electrode can be reduced. resistance; to sum up, the solid capacitor cell based on the composite material electrode in this embodiment can effectively improve the wettability between the solid ionic conductor membrane and the electrode, and can effectively reduce the interface between the solid ionic conductor membrane and the electrode resistance and increase ion permeability.
实施例2Example 2
如图5所示,为本发明基于复合材料电极的固态电容电芯实施例2的结构示意图。本实施例基于复合材料电极的固态电容电芯,包括至少一个第一复合材料电容电极10和至少一个第二复合材料电容电极20。第一复合材料电容电极10和第二复合材料电容电极20交错设置,且相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有固态离子导体膜30。As shown in FIG. 5 , it is a schematic structural diagram of Embodiment 2 of the solid capacitor cell based on the composite material electrode of the present invention. The solid capacitor cell based on composite material electrodes in this embodiment includes at least one first composite
本实施例的第一复合材料电容电极10采用第一电极活性材料11与固态离子导体材料Ⅰ13的合成物或混合物制成;具体的,本实施例的第一电极活性材料11呈颗粒状均匀分布,且第一电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅰ13。第一复合材料电容电极10内的固态离子导体材料Ⅰ13与第一电极活性材料11之间的摩尔比小于等于100%。通过将第一复合材料电容电极采用第一电极活性材料11与固态离子导体材料Ⅰ13的混合物制成,混合在第一复合材料电容电极10内的固态离子导体材料Ⅰ13与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅰ13采用与固态离子导体膜30相同的材料制成,当然,固态离子导体材料Ⅰ13与固态离子导体膜30之间也可以采用不同的材料制成,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10之间的界面电阻、增加离子渗透率均可。The first composite
本实施例的第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的合成物或混合物制成;具体的,本实施例的第二电极活性材料21呈颗粒状均匀分布,且第二电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅱ23。第二复合材料电容电极20内的固态离子导体材料Ⅱ23与第二电极活性材料21之间的摩尔比小于等于100%。通过将第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的混合物制成,混合在第二复合材料电容电极20内的固态离子导体材料Ⅱ23与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅱ23采用与固态离子导体膜30相同的材料制成,当然,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的界面电阻、增加离子渗透率均可。The second composite
进一步,第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M之间满足:Further, the number N of the first composite
M=N,或,|M-N|=1。M=N, or, |M-N|=1.
具体的,本实施例的第一复合材料电容电极10的数量N=1,第二复合材料电容电极20的数量M=2,并满足:M-N=1。两个第二复合材料电容电极20分别设置在第一复合材料电容电极10的两侧。本实施例的两个第二复合材料电容电极20之间可以采用内电路或外电路电连接,不再累述。Specifically, in this embodiment, the number N of the first composite
进一步,本实施例的第一复合材料电容电极10的侧面上设有第一凹槽12,与对应的第一复合材料电容电极10侧面贴合的固态离子导体膜30嵌入到第一凹槽12内。第二复合材料电容电极20的侧面上设有第二凹槽22,与对应的第二复合材料电容电极20侧面贴合的固态离子导体膜30嵌入到第二凹槽22内。具体的,本实施例的第一复合材料电容电极10的两侧侧面上均设有第一凹槽12,两个第二复合材料电容电极20面向第一复合材料电容电极10的一侧侧面上均设有第二凹槽22。Further, a
当然,也可以在第一复合材料电容电极10的侧面上设置第一嵌孔或者将第一复合材料电容电极10的侧面设置为平面;同理,也可以在第二复合材料电容电极20的侧面上设置第二嵌孔或者将第二复合材料电容电极20的侧面设置为平面,不再一一累述。Of course, the first embedded hole can also be provided on the side of the first
本实施例的其他结构与实施例1相同,不再一一累述。Other structures of this embodiment are the same as those of
实施例3Example 3
如图7所示,为本发明基于复合材料电极的固态电容电芯实施例3的结构示意图。本实施例基于复合材料电极的固态电容电芯,包括至少一个第一复合材料电容电极10和至少一个第二复合材料电容电极20。第一复合材料电容电极10和第二复合材料电容电极20交错设置,且相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有固态离子导体膜30。As shown in FIG. 7 , it is a schematic structural diagram of Embodiment 3 of the solid capacitor cell based on the composite material electrode of the present invention. The solid capacitor cell based on composite material electrodes in this embodiment includes at least one first composite
本实施例的第一复合材料电容电极10采用第一电极活性材料11与固态离子导体材料Ⅰ13的合成物或混合物制成;具体的,本实施例的第一电极活性材料11呈颗粒状均匀分布,且第一电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅰ13。第一复合材料电容电极10内的固态离子导体材料Ⅰ13与第一电极活性材料11之间的摩尔比小于等于100%。通过将第一复合材料电容电极采用第一电极活性材料11与固态离子导体材料Ⅰ13的混合物制成,混合在第一复合材料电容电极10内的固态离子导体材料Ⅰ13与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅰ13采用与固态离子导体膜30相同的材料制成,当然,固态离子导体材料Ⅰ13与固态离子导体膜30之间也可以采用不同的材料制成,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10之间的界面电阻、增加离子渗透率均可。The first composite
本实施例的第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的合成物或混合物制成;具体的,本实施例的第二电极活性材料21呈颗粒状均匀分布,且第二电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅱ23。第二复合材料电容电极20内的固态离子导体材料Ⅱ23与第二电极活性材料21之间的摩尔比小于等于100%。通过将第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的混合物制成,混合在第二复合材料电容电极20内的固态离子导体材料Ⅱ23与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅱ23采用与固态离子导体膜30相同的材料制成,当然,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的界面电阻、增加离子渗透率均可。The second composite
进一步,第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M之间满足:Further, the number N of the first composite
M=N,或,|M-N|=1。M=N, or, |M-N|=1.
具体的,本实施例的第一复合材料电容电极10的数量N=2,第二复合材料电容电极20的数量M=1,并满足满足:N-M=1。两个第一复合材料电容电极10分别设置在第二复合材料电容电极20的两侧。本实施例的两个第一复合材料电容电极10之间可以采用内电路或外电路电连接,不再累述。Specifically, in this embodiment, the number N of the first composite
进一步,本实施例的第一复合材料电容电极10的侧面为平面,固态离子导体膜30与所述第一复合材料电容电极10的侧面贴合。当然,在一些实施例中,也可以在第一复合材料电容电极10的侧面上设置第一凹槽,与对应的第一复合材料电容电极10侧面贴合的固态离子导体膜30嵌入到第一凹槽内。在一些实施例中,也可以在第一复合材料电容电极10的侧面上阵列设有第一嵌孔,与对应的第一复合材料电容电极10侧面贴合的固态离子导体膜30嵌入到第一嵌孔内。Further, the side surface of the first composite
本实施例的第二复合材料电容电极20的侧面为平面,固态离子导体膜30与所述第二复合材料电容电极20的侧面贴合。当热,在一些实施例中,可以在第二复合材料电容电极20的侧面上设置第二凹槽,与对应的第二复合材料电容电极20侧面贴合的固态离子导体膜30嵌入到第二凹槽内。在一些实施例中,也可以在第二复合材料电容电极20的侧面上阵列设有第二嵌孔,与对应的第二复合材料电容电极20侧面贴合的固态离子导体膜30嵌入到第二嵌孔内。The side surface of the second composite
本实施例的其他结构与实施例1相同,不再一一累述。Other structures of this embodiment are the same as those of
实施例4Example 4
如图9所示,为本发明基于复合材料电极的固态电容电芯实施例4的结构示意图。本实施例基于复合材料电极的固态电容电芯,包括至少一个第一复合材料电容电极10和至少一个第二复合材料电容电极20。第一复合材料电容电极10和第二复合材料电容电极20交错设置,且相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有固态离子导体膜30。As shown in FIG. 9 , it is a schematic structural diagram of
本实施例的第一复合材料电容电极10采用第一电极活性材料11与固态离子导体材料Ⅰ13的合成物或混合物制成;具体的,本实施例的第一电极活性材料11呈颗粒状均匀分布,且第一电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅰ13。第一复合材料电容电极10内的固态离子导体材料Ⅰ13与第一电极活性材料11之间的摩尔比小于等于100%。通过将第一复合材料电容电极采用第一电极活性材料11与固态离子导体材料Ⅰ13的混合物制成,混合在第一复合材料电容电极10内的固态离子导体材料Ⅰ13与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅰ13采用与固态离子导体膜30相同的材料制成,当然,固态离子导体材料Ⅰ13与固态离子导体膜30之间也可以采用不同的材料制成,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10之间的界面电阻、增加离子渗透率均可。The first composite
本实施例的第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的合成物或混合物制成;具体的,本实施例的第二电极活性材料21呈颗粒状均匀分布,且第二电极活性材料颗粒的缝隙中填充有固态离子导体材料Ⅱ23。第二复合材料电容电极20内的固态离子导体材料Ⅱ23与第二电极活性材料21之间的摩尔比小于等于100%。通过将第二复合材料电容电极20采用第二电极活性材料21与固态离子导体材料Ⅱ23的混合物制成,混合在第二复合材料电容电极20内的固态离子导体材料Ⅱ23与固态离子导体膜30之间可离子导电连通,能够有效提高离子渗透率,并降低固态与电极之间界面电阻。本实施例的固态离子导体材料Ⅱ23采用与固态离子导体膜30相同的材料制成,当然,只要能够达到增强固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的亲润性以及降低固态离子导体膜30与第一复合材料电容电极10以及第二复合材料电容电极20之间的界面电阻、增加离子渗透率均可。The second composite
进一步,第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M之间满足:Further, the number N of the first composite
M=N,或,|M-N|=1。M=N, or, |M-N|=1.
具体的,本实施例的第一复合材料电容电极10的数量N≥2,第二复合材料电容电极20的数量M≥2,第一复合材料电容电极10的数量和第二复合材料电容电极20的数量可以根据实际需要设置,不再累述。本实施例的所有第二复合材料电容电极20之间可以采用内电路或外电路电连接,所有第一复合材料电容电极10之间可以采用内电路或外电路电连接。Specifically, in this embodiment, the number N≥2 of the first composite
当N=M时,位于两端的两个电极分别为第一复合材料电容电极10和第二复合材料电容电极20,如图9所示;When N=M, the two electrodes at both ends are the first composite
当N-M=1时,位于两端的两个电极均为第一复合材料电容电极10,如图10所示;When N-M=1, the two electrodes at both ends are the first composite
当M-N=1时,位于两端的两个电极均为第二复合材料电容电极20,如图11所示。When M-N=1, the two electrodes at both ends are the second composite
本实施例的其他结构与实施例1相同,不再一一累述。Other structures of this embodiment are the same as those of
实施例5Example 5
如图12所示,为本发明基于复合材料电极的固态叠层电容电芯的结构示意图。本实施例基于复合材料电极的固态叠层电容电芯包括软包体101,软包体101内设有至少两个复合在一起的如上所述的本实施例的固态电容电芯100。具体的,软包体101内设置的固态电容电芯100的数量可以为2个、3个及3个以上,不再累述。As shown in FIG. 12 , it is a schematic structural diagram of the solid-state laminated capacitor cell based on the composite material electrode of the present invention. The solid laminated capacitor cell based on the composite material electrode in this embodiment includes a
具体的,相邻的两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置,且在该相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有电子导电但离子隔离的双极集流板102。通过将多个固态电容电芯100组合为固态叠层电容电芯,能够有效增大固态叠层电容电芯的输出电压。Specifically, among two adjacent
本实施例的固态叠层电容电芯的两端分别设有第一复合材料电容电极极耳14和第二复合材料电容电极极耳24。当然,也可以在每一个固态电容电芯100的第一复合材料电容电极10上设置第一复合材料电容电极极耳14,在每一个固态电容电芯100的第二复合材料电容电极20上设置第二复合材料电容电极极耳24,便于外接电路用于对固态叠层电容电芯进行电能输出控制,如图13所示。The two ends of the solid-state laminated capacitor cell in this embodiment are respectively provided with a first composite material
具体的,本实施例的固态叠层电容电芯的结构具有多种变化:Specifically, the structure of the solid-state multilayer capacitor cell in this embodiment has various changes:
如图12和13所示,为采用实施例1中的固态电容电芯100组合为固态叠层电容电芯时的结构示意图,该固态叠层电容电芯中,固态电容电芯100的数量可以为2个、3个及3个以上,且相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置,且在该相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有电子导电但离子隔离的双极集流板102。As shown in FIGS. 12 and 13 , it is a schematic structural diagram when the
以此类推,当固态电容电芯100中的第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M满足M=N≥1时,此时仅需将所有的固态电容电芯100依次层叠在一起即可,在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置,并在该相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有电子导电但离子隔离的双极集流板102。By analogy, when the number N of the first composite
如图14所示,为采用实施例2中的固态电容电芯100以及实施例3中的固态电容电芯100组合成固态叠层电容电芯时的结构示意图,该固态叠层电容电芯中,为了实现在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置的结构,需将实施例2中的固态电容电芯100与实施例3中的固态电容电芯100交错层叠在一起,如此,即可使相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置,并在该相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有电子导电但离子隔离的双极集流板102。As shown in FIG. 14 , it is a schematic structural diagram when the solid-
以此类推,当固态电容电芯100中的第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M满足|M-N|=1,且第一复合材料电容电极的数量N≥1,第二复合材料电容电极的数量M≥1时,此时的相邻两个固态电容电芯100中,其中一个固态电容电芯100的第一复合材料电容电极数量N与第二复合材料电容电极数量M之间满足N-M=1,另一个固态电容电芯100的第一复合材料电容电极数量N与第二复合材料电容电极数量M之间满足M-N=1,以确保该相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置,并在该相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有电子导电但离子隔离的双极集流板102。By analogy, when the number N of the first composite
当然,当固态电容电芯100中的第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M满足|M-N|=1且第一复合材料电容电极的数量N≥1,第二复合材料电容电极的数量M≥1时,此时包括两类结构的固态电容电芯100中,其中一类固态电容电芯100的第一复合材料电容电极数量N与第二复合材料电容电极数量M之间满足N-M=1,另一类固态电容电芯100的第一复合材料电容电极数量N与第二复合材料电容电极数量M之间满足M-N=1,在该两类固态电容电芯100之间,还可以层叠至少一个第一复合材料电容电极数量N与第二复合材料电容电极数量M之间满足N=M的固态电容电芯100,仅需保证相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置,并在该相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有电子导电但离子隔离的双极集流板102即可,不再累述。Of course, when the number N of the first composite
实施例6Example 6
如图15所示,为本发明基于复合材料电极的固态复合电容电芯实施例6的结构示意图。本实施例基于复合材料电极的固态复合电容电芯,包括软包体103,软包体103内设有至少两个复合在一起的如上所述的固态电容电芯100。As shown in FIG. 15 , it is a schematic structural diagram of Embodiment 6 of the solid composite capacitor cell based on the composite material electrode of the present invention. The solid composite capacitor cell based on the composite material electrode in this embodiment includes a
具体的,相邻的两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第一复合材料电容电极10相邻设置,该相邻的两个第一复合材料电容电极10之间复合在一起或该相邻的两个第一复合材料电容电极10之间设有电子导电且离子隔离的双极集流板104或该相邻的两个第一复合材料电容电极10之间设有电子绝缘且离子隔离的绝缘隔膜105;或,其中一个固态电容电芯100端部的第二复合材料电容电极20与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置;该相邻的两个第二复合材料电容电极20之间复合在一起或该相邻的两个第二复合材料电容电极20之间设有电子导电且离子隔离的双极集流板104或该相邻的两个第二复合材料电容电极20之间设有电子绝缘且离子隔离的绝缘隔膜105。Specifically, in two adjacent
如图15所示,为采用实施例1中的至少两个固态电容电芯100复合在一起时的结构示意图,在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第一复合材料电容电极10相邻设置,该相邻的两个第一复合材料电容电极10之间复合在一起;或,其中一个固态电容电芯100端部的第二复合材料电容电极20与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置;该相邻的两个第二复合材料电容电极20之间复合在一起。As shown in FIG. 15 , which is a schematic structural diagram when at least two solid-
如图16所示,为采用实施例1中的至少两个固态电容电芯100复合在一起时的结构示意图,在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第一复合材料电容电极10相邻设置,该相邻的两个第一复合材料电容电极10之间设有电子导电且离子隔离的双极集流板104或该相邻的两个第一复合材料电容电极10之间设有电子绝缘且离子隔离的绝缘隔膜105;或,其中一个固态电容电芯100端部的第二复合材料电容电极20与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置;该相邻的两个第二复合材料电容电极20之间设有电子导电且离子隔离的双极集流板104或该相邻的两个第二复合材料电容电极20之间设有电子绝缘且离子隔离的绝缘隔膜105。As shown in FIG. 16 , which is a schematic structural diagram when at least two solid-
以此类推,当固态电容电芯100中的第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M之间满足N=M时,均可采用如图15和图16的方式,将至少两个固态电容电芯100复合在一起构成固态复合电容电芯。By analogy, when the number N of the first composite
如图17所示,为采用实施例2中的至少两个固态电容电芯100复合在一起时的结构示意图。在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第二复合材料电容电极20与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置;该相邻的两个第二复合材料电容电极20之间复合在一起。As shown in FIG. 17 , it is a schematic structural diagram when at least two
如图18所示,为采用实施例3中的至少两个固态电容电芯100复合在一起时的结构示意图。在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第二复合材料电容电极20与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置;该相邻的两个第二复合材料电容电极20之间复合在一起。As shown in FIG. 18 , it is a schematic structural diagram when at least two
如图19所示,为采用实施例2中的至少两个固态电容电芯100复合在一起时的结构示意图。在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第二复合材料电容电极20与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置;该相邻的两个第二复合材料电容电极20之间设有电子导电且离子隔离的双极集流板104或该相邻的两个第二复合材料电容电极20之间设有电子绝缘且离子隔离的绝缘隔膜105。As shown in FIG. 19 , it is a schematic structural diagram when at least two solid-
如图20所示,为采用实施例3中的至少两个固态电容电芯100复合在一起时的结构示意图。在相邻两个固态电容电芯100中,其中一个固态电容电芯100端部的第二复合材料电容电极20与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置;该相邻的两个第二复合材料电容电极20之间电子导电且离子隔离的双极集流板104或该相邻的两个第一复合材料电容电极10之间设有电子绝缘且离子隔离的绝缘隔膜105。As shown in FIG. 20 , it is a schematic structural diagram when at least two
以此类推,当固态电容电芯100中的第一复合材料电容电极10的数量N与第二复合材料电容电极20的数量M之间满足|M-N|=1时,均可采用如图17-20的方式,将至少两个固态电容电芯100复合在一起构成固态复合电容电芯。By analogy, when the number N of the first composite
本实施例中,每一个固态电容电芯100的所有第一复合材料电容电极10上均设有第一复合材料电容电极极耳14,所有第二复合材料电容电极20上均设有第二复合材料电容电极极耳24。In this embodiment, all the first composite
实施例7Example 7
如图21所示,为本发明基于复合材料电极的固态复合电容电芯实施例7的结构示意图。本实施例基于复合材料电极的固态复合电容电芯,包括软包体103,软包体103内设有至少两个复合在一起的如上所述的固态电容电芯100。As shown in FIG. 21 , it is a schematic structural diagram of Example 7 of the solid composite capacitor cell based on the composite material electrode of the present invention. The solid composite capacitor cell based on the composite material electrode in this embodiment includes a
相邻的两个固态电容电芯100中,其中一个固态电容电芯100端部的第一复合材料电容电极10与另一个固态电容电芯100端部的第二复合材料电容电极20相邻设置,且在该相邻的第一复合材料电容电极10和第二复合材料电容电极20之间设有电子绝缘且离子隔离的绝缘隔膜106,每一个固态电容电芯100可相互独立控制实现对外输出电能,当然,多个固态电容电芯100之间可以通过外电路控制实现串联、并联或串并混联对外输出电能。In two adjacent
如图21所示,为采用实施例1中的至少两个固态电容电芯100复合在一起时的结构示意图;As shown in FIG. 21 , it is a schematic structural diagram when at least two solid-
如图22所示,为采用实施例2和实施例3中的至少两个固态电容电芯100复合在一起时的结构示意图。As shown in FIG. 22 , it is a schematic structural diagram when at least two
本实施例中,每一个固态电容电芯100的所有第一复合材料电容电极10上均设有第一复合材料电容电极极耳14,所有第二复合材料电容电极20上均设有第二复合材料电容电极极耳24。In this embodiment, all the first composite
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention is subject to the claims.
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910528695.3A CN112103088A (en) | 2019-06-18 | 2019-06-18 | Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell based on composite material electrode |
PCT/CN2020/096012 WO2020253638A1 (en) | 2019-06-18 | 2020-06-15 | Composite electrode-based solid cell, laminated cell, composite cell and composite power cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910528695.3A CN112103088A (en) | 2019-06-18 | 2019-06-18 | Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell based on composite material electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112103088A true CN112103088A (en) | 2020-12-18 |
Family
ID=73749116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910528695.3A Pending CN112103088A (en) | 2019-06-18 | 2019-06-18 | Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell based on composite material electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112103088A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102598173A (en) * | 2009-08-07 | 2012-07-18 | Oc欧瑞康巴尔斯公司 | All-solid-state electrochemical double-layer supercapacitor |
CN108586664A (en) * | 2018-04-24 | 2018-09-28 | 华中科技大学 | A kind of method and the capacitor preparing the stretchable ultracapacitor of full hydrogel |
CN208637537U (en) * | 2018-01-11 | 2019-03-22 | 安徽威格路新能源科技有限公司 | A kind of solid state battery of low interfacial resistance |
CN210692370U (en) * | 2019-06-18 | 2020-06-05 | 重庆九环新越新能源科技发展有限公司 | Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell |
-
2019
- 2019-06-18 CN CN201910528695.3A patent/CN112103088A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102598173A (en) * | 2009-08-07 | 2012-07-18 | Oc欧瑞康巴尔斯公司 | All-solid-state electrochemical double-layer supercapacitor |
CN104616913A (en) * | 2009-08-07 | 2015-05-13 | Oc欧瑞康巴尔斯公司 | All-solid-state electrochemical double-layer supercapacitor |
CN208637537U (en) * | 2018-01-11 | 2019-03-22 | 安徽威格路新能源科技有限公司 | A kind of solid state battery of low interfacial resistance |
CN108586664A (en) * | 2018-04-24 | 2018-09-28 | 华中科技大学 | A kind of method and the capacitor preparing the stretchable ultracapacitor of full hydrogel |
CN210692370U (en) * | 2019-06-18 | 2020-06-05 | 重庆九环新越新能源科技发展有限公司 | Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell |
Non-Patent Citations (1)
Title |
---|
邱成军 等: "《微机电系统(MEMS)工艺基础与应用》", vol. 1, 29 February 2016, 哈尔滨工业大学出版社, pages: 115 - 118 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11791470B2 (en) | Battery cell with electrolyte diffusion material | |
CN210576347U (en) | All-solid-state composite power energy storage battery cell | |
JP4135469B2 (en) | Polymer battery, battery pack and vehicle | |
CN101719562A (en) | Electrical core of high-voltage battery | |
CN207409606U (en) | It is easy to the Li-ion batteries piles of heat dissipation | |
US20190036158A1 (en) | Battery having a single-ion conducting layer | |
CN105706276A (en) | Non-aqueous electrolyte secondary cell, and electric storage circuit using same | |
CN210692370U (en) | Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell | |
CN210692707U (en) | Solid-state battery cell, laminated battery cell and composite power battery cell | |
CN112103567A (en) | Solid-state battery cell, laminated battery cell and composite power battery cell based on composite material electrode | |
CN210692371U (en) | All-solid-state capacitor cell, laminated capacitor cell and composite capacitor cell | |
CN113258127B (en) | A current collector-negative electrode integrated bipolar lithium secondary battery and method thereof | |
CN209963173U (en) | All-solid-state battery cell, laminated battery cell and composite battery cell | |
CN210576300U (en) | Composite power solid-state energy storage battery cell based on composite material electrode | |
CN103354296A (en) | Ultralight polymer lithium ion battery and manufacturing method thereof | |
CN210167438U (en) | Conductive composite electrode positive electrode material of all-solid-state battery | |
CN210167437U (en) | Conductive composite electrode negative electrode material of all-solid-state battery | |
WO2020207362A1 (en) | Energy storage device having bipolar conductive film connecting structure | |
CN217035901U (en) | Internal series solid-state battery and solid-state battery pack | |
CN112103088A (en) | Solid-state capacitor cell, laminated capacitor cell and composite power capacitor cell based on composite material electrode | |
CN214152981U (en) | All-solid-state energy storage equipment cell and laminated cell | |
CN210167266U (en) | Conductive composite electrode material of all-solid-state supercapacitor | |
CN112103572A (en) | Composite power solid-state energy storage battery cell based on composite material electrode | |
WO2020253638A1 (en) | Composite electrode-based solid cell, laminated cell, composite cell and composite power cell | |
CN210074028U (en) | Multi-layer electrode based on mass transfer reduction and diffusion control and energy storage equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |