CN112102938A - 一种睡眠分期方法及装置 - Google Patents

一种睡眠分期方法及装置 Download PDF

Info

Publication number
CN112102938A
CN112102938A CN201910522284.3A CN201910522284A CN112102938A CN 112102938 A CN112102938 A CN 112102938A CN 201910522284 A CN201910522284 A CN 201910522284A CN 112102938 A CN112102938 A CN 112102938A
Authority
CN
China
Prior art keywords
sleep
signals
signal
lead
detection model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910522284.3A
Other languages
English (en)
Inventor
王星
傅玲
许娟
范绎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alibaba Health Information Technology Ltd
Original Assignee
Alibaba Health Information Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alibaba Health Information Technology Ltd filed Critical Alibaba Health Information Technology Ltd
Priority to CN201910522284.3A priority Critical patent/CN112102938A/zh
Publication of CN112102938A publication Critical patent/CN112102938A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation

Abstract

本申请关于一种睡眠分期方法及装置,所述方法包括:获取人体的多导脑电信号;将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型;根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。利用本申请各个实施例提供的睡眠分期方法及装置,可以在较少的样本数据的情况下,训练得到准确率较高的睡眠检测模型组件。

Description

一种睡眠分期方法及装置
技术领域
本申请涉及睡眠检测技术领域,尤其涉及一种睡眠分期方法及装置。
背景技术
经济的发展和生活水平的提高,使国人愈加重视自身健康问题。睡眠作为占据每个人1/3人生的重要环节,对人们的身心健康发挥着重要的作用。《2018中国睡眠质量调查报告》共对10万人进行了调查,调查对象覆盖全国所有省份。调查结果显示,16%的被调查者的夜间睡眠时间不足6个小时,表现为24点以后才上床睡觉,并且在6点之前起床;有83.81%的被调查者经常受到睡眠问题困扰,其中入睡困难占25.83%,浅睡眠者有26.49%,有25.54%的被调查者被观察到有呼吸短暂停止的现象。
由此可见,睡眠问题不容忽视,同时,调查报告中还指出通过一些辅助治疗的方式可以缓解睡眠障碍,帮助人们解决睡眠问题。而睡眠分期是研究睡眠及睡眠相关疾病、诊疗睡眠障碍、评估睡眠质量等过程中不可或缺的重要手段。相关技术中,关于睡眠自动分期的算法层出不穷,目前比较常用的技术主要包括机器学习的方式。但是,相关技术中的机器学习模型不仅在训练过程中需要较多的样本数据,另外获取的睡眠分期结果也不是很准确。
因此,相关技术中亟需一种更加准确的睡眠分期方式。
发明内容
本申请实施例的目的在于提供一种睡眠分期方法及装置,可以在较少的样本数据的情况下,训练得到准确率较高的睡眠检测模型组件。
本申请实施例提供的睡眠分期方法及装置是这样实现的:
一种睡眠分期方法,所述方法包括:
获取人体的多导脑电信号;
将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型;
根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
一种睡眠分期装置,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:
获取人体的多导脑电信号;
将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型;
根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
一种睡眠分期设备,包括:脑电采集装置以及所述的睡眠分期装置,其中,所述脑电采集装置,用于采集所述人体的所述多导脑电信号。
一种睡眠分期设备,包括:脑电采集装置、数据发送装置、数据接收装置,其中,
所述脑电采集装置,用于采集人体的多导脑电信号;
所述数据发送装置,用于发送所述多导脑电信号至服务器,所述服务器被设置为利用睡眠特征检测模型组件获取所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型,并根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果;
所述数据接收装置,用于接收所述人体的睡眠分期结果。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行所述的睡眠分期方法。
本申请提供的睡眠分期方法及装置,可以利用睡眠检测模型组件检测人体多导脑电信号中的睡眠特征信号及其类型,并根据所述睡眠特征信号及其类型确定人体的睡眠分期结果。其中,所述睡眠特征检测模型组件利用多个多导脑电样本信号训练得到,且所述多导脑电样本信号中标注有不同信号类型的睡眠特征信号,一方面,睡眠分期结果与睡眠特征信号具有紧密的关联关系,因此,利用模型组件先获取到多导脑电样本信号中的睡眠特征信号,再根据睡眠特征信号确定出睡眠分期结果,可以获取到比较准确的结果;另一方面,在所述多导脑电样本信号中标注睡眠特征信号,而不是睡眠分期阶段,从特征提取的难易程度来看,提取出睡眠特征信号需要的样本数据量比提取睡眠分期阶段要少很多,因此,利用本申请实施例通提供的睡眠分期方法可以在较少的样本数据的情况下,训练得到准确率较高的睡眠检测模型组件。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种场景示意图。
图2是根据一示例性实施例示出的一种方法流程示意图。
图3是根据一示例性实施例示出的一种场景示意图。
图4是根据一示例性实施例示出的一种流程示意图。
图5是根据一示例性实施例示出的一种场景示意图。
图6是根据一示例性实施例示出的一种波形示意图。
图7是根据一示例性实施例示出的一种波形示意图。
图8是根据一示例性实施例示出的一种装置的框图。
图9是根据一示例性实施例示出的一种设备的框图
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
为了方便本领域技术人员理解本申请实施例提供的技术方案,下面先对技术方案实现的技术环境进行说明。
相关技术中比较常用的睡眠检测方法主要包括机器学习的方式。在机器学习过程中,往往需要大量的样本数据,且需要对样本数据做一些标注。相关技术中最常见的标注方式是在脑电信号中标注出人体所处的睡眠阶段,然后再对这些标注有睡眠阶段的样本数据进行训练。但是,在实际场景中,人体的睡眠阶段的长短不一,即不同人体的睡眠特征不相同。因此,利用相关技术中的机器学习方式训练得到比较准确的睡眠分期模型,不仅需要大量的样本数据,还有可能训练得到的睡眠分期模型不够准确。
基于类似于上文所述的实际技术需求,本申请提供的睡眠分期方式能够将机器学习中的睡眠特征提取和睡眠分期分开处理,这是由于虽然人体睡眠阶段的长短不一,但是大部分在相同的睡眠阶段中的脑电波特征大致相似,因此,先确定睡眠特征,再划分睡眠分期,可以得到较为准确的睡眠分期结果。
下面通过两个具体的业务场景具体说明本申请各个实施例提供的睡眠分期方法。
场景一
如图1所示,某用户疑似患有睡眠障碍,在医院治疗过程中,医生需要了解到该用户的睡眠状态,尤其是各个睡眠阶段的时间长短。因此,可以利用本申请实施例提供的睡眠分期方式检测用户人体101的睡眠分期结果。如图1所示,可以通过脑电信号采集设备107采集人体101的多导脑电信号,在采集过程中,可以将探测电极103a、探测电极103b、探测电极103c固定在人体101的头部各个位置处。通过将脑电信号采集设备107的接口105与探测电极103a、探测电极103b、探测电极103c连接之后,所述脑电信号采集设备107可以采集到人体101的多导脑电信号。当然,脑电信号采集设备107仅是示例性的,还可以包括头盔、帽子、寝具、封装后的便携探测电极等其他多种装置。
如图1所示,所述脑电信号采集设备107还可以与睡眠分期装置109相耦合,图1仅是示例性的耦合方式,所述脑电信号采集设备107与所述睡眠分期装置109还可以集成于同一设备中,如所述睡眠分期装置109可以集成于所述脑电信号采集设备107的内部,本申请在此不做限制。所述睡眠分期装置109可以利用本申请以下任一实施例提供的睡眠分期方式对所述脑电采集设备107采集的多导脑电信号进行处理。图2是所述睡眠分期装置109处理所述多导脑电信号的方法流程示意图。如图2所示,所述睡眠分期装置109在获取到所述多导脑电信号之后,可以对所述多导脑电信号经过去除基线干扰、去除工频干扰、去除非脑电信号等信号预处理之后,输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出睡眠特征信号及信号类型。其中,所述睡眠特征检测模型组件可以利用多个多导脑电样本信号训练得到。在获取到所述睡眠特征信号及信号类型之后,可以根据预测的睡眠分期规则(如美国睡眠协会(AASM)规定的睡眠分期规则)、所述睡眠特征信号及信号类型,确定人体101的睡眠分期结果。如图2所示,所述睡眠分期结果可以包括时间维度上的睡眠周期的划分,例如,人体101在23:00-1:00为W期,在1:00-2:00为N1睡眠期。
当然,在获取到所述睡眠分期结果之后,如图1所示,可以将所述睡眠分期结果展示与所述显示器111上,可以便于医生或者患者了解到具体的检测结果或者治疗结果。
场景二
在另一个场景中,还可以将采集到的多导脑电信号上传至服务器端进行处理。本场景比较适用于便携式场景中,用户可以利用便携式的脑电信号采集设备107在家里、办公室等任何场所即可以采集多导脑电信号,图3中的便携式脑电信号采集设备107仅是示例性的,还可以包括头盔、帽子、寝具、封装后的便携探测电极等其他多种装置。如图3所示,脑电信号采集设备107与数据收发装置113相耦合,脑电信号采集设备107在采集到人体101的多导脑电信号之后,所述数据收发装置113可以将所述多导脑电信号发送至服务器115中。所述服务器115可以包括云服务器、分布式服务器等任何形式的数据处理服务器。所述服务器115在接收到所述多导脑电信号之后,可以利用本申请各个实施例提供的睡眠分期方法对所述多导脑电信号进行处理,并获取到人体101的睡眠分期结果。然后,所述服务器115可以将所述睡眠分期结果发送给数据收发装置113。所述数据收发装置113在接收到所述睡眠分期结果之后,可以将所述睡眠分期结果展示于显示器111上,所述显示器例如用户的手机、电脑等客户端显示器。
通过以上场景,用户可以足不出户地了解到个人睡眠分期结果,当遇到睡眠障碍等问题时,可以将获取到的睡眠分期结果发送给医生,方便医生确定诊断结果。
下面结合附图对本申请所述的睡眠分期方法进行详细的说明。图4是本申请提供的睡眠分期方法的一种实施例的方法流程示意图。虽然本申请提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本申请实施例提供的执行顺序。所述方法在实际中的睡眠分期过程中或者装置执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。
具体的,本申请提供的睡眠分期方法的一种实施例如图4所示,所述方法可以包括:
S401:获取人体的多导脑电信号。
S403:将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型。
S405:根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
在本申请实施例中,可以利用脑电采集设备采集人体的多导脑电信号。所述脑电采集设备可以包括能够采集脑电波(Electroencephalogram,EEG)的仪器设备,不同生产商所提供的脑电采集设备的导联数量不同,例如可以包括8导、24导、64导等多种数量规格的导联接口,本申请在此不做限制。
在一个示例中,所述多导脑电信号可以按照国际10-20系统的电极放置法将多个电极连接头部的各个位置所采集得到的多导脑电信号。国际10-20系统涉及到19个记录电极:Fp1、Fp2、F7、F3、Fz、F4、F8、T3、C3、Cz、C4、T4、T5、P3、Pz、P4、T6、01、02。如图5所示,该19个电极的安放顺序可以包括:
首先在头皮表面确定两条基线,一条为鼻根至枕外粗隆的前后连线为100%,另一条为双耳前凹之间的左右连线为100%。两条基线在头顶的交点为Cz电极的位置。鼻根向后10%处为FPz(额极中线),从FPz向后每20%为一个电极的位置,依次为Fz(额中线)、Cz(中央中线)、Pz(顶中线)及Oz(枕中线)。Oz与枕外粗隆的间距为10%。双耳前凹连线距左耳前凹10%处为T3(左中颞)电极位置,以后向右每20%放置一个电极,依次为C3(左中央)、Cz(中央中线)、C4(右中央)和T4(右中颞)。T4距右耳前凹间距为10%。从FPz通过T3至Oz的连线为左颞连线,从FPz向左10%为FP1(左额极),从FP1沿左外侧向后每20%放置一个电极,依次为F7(左前颞)、T3(左中颞)、T5(左后颞)及O1(左枕),其中T3为此线与双耳前凹连线的交点,O1距Oz为10%。FP2沿右外侧向后连线与此相对应,从前向后依次为FP2(右额极)、F8(右前颞)、T4(右中颞)、T6(右后颞)及O2(右枕)。从FP1至O1和从FP2至O2各作一连线,为左、右矢状旁连线,从FP1和FP2直线向后每20%为一个电极位点,左侧依次为F3(左额)、C3(左中央)、P3(左顶)和O1(左枕),右侧依次为F4(右额)、C4(右中央)、P4(右顶)和O2(右枕)。在10-20系统中,FPz和Oz不包括在19个记录位点内。
当然,在本申请实施例中,所述多导脑电信号的采集位置不限于国际10-20系统所规定的19个采集位置,还可以包括该19个采集位置中任何一个或者多个位置,或者人脑其他任何位置处的位置,本申请在此不做限制。
本申请实施例中,在采集到所述多导脑电信号之后,可以将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型。在本申请的一个实施例中,所述睡眠特征检测模型组件可以利用多个多导脑电样本信号训练得到,所述多导脑电样本信号中标注有不同信号类型的睡眠特征信号。其中,所述多导脑电样本信号可以从医院的真实病历中获取,例如,可以从多个三甲医院中搜集到多个具有睡眠障碍且做过脑电图检测的患者的病历。当然,还可以通过其他渠道获取到比较真实的多导脑电样本信号,本申请在此不做限制。在训练所述睡眠特征检测模型组件之前,可以在这些多导脑电样本信号中标注睡眠特征信号,所述睡眠特征信号可以包括脑电信号中与睡眠分期具有紧密关联关系的关键信号。在一些示例中,所述睡眠特征信号可以包括下述中的至少一种信号:顶尖波(如图6所示)、睡眠纺锤波(如图7所示)、K复合波、睡眠慢波、α波、锯齿波。根据美国睡眠医学会(AASM)的研究,成年人的睡眠周期可以划分为五个阶段:W期、N1期睡眠、N2期睡眠、N3期睡眠、R期睡眠。在各个睡眠周期所涉及到的睡眠特征信号分别为:W期的睡眠特征信号为α波、N1期睡眠的睡眠特征信号为顶尖波、N2期睡眠的睡眠特征信号为纺锤波和K复合波、N3期睡眠的睡眠特征信号为睡眠慢波、R期睡眠的睡眠特征信号为锯齿波。当然,随着医学研究的深入,睡眠分期的划分方式可能也会不同,各个阶段的睡眠特征信号也可能有所不同,本申请在此不做限制。另外,所述睡眠分期的方式不限于AASM提供的分期方式,可以是任何具有权威机构提供的睡眠分期方式,本申请在此不做限制。
本申请实施例中,在获取到所述多个多导脑电样本信号之后,可以对所述多导脑电样本信号进行信号预处理。所述信号预处理的方式可以包括下述中的至少一种:去除基线漂移、去除工频干扰、去除非脑电信号。其中,在所述去除基线漂移中,基线漂移属于低频的非平稳随机信号,本申请实施例中可以利用基于小波变换的多分辨率性质采用小波分解重构的方法去除基线漂移。在去除工频干扰的过程中,由于工频干扰强度较大,而且是在非屏蔽环境内无处不在,因此,在本申请实施例中,可以通过专用的陷波器滤除工频干扰,例如,可以采用陷波频率为50Hz、4阶IIR陷波器进行滤波处理。在实际应用环境中,睡眠脑电信号包含以下几种脑电特征波:α波频率范围为8-13Hz、β波频率范围为13-30Hz、δ波频率范围为1-4Hz、θ波频率范围为4-8Hz、锯齿波频率范围为2-6Hz、纺锤波频率范围为12-14Hz、β1波频率范围为13-17Hz、β2波频率范围为17-30Hz。对于以上频率范围之外的信号成分,有可能是人体其他电生理活动产生的,需要滤除。在本申请实施例中,可以采用10阶IIR巴特沃斯带通滤波器滤除非脑电信号,例如,在一个示例中,可以设置带通滤波器的频率为0.2-40Hz。当然,在其他实施例中,对于所述多导脑电样本信号的信号预处理方式还可以包括其他多种方式,本申请在此不做限制。
本申请实施例中,在利用利用多个多导脑电样本信号所述多个多导脑电样本信号训练得到所述睡眠特征检测模型组件的过程中,可以从所述多导脑电样本信号中截取出所述睡眠特征信号。在一个实施例中,截取的窗口宽度可以是固定的,在所述多导脑电样本信号的采样率为256Hz(即一秒钟采样256次)的情况下,可以设置截取窗口宽度为256,当然,在其他实施例中,还可以设置宽度为250、300等等,本申请在此不做限制。
本申请实施例中,在截取出所述睡眠特征信号之后,可以构建所述睡眠特征检测模型组件,所述睡眠特征检测模型组件中设置有训练参数。然后,可以分别将所述睡眠特征信号输入至所述睡眠特征检测模型组件中,生成预测结果。在一个实施例中,所述预测结果可以包括输入的多导脑电信号分别为各种睡眠特征信号的概率。最后,可以基于所述预测结果与所述睡眠特征信号的类型之间的差异,对所述训练参数进行迭代调整,直至所述差异满足预设要求。
以上实施例中,将所述睡眠特征信号从所述多导脑电样本信号中截取之后再进行学习,可以大大降低训练得到所述睡眠特征检测模型组件所需的数据量,同时,训练得到的睡眠特征检测模型组件还可以准确地确定出输入的多导脑电样本信号是否包含睡眠特征信号以及所述睡眠特征信号对应的类型。
本申请实施例中,所述睡眠特征检测模型组件可以包括利用机器学习方式训练得到的模型组件。所述机器学习方式还可以包括K近邻算法、感知机算法、决策树、支持向量机、逻辑斯底回归、最大熵等,相应的,生成的模型组件如朴素贝叶斯、隐马尔科夫等。当然,在其他实施例中,所述机器学习方式还可以包括深度学习学习方式、强化学习方式等等,生成的模型组件可以包括卷积神经网络模型组件(Convolutional Neural Networks,CNN)、循环神经网络模型组件(Recurrent Neural Network,RNN)、LeNet、ResNet、长短期记忆网络模型组件(Long Short-Term Memory,LSTM),双向长短期记忆网络模型组件(Bi-LSTM)等等,本申请在此不做限制。
在实际的应用中,获取的多导脑电信号往往是持续很久的信号,尤其对于睡眠分期检测,可能需要持续8小时左右。若单次将所有的脑电信号输入至所述睡眠特征检测模型组件中进行检测,可能导致所述睡眠特征检测模型组件的数据处理量太大,相应地模型规模也要比较大。基于此,可以将获取的多导脑电信号按照滑动窗口逐个处理。在本申请的一个实施例中,可以利用具有预设长度的滑动窗口按照预设步长在所述多导脑电信号上滑动,并将每次滑动时滑动窗口内的多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述滑动窗口内的多导脑电信号中的睡眠特征信号。在一个示例中,滑动窗口的长度可以大于采样率的1/4,且小于采样率的四倍,还可以设置滑动窗口的移动步长小于单个滑动窗口的长度。当然,在其他实施例中,所述滑动窗口的长度、步长还可以具有其他设置方式,本申请在此不做限制。需要说明的是,所述滑动窗口的长度需要和截取出所述睡眠特征信号的窗口长度相一致,即,若在训练阶段截取出睡眠特征信号的窗口长度为256,则所述滑动窗口的长度也是256。
在实际应用中,脑电信号是一种非常微弱的生物电信号,需要经过数百万倍的放大才能从头皮上记录到。在此过程中,各种非脑源信号也可能进入放大器,混入脑电信号中,这些信号即为伪差信号。伪差信号的识别对EEG判断的准确性至关重要,尤其是随着长程EEG监测技术在临床的广泛应用,EEG记录中的伪差不可避免地大量增加,来源更加复杂,识别更加困难,简单的带通滤波已经难以滤除伪差信号。伪差信号的来源主要包括生理性活动、EEG仪器和电极的干扰、环境电磁干扰、患者自身运动等等。基于此,在本申请的一个实施例中,可以从所述多导脑电信号中识别出伪差信号,并去除所述伪差信号。在本申请实施例中,可以利用所述伪差检测模型组件检测所述多导脑电信号中的伪差信号。所述伪差检测模型组件也可以利用机器学习的方式训练得到。与训练所述睡眠特征检测模型组件的方式相似,也可以利用多个多导脑电样本信号训练得到所述伪差检测模型组件。在此过程中,同样地,也可以从样本信号中截取出伪差信号,如心电伪差,动作伪差,其他伪差等等。然后,可以将所述伪差信号和一些非伪差信号输入至所述伪差检测模型组件中,对所述伪差检测模型组件进行调参,直至所述伪差检测模型组件达到预设要求。
在本申请的另一个实施例中,可以将所述睡眠特征检测模型组件和所述伪差检测模型组件结合为一个模型组件,即将伪差信号和所述睡眠特征信号一起输入至所述睡眠特征检测模型组件中进行训练。另外,可以在睡眠特征检测之前或者之后进行伪差检测,本申请在此不做限制。
另外,在进行伪差检测的过程中,还可以结合心电信号或者肌电信号进行检测,这是由于心电信号和肌电信号的数量级远高于脑电信号,通过配合脑电信号、心电信号、肌电信号,可以准确地确定出所述脑电信号中的伪差信号。基于此,还可以采集所述人体的心电信号和/或肌电信号,并将所述多导脑电信号、所述心电信号和/或所述肌电信号输入至伪差检测模型组件中,经所述伪差检测模型组件输出所述多导脑电信号中的伪差信号。
需要说明的是,在确定出所述伪差信号和所述睡眠特征信号之后,还可以获取所述多导脑电信号中同时出现伪差信号和睡眠特征信号的位置,并取消所述位置处对睡眠特征信号的标记。
在本申请实施例中,在确定所述多导脑电信号中的睡眠特征信号以及所述睡眠特征信号的信号类型之后,可以根据所述睡眠特征信号机信号类型确定所述人体的睡眠分期结果。在本申请的一个实施例中,可以根据AASM的睡眠周期划分方式确定人体的睡眠分期结果。例如,α波对应于W期、顶尖波对应于N1期睡眠、纺锤波和K复合波对应于N2期睡眠、睡眠慢波对应于N3期睡眠、锯齿波对应于R期睡眠等等。
本申请提供的睡眠分期方法,可以利用睡眠检测模型组件检测人体多导脑电信号中的睡眠特征信号及其类型,并根据所述睡眠特征信号及其类型确定人体的睡眠分期结果。其中,所述睡眠特征检测模型组件利用多个多导脑电样本信号训练得到,且所述多导脑电样本信号中标注有不同信号类型的睡眠特征信号,一方面,睡眠分期结果与睡眠特征信号具有紧密的关联关系,因此,利用模型组件先获取到多导脑电样本信号中的睡眠特征信号,再根据睡眠特征信号确定出睡眠分期结果,可以获取到比较准确的结果;另一方面,在所述多导脑电样本信号中标注睡眠特征信号,而不是睡眠分期阶段,从特征提取的难易程度来看,提取出睡眠特征信号需要的样本数据量比提取睡眠分期阶段要少很多,因此,利用本申请实施例通提供的睡眠分期方法可以在较少的样本数据的情况下,可以训练得到准确率较高的睡眠检测模型组件。
对应于上述睡眠分期方法,如图8所示,本申请还提供一种睡眠分期装置,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时可以实现:
获取人体的多导脑电信号;
将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型;
根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
可选的,在本申请的一个实施例中,所述睡眠特征检测模型组件被设置为按照下述方式训练得到:
获取多个多导脑电样本信号;
从所述多导脑电样本信号中截取出睡眠特征训练信号;
构建睡眠特征检测模型组件,所述睡眠特征检测模型组件中设置有训练参数;
分别将所述睡眠特征训练信号输入至所述睡眠特征检测模型组件中,生成预测结果;
基于所述预测结果与所述睡眠特征训练信号的类型之间的差异,对所述训练参数进行迭代调整,直至所述差异满足预设要求。
可选的,在本申请的一个实施例中,所述处理器在实现步骤将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型时包括:
利用具有预设长度的滑动窗口按照预设步长在所述多导脑电信号上滑动,并将每次滑动时滑动窗口内的多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述滑动窗口内的多导脑电信号中的睡眠特征信号。
可选的,在本申请的一个实施例中,所述处理器在实现步骤将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之前,还包括:
采集所述人体的心电信号和/或肌电信号;
将所述多导脑电信号、所述心电信号和/或所述肌电信号输入至伪差检测模型组件中,经所述伪差检测模型组件输出所述多导脑电信号中的伪差信号。
可选的,在本申请的一个实施例中,所述处理器在实现步骤经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之后,还包括:
获取所述多导脑电信号中同时出现所述伪差信号和所述睡眠特征信号的位置,并取消所述位置处对睡眠特征信号的确定。
可选的,在本申请的一个实施例中,所述处理器在实现步骤将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之前,还包括:
对所述多导脑电信号进行下述至少一种的信号预处理:去除基线干扰、去除工频干扰、去除非脑电信号。
可选的,在本申请的一个实施例中,所述处理器在实现步骤根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果时包括:
基于预设睡眠分期规则,根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
可选的,在本申请的一个实施例中,所述睡眠特征信号包括下述中的至少一种信号:顶尖波、睡眠纺锤波、K复合波、睡眠慢波、α波、锯齿波。
本申请另一方面还提供一种睡眠分期设备,所述设备可以包括:脑电采集装置以及以上任一项实施例所述的睡眠分期装置,其中,所述脑电采集装置用于采集所述人体的所述多导脑电信号。所述睡眠分期设备可以包括智能头盔、智能寝具、智能帽子等多种形式产品,本申请在此不做限制。
如图9所示,本申请另一方面还提供一种睡眠分期设备900,包括:脑电采集装置901、数据发送装置903、数据接收装置905,其中,
所述脑电采集装置901,用于采集人体的所述多导脑电信号;
所述数据发送装置903,用于发送所述多导脑电信号至服务器,所述服务器被设置为利用睡眠特征检测模型组件获取所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型,并根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果;
所述数据接收装置905,用于接收所述人体的睡眠分期结果。
可选的,在本申请的一个实施例中,所述设备900还可以包括:
显示装置907,用于展示所述睡眠分期结果。
通过本申请的实施例,所述睡眠分期设备900可以将采集到的人体多导脑电信号发送至服务器端进行处理。所述服务端可以包括云服务器、分布式服务器等任何形式的数据处理服务器。服务器端在根据本申请各个实施例通过的睡眠分期方式对所述多导脑电信号进行处理之后,生成人体的睡眠分期结果,并将所述睡眠分期结果返回至用户端。基于此,用户可以足不出户地了解到个人睡眠分期结果,当遇到睡眠障碍等问题时,可以将获取到的睡眠分期结果发送给医生,方便医生确定诊断结果。
本申请另一方面还提供一种计算机可读存储介质,其上存储有计算机指令,所述指令被执行时实现上述任一实施例所述方法的步骤。
所述计算机可读存储介质可以包括用于存储信息的物理装置,通常是将信息数字化后再以利用电、磁或者光学等方式的媒体加以存储。本实施例所述的计算机可读存储介质有可以包括:利用电能方式存储信息的装置如,各式存储器,如RAM、ROM等;利用磁能方式存储信息的装置如,硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘;利用光学方式存储信息的装置如,CD或DVD。当然,还有其他方式的可读存储介质,例如量子存储器、石墨烯存储器等等。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable GateArray,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware DescriptionLanguage)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(RubyHardware Description Language)等,目前最普遍使用的是VHDL(Very-High-SpeedIntegrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

1.一种睡眠分期方法,其特征在于,所述方法包括:
获取人体的多导脑电信号;
将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型;
根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
2.根据权利要求1所述的睡眠分期方法,其特征在于,所述睡眠特征检测模型组件被设置为按照下述方式训练得到:
获取多个多导脑电样本信号;
从所述多导脑电样本信号中截取出睡眠特征训练信号;
构建睡眠特征检测模型组件,所述睡眠特征检测模型组件中设置有训练参数;
分别将所述睡眠特征训练信号输入至所述睡眠特征检测模型组件中,生成预测结果;
基于所述预测结果与所述睡眠特征训练信号的类型之间的差异,对所述训练参数进行迭代调整,直至所述差异满足预设要求。
3.根据权利要求1所述的睡眠分期方法,其特征在于,所述将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型,包括:
利用具有预设长度的滑动窗口按照预设步长在所述多导脑电信号上滑动,并将每次滑动时滑动窗口内的多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述滑动窗口内的多导脑电信号中的睡眠特征信号。
4.根据权利要求1所述的睡眠分期方法,其特征在于,在所述将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之前,所述方法还包括:
采集所述人体的心电信号和/或肌电信号;
将所述多导脑电信号、所述心电信号和/或所述肌电信号输入至伪差检测模型组件中,经所述伪差检测模型组件输出所述多导脑电信号中的伪差信号。
5.根据权利要求4所述的睡眠分期方法,其特征在于,在所述经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之后,所述方法还包括:
获取所述多导脑电信号中同时出现所述伪差信号和所述睡眠特征信号的位置,并取消所述位置处对睡眠特征信号的确定。
6.根据权利要求1所述的睡眠分期方法,其特征在于,在所述将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之前,所述方法还包括:
对所述多导脑电信号进行下述至少一种的信号预处理:去除基线干扰、去除工频干扰、去除非脑电信号。
7.根据权利要求1所述的睡眠分期方法,其特征在于,所述根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果,包括:
基于预设睡眠分期规则,根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
8.根据权利要求1所述的睡眠分期方法,其特征在于,所述睡眠特征信号包括下述中的至少一种信号:顶尖波、睡眠纺锤波、K复合波、睡眠慢波、α波、锯齿波。
9.一种睡眠分期装置,其特征在于,包括处理器以及用于存储处理器可执行指令的存储器,所述处理器执行所述指令时实现:
获取人体的多导脑电信号;
将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型;
根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
10.根据权利要求9所述的睡眠分期装置,其特征在于,所述睡眠特征检测模型组件被设置为按照下述方式训练得到:
获取多个多导脑电样本信号;
从所述多导脑电样本信号中截取出睡眠特征训练信号;
构建睡眠特征检测模型组件,所述睡眠特征检测模型组件中设置有训练参数;
分别将所述睡眠特征训练信号输入至所述睡眠特征检测模型组件中,生成预测结果;
基于所述预测结果与所述睡眠特征训练信号的类型之间的差异,对所述训练参数进行迭代调整,直至所述差异满足预设要求。
11.根据权利要求9所述的睡眠分期装置,其特征在于,所述处理器在实现步骤将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型时包括:
利用具有预设长度的滑动窗口按照预设步长在所述多导脑电信号上滑动,并将每次滑动时滑动窗口内的多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述滑动窗口内的多导脑电信号中的睡眠特征信号。
12.根据权利要求9所述的睡眠分期装置,其特征在于,所述处理器在实现步骤将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之前,还包括:
采集所述人体的心电信号和/或肌电信号;
将所述多导脑电信号、所述心电信号和/或所述肌电信号输入至伪差检测模型组件中,经所述伪差检测模型组件输出所述多导脑电信号中的伪差信号。
13.根据权利要求12所述的睡眠分期装置,其特征在于,所述处理器在实现步骤经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之后,还包括:
获取所述多导脑电信号中同时出现所述伪差信号和所述睡眠特征信号的位置,并取消所述位置处对睡眠特征信号的确定。
14.根据权利要求9所述的睡眠分期装置,其特征在于,所述处理器在实现步骤将所述多导脑电信号输入至睡眠特征检测模型组件中,经所述睡眠特征检测模型组件输出所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型之前,还包括:
对所述多导脑电信号进行下述至少一种的信号预处理:去除基线干扰、去除工频干扰、去除非脑电信号。
15.根据权利要求9所述的睡眠分期装置,其特征在于,所述处理器在实现步骤根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果时包括:
基于预设睡眠分期规则,根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果。
16.根据权利要求9所述的睡眠分期装置,其特征在于,所述睡眠特征信号包括下述中的至少一种信号:顶尖波、睡眠纺锤波、K复合波、睡眠慢波、α波、锯齿波。
17.一种睡眠分期设备,其特征在于,包括:脑电采集装置以及权利要求9-16任一项所述的睡眠分期装置,其中,
所述脑电采集装置,用于采集所述人体的所述多导脑电信号。
18.一种睡眠分期设备,其特征在于,包括:脑电采集装置、数据发送装置、数据接收装置,其中,
所述脑电采集装置,用于采集人体的多导脑电信号;
所述数据发送装置,用于发送所述多导脑电信号至服务器,所述服务器被设置为利用睡眠特征检测模型组件获取所述多导脑电信号中的睡眠特征信号及所述睡眠特征信号的信号类型,并根据所述睡眠特征信号及信号类型确定所述人体的睡眠分期结果;
所述数据接收装置,用于接收所述人体的睡眠分期结果。
19.根据权利要求18所述的睡眠分期设备,其特征在于,所述设备还包括:
显示装置,用于展示所述睡眠分期结果。
20.一种非临时性计算机可读存储介质,其特征在于,当所述存储介质中的指令由处理器执行时,使得处理器能够执行权利要求1-8任意一项所述的睡眠分期方法。
CN201910522284.3A 2019-06-17 2019-06-17 一种睡眠分期方法及装置 Pending CN112102938A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910522284.3A CN112102938A (zh) 2019-06-17 2019-06-17 一种睡眠分期方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910522284.3A CN112102938A (zh) 2019-06-17 2019-06-17 一种睡眠分期方法及装置

Publications (1)

Publication Number Publication Date
CN112102938A true CN112102938A (zh) 2020-12-18

Family

ID=73748725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910522284.3A Pending CN112102938A (zh) 2019-06-17 2019-06-17 一种睡眠分期方法及装置

Country Status (1)

Country Link
CN (1) CN112102938A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113180704A (zh) * 2021-04-07 2021-07-30 北京脑陆科技有限公司 一种基于eeg脑波的睡眠纺锤波检测方法、系统
CN114366038A (zh) * 2022-02-17 2022-04-19 重庆邮电大学 基于改进的深度学习算法模型的睡眠信号自动分期方法
CN114937498A (zh) * 2022-05-06 2022-08-23 慕思健康睡眠股份有限公司 一种睡眠姿态检测方法、装置、设备及存储介质
RU2781740C1 (ru) * 2022-01-10 2022-10-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Способ детектирования состояния глубокого сна

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709469A (zh) * 2017-01-03 2017-05-24 中国科学院苏州生物医学工程技术研究所 基于脑电和肌电多特征的自动睡眠分期方法
CN106725462A (zh) * 2017-01-12 2017-05-31 兰州大学 基于脑电信号的声光睡眠干预系统和方法
US20190126033A1 (en) * 2017-10-31 2019-05-02 Stimscience Inc. Systems, methods, and devices for brain stimulation and monitoring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709469A (zh) * 2017-01-03 2017-05-24 中国科学院苏州生物医学工程技术研究所 基于脑电和肌电多特征的自动睡眠分期方法
CN106725462A (zh) * 2017-01-12 2017-05-31 兰州大学 基于脑电信号的声光睡眠干预系统和方法
US20190126033A1 (en) * 2017-10-31 2019-05-02 Stimscience Inc. Systems, methods, and devices for brain stimulation and monitoring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘志勇 等: "基于脑电信号的睡眠分期算法研究", 中国生物医学工程学报, vol. 24, no. 06, pages 693 - 700 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113180704A (zh) * 2021-04-07 2021-07-30 北京脑陆科技有限公司 一种基于eeg脑波的睡眠纺锤波检测方法、系统
RU2781740C1 (ru) * 2022-01-10 2022-10-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Способ детектирования состояния глубокого сна
CN114366038A (zh) * 2022-02-17 2022-04-19 重庆邮电大学 基于改进的深度学习算法模型的睡眠信号自动分期方法
CN114366038B (zh) * 2022-02-17 2024-01-23 重庆邮电大学 基于改进的深度学习算法模型的睡眠信号自动分期方法
CN114937498A (zh) * 2022-05-06 2022-08-23 慕思健康睡眠股份有限公司 一种睡眠姿态检测方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
Mihajlović et al. Wearable, wireless EEG solutions in daily life applications: what are we missing?
Wu et al. Automatic epileptic seizures joint detection algorithm based on improved multi-domain feature of cEEG and spike feature of aEEG
Schomer et al. Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields
Davis Effects of acoustic stimuli on the waking human brain
US7570991B2 (en) Method for real time attitude assessment
EP1880667B1 (en) Detection of focal epileptiform activity
CN106413541B (zh) 用于诊断睡眠的系统和方法
Thakare et al. Alzheimer disease detection and tracking of Alzheimer patient
BRPI1100261A2 (pt) Processo e dispositivo para interface cérebro-computador
CN112102938A (zh) 一种睡眠分期方法及装置
Chen et al. An EEG-based brain-computer interface for automatic sleep stage classification
CN106859673A (zh) 一种基于睡眠脑电的抑郁症风险筛查系统
Vempati et al. A systematic review on automated human emotion recognition using electroencephalogram signals and artificial intelligence
Wagner et al. High-density EEG mobile brain/body imaging data recorded during a challenging auditory gait pacing task
Zainuddin et al. Performance of support vector machine in classifying EEG signal of dyslexic children using RBF kernel
Kaatiala et al. A graphical user interface for infant ERP analysis
Mahdid et al. Assessing the quality of wearable EEG systems using functional connectivity
Amin et al. Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques
Nguyen et al. LIBS: a low-cost in-ear bioelectrical sensing solution for healthcare applications
Kok et al. Assessing the feasibility of acoustic based seizure detection
CN112089414A (zh) 一种脑部异常放电检测方法及装置
CN106473704B (zh) 睡眠状态分析中去除眼电伪迹的方法和系统
Sharma et al. Dementia diagnosis with EEG using machine learning
Satapathy et al. A comprehensive survey and new investigation on sleep disorder detection using EEG signal
Hemakom et al. The Development of Intelligent Models for Stress Detection towards Real-world Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination