CN112100466A - Method, apparatus, device and storage medium for generating search space - Google Patents
Method, apparatus, device and storage medium for generating search space Download PDFInfo
- Publication number
- CN112100466A CN112100466A CN202011020815.8A CN202011020815A CN112100466A CN 112100466 A CN112100466 A CN 112100466A CN 202011020815 A CN202011020815 A CN 202011020815A CN 112100466 A CN112100466 A CN 112100466A
- Authority
- CN
- China
- Prior art keywords
- search space
- network
- layer
- options
- initial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000012545 processing Methods 0.000 claims abstract description 68
- 238000012549 training Methods 0.000 claims description 39
- 238000003062 neural network model Methods 0.000 claims description 21
- 230000015654 memory Effects 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 15
- 238000012804 iterative process Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 13
- 238000003058 natural language processing Methods 0.000 abstract description 11
- 238000013135 deep learning Methods 0.000 abstract description 7
- 238000013473 artificial intelligence Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000010606 normalization Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000008447 perception Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/907—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/909—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using geographical or spatial information, e.g. location
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Library & Information Science (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Abstract
本申请公开了生成搜索空间的方法、装置、设备及存储介质,计算机技术中的深度学习、计算机视觉等人工智能领域。具体实现方案为:初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项,极大地扩展了搜索空间;将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络,训练更新初始超网络的模型参数和各层中选项对应的连接权重;根据训练后的超网络的各层中选项对应的连接权重确定最优搜索空间,基于最优搜索空间可以搜索得到最优目标模型,提升所获得的目标模型的性能,使得目标模型的精度更高,且应用于图像处理、自然语言处理、音/视频处理等时数据处理的速度较快。
The present application discloses a method, apparatus, device and storage medium for generating a search space, in the fields of artificial intelligence such as deep learning and computer vision in computer technology. The specific implementation scheme is: the initial search space includes the search space of each layer of the target model, and the search space of each layer includes the options of all network structural units, which greatly expands the search space; all options in the search space of each layer are represented by the same The connection weights are overlapped to form the initial super-network, and the model parameters of the initial super-network and the connection weights corresponding to the options in each layer are trained and updated; the optimal search space is determined according to the connection weights corresponding to the options in each layer of the trained super-network, based on the optimal The search space can search to obtain the optimal target model, improve the performance of the obtained target model, make the target model more accurate, and the data processing speed is faster when applied to image processing, natural language processing, audio/video processing, etc.
Description
技术领域technical field
本申请涉及人工智能领域,具体为深度学习和计算机视觉,尤其涉及一种生成搜索空间的方法、装置、设备及存储介质。The present application relates to the field of artificial intelligence, in particular to deep learning and computer vision, and in particular to a method, apparatus, device and storage medium for generating a search space.
背景技术Background technique
最近几年,深度学习技术在很多方向上都取得了巨大的成功,深度学习技术中,人工神经网络结构的好坏对最终模型的效果有非常重要的影响。手工设计网络拓扑结构需要非常丰富的经验和众多尝试,并且众多参数会产生爆炸性的组合,常规的random search几乎不可行,因此神经网络架构搜索技术(Neural Architecture Search,简称NAS)成为研究热点。In recent years, deep learning technology has achieved great success in many directions. In deep learning technology, the quality of artificial neural network structure has a very important impact on the effect of the final model. Manual design of network topology requires very rich experience and many attempts, and many parameters will produce explosive combinations. Conventional random search is almost impossible. Therefore, Neural Architecture Search (NAS) has become a research hotspot.
在NAS中,搜索空间非常重要,现有的NAS中的搜索空间是人工设计好的,给定少量可能的模型结构,搜索通道数、膨胀系数等,有很大的局限性,只能在限定的搜索空间内少量可能的模型结构中搜索最优的模型结构,最终找到的模型结构的性能较差,用于图像处理、自然语言处理、音/视频处理等数据处理时的精度和效率均较低。In NAS, the search space is very important. The search space in the existing NAS is designed manually. Given a small number of possible model structures, the number of search channels, the expansion coefficient, etc., have great limitations, and can only be limited in The optimal model structure is searched from a small number of possible model structures in the search space, and the performance of the finally found model structure is poor, and the accuracy and efficiency when used in image processing, natural language processing, audio/video processing and other data processing are relatively high. Low.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种生成搜索空间的方法、装置、设备及存储介质。The present application provides a method, apparatus, device and storage medium for generating a search space.
根据本申请的一方面,提供了一种生成搜索空间的方法,包括:According to an aspect of the present application, a method for generating a search space is provided, comprising:
获取初始搜索空间,所述初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项;Obtaining an initial search space, the initial search space includes the search space of each layer of the target model, and the search space of each layer includes the options of all network structural units;
将每层的搜索空间中的所有所述选项以相同的连接权重叠加构成初始超网络;All the options in the search space of each layer are superimposed with the same connection weight to form an initial super-network;
对所述初始超网络进行训练,更新所述初始超网络的模型参数和各层中所述选项对应的连接权重,得到训练后的超网络;The initial super-network is trained, and the model parameters of the initial super-network and the connection weights corresponding to the options in each layer are updated to obtain the trained super-network;
根据所述训练后的超网络的各层中所述选项对应的连接权重,确定最优搜索空间,所述最优搜索空间用于搜索得到最优的目标模型,所述目标模型用于执行数据处理任务。The optimal search space is determined according to the connection weights corresponding to the options in each layer of the trained super-network, and the optimal search space is used to search to obtain the optimal target model, and the target model is used to execute the data Process tasks.
根据本申请的另一方面,提供了一种生成搜索空间的装置,包括:According to another aspect of the present application, an apparatus for generating a search space is provided, comprising:
初始搜索空间模块,用于获取初始搜索空间,所述初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项;an initial search space module, used to obtain an initial search space, the initial search space includes the search spaces of each layer of the target model, and the search space of each layer includes the options of all network structural units;
搜索模块,用于:将每层的搜索空间中的所有所述选项以相同的连接权重叠加构成初始超网络;对所述初始超网络进行训练,更新所述初始超网络的模型参数和各层中所述选项对应的连接权重,得到训练后的超网络;The search module is used for: superimposing and adding all the options in the search space of each layer with the same connection weight to form an initial super-network; training the initial super-network, and updating the model parameters of the initial super-network and each layer The connection weights corresponding to the options described in get the trained super network;
最优搜索空间确定模块,用于根据所述训练后的超网络的各层中所述选项对应的连接权重,确定最优搜索空间,所述最优搜索空间用于搜索得到最优的目标模型,所述目标模型用于执行数据处理任务。The optimal search space determination module is used to determine the optimal search space according to the connection weights corresponding to the options in each layer of the trained super network, and the optimal search space is used for searching to obtain the optimal target model , the target model is used to perform data processing tasks.
根据本申请的另一方面,提供了一种电子设备,包括:According to another aspect of the present application, an electronic device is provided, comprising:
至少一个处理器;以及at least one processor; and
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述所述的方法。The memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method described above.
根据本申请的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使所述计算机执行上述所述的方法。According to another aspect of the present application, there is provided a non-transitory computer-readable storage medium storing computer instructions for causing the computer to perform the method described above.
根据本申请的技术能够搜索得到最优搜索空间,基于最优搜索空间进行神经网络结构搜索能够提高搜索得到目标模型的精度和效率,通过应用该技术方案的AI模型对画面内容进行深度感知学习,根据画面场景及复杂度,可以智能调节编码参数,同等画质下可降低带宽成本需求,并且在提高画面质量的同时,大大降低平台的带宽成本求,同时结合画质修复、画质增强、ROI、超分辨率等技术,大大提升了主观视觉体验。According to the technology of the present application, the optimal search space can be obtained by searching, and the neural network structure search based on the optimal search space can improve the accuracy and efficiency of the target model obtained by searching. According to the scene and complexity of the picture, the encoding parameters can be adjusted intelligently, the bandwidth cost requirement can be reduced under the same picture quality, and the bandwidth cost of the platform can be greatly reduced while the picture quality is improved. , super-resolution and other technologies have greatly improved the subjective visual experience.
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify key or critical features of the embodiments of the application, nor is it intended to limit the scope of the application. Other features of the present application will become readily understood from the following description.
附图说明Description of drawings
附图用于更好地理解本方案,不构成对本申请的限定。其中:The accompanying drawings are used for better understanding of the present solution, and do not constitute a limitation to the present application. in:
图1是本申请第一实施例提供的生成搜索空间的方法流程图;1 is a flowchart of a method for generating a search space provided by the first embodiment of the present application;
图2是本申请第二实施例提供的生成搜索空间的方法流程图;2 is a flowchart of a method for generating a search space provided by a second embodiment of the present application;
图3是本申请第三实施例提供的生成搜索空间的装置示意图;3 is a schematic diagram of an apparatus for generating a search space provided by a third embodiment of the present application;
图4是本申请第四实施例提供的生成搜索空间的装置示意图;4 is a schematic diagram of an apparatus for generating a search space provided by a fourth embodiment of the present application;
图5是用来实现本申请实施例的生成搜索空间的方法的电子设备的框图。FIG. 5 is a block diagram of an electronic device used to implement the method for generating a search space according to an embodiment of the present application.
具体实施方式Detailed ways
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present application are described below with reference to the accompanying drawings, which include various details of the embodiments of the present application to facilitate understanding, and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present application. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.
最近几年,深度学习技术在很多方向上都取得了巨大的成功,深度学习技术中,人工神经网络结构的好坏对最终模型的效果有非常重要的影响。手工设计网络拓扑结构需要非常丰富的经验和众多尝试,并且众多参数会产生爆炸性的组合,常规的随机搜索几乎不可行,因此最近几年神经网络架构搜索技术(Neural Architecture Search,简称NAS)成为研究热点。In recent years, deep learning technology has achieved great success in many directions. In deep learning technology, the quality of artificial neural network structure has a very important impact on the effect of the final model. Manual design of network topology requires very rich experience and many attempts, and many parameters will produce explosive combinations, and conventional random search is almost infeasible. Therefore, in recent years, Neural Architecture Search (NAS) has become a research topic. hot spot.
在NAS中,搜索空间非常重要,以往的NAS工作搜索空间是人工设计好的,有很大的局限性,只能在限定的搜索空间内搜索最优的模型结构。以谷歌的Mnasnet为例,结构只能限定在搜索通道数,膨胀系数等,模型的结构还是mobilenet_v2-like结构。搜索空间会决定可以搜索得到的模型结构的上界。如果在不合适的搜索空间中,即使可以找到最优的模型结构性能也会很差。In NAS, the search space is very important. In the past, the search space of NAS work was designed manually, which has great limitations. Only the optimal model structure can be searched in the limited search space. Taking Google's Mnasnet as an example, the structure can only be limited to the number of search channels, expansion coefficient, etc. The structure of the model is still a mobilenet_v2-like structure. The search space determines the upper bound on the model structure that can be searched. Even if the optimal model structure can be found in an unsuitable search space, performance will be poor.
本申请提供一种生成搜索空间的方法、装置、设备及存储介质,应用于计算机技术中的深度学习、计算机视觉等人工智能领域,以优化搜索空间,得到最优搜索空间,基于最优搜索空间可以通过NAS搜索得到最优模型,从可以提高模型的进行数据处理时的精度和效率。The present application provides a method, device, device and storage medium for generating a search space, which are applied to artificial intelligence fields such as deep learning and computer vision in computer technology to optimize the search space and obtain the optimal search space. Based on the optimal search space The optimal model can be obtained through NAS search, which can improve the accuracy and efficiency of data processing of the model.
本申请实施例具体可以应用于图像处理、自然语言处理、音/视频处理等场景,通过本申请实施例提供的方法,可以自动生成最优搜索空间,然后基于最优搜索空间搜索得到最优模型,从提高模型进行图像处理、自然语言处理、音/视频处理等数据处理的精度和效率。The embodiments of the present application can be specifically applied to scenarios such as image processing, natural language processing, and audio/video processing. Through the methods provided by the embodiments of the present application, an optimal search space can be automatically generated, and then an optimal model can be obtained based on the optimal search space search. , to improve the accuracy and efficiency of data processing such as image processing, natural language processing, and audio/video processing by the model.
下面以具体地实施例对本申请实施例的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请实施例的实施例进行描述。The technical solutions of the embodiments of the present application and how the technical solutions of the present application solve the above-mentioned technical problems will be described in detail below with specific examples. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. Embodiments of the embodiments of the present application will be described below with reference to the accompanying drawings.
图1是本申请第一实施例提供的生成搜索空间的方法流程图。本实施例的方法可以由生成搜索空间的装置执行,其中,生成搜索空间的装置可以具体为例如台式电脑、平板电脑、笔记本等具备一定算力的客户端或服务器或服务器集群(以下统称为“电子设备”),或者,该装置还可以为电子设备内的芯片,等等,本实施例此处不做具体限定。FIG. 1 is a flowchart of a method for generating a search space provided by the first embodiment of the present application. The method of this embodiment may be executed by a device for generating a search space, wherein the device for generating a search space may be specifically a client or server or server cluster (hereinafter collectively referred to as "" “Electronic device”), or, the device may also be a chip in the electronic device, etc., which is not specifically limited in this embodiment.
如图1所示,该方法具体步骤如下:As shown in Figure 1, the specific steps of the method are as follows:
步骤S101、获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项。Step S101 , acquiring an initial search space, the initial search space includes the search spaces of each layer of the target model, and the search space of each layer includes options of all network structural units.
其中,目标模型是指用户通过NAS想要搜索到的,适用于对应场景的数据处理的神经网络模型。当应用于不同的应用场景时,目标模型可以是不同的神经网络模型。Among them, the target model refers to the neural network model that the user wants to search through the NAS and is suitable for the data processing of the corresponding scene. When applied to different application scenarios, the target models can be different neural network models.
神经网络模型由多层结构组合而成,网络结构单元是构成神经网络模型每一层结构的组成单元,每一层结构由一个或多个网络结构单元按照一定的拓扑组合而成。神经网络模型可以包含多个结构相同或不同的网络结构单元。The neural network model is composed of multi-layer structures. The network structure unit is the component unit that constitutes each layer of the neural network model. Each layer structure is composed of one or more network structure units according to a certain topology. A neural network model can contain multiple network structural units with the same or different structures.
网络结构单元可以是构建神经网络模型的基本单元,具体可以是单个网络层,例如单个卷积层或全连接层;或者可以是由多个网络层组合形成的结构单元,例如由卷积层、批量归一化层(Batch Normalization)、非线性层(如Relu)组合形成的块结构(block)。The network structural unit can be the basic unit for building a neural network model, specifically a single network layer, such as a single convolutional layer or a fully connected layer; or a structural unit formed by a combination of multiple network layers, such as a convolutional layer, The block structure (block) formed by the combination of the batch normalization layer (Batch Normalization) and the nonlinear layer (such as Relu).
例如,网络结构单元可以为残差网络ResNet中的残差模块Residual block,也可以是残差模块中的重复单元conv+BN+Relu(卷积层+归一化层+激活层);又或者可以为残差网络RseNet中的一个阶段(stage);还可以是由自定义的层组合形成的结构单元。For example, the network structural unit may be the residual module Residual block in the residual network ResNet, or the repeating unit conv+BN+Relu (convolutional layer + normalization layer + activation layer) in the residual module; or It can be a stage in the residual network RseNet; it can also be a structural unit formed by a custom layer combination.
本实施例中,初始搜索空间是一个搜索空间的空间或者搜索空间的集合,包含了神经网络模型各层的搜索空间。每层的搜索空间包含所有的网络结构单元的选项,其中,每个选项可以是一个网络结构单元的一种可能的结构,可以是历史数据中人工设计的任意一种网络结构单元的结构。每层的搜索空间包含已有的所有人工的网络结构单元的任意组合。每个网络结构单元内部可以是已有的人工设计的结构的组合。初始搜索空间中包含所有层的任意组合。In this embodiment, the initial search space is a space of search spaces or a set of search spaces, including the search spaces of each layer of the neural network model. The search space of each layer contains the options of all network structural units, wherein each option can be a possible structure of a network structural unit, or can be any structure of the artificially designed network structural unit in the historical data. The search space of each layer contains any combination of all existing artificial network structural units. Each network structural unit may be a combination of existing artificially designed structures. The initial search space contains any combination of all layers.
这样,每层的搜索空间初始化情况比传统的搜索空间大很多倍,逐层的搜索空间指数增加,极大地扩展了初始的搜索空间。In this way, the initial search space of each layer is many times larger than the traditional search space, and the search space exponentially increases layer by layer, which greatly expands the initial search space.
步骤S102、将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络。Step S102 , superimposing all options in the search space of each layer with the same connection weight to form an initial super-network.
本实施例中,在进行NAS之前,首先基于初始搜索空间进行搜索空间的搜索,生成最优搜索空间,然后基于最优搜索空间进行NAS,可以搜索得到最优模型结构。In this embodiment, before NAS is performed, a search space is first searched based on the initial search space to generate an optimal search space, and then NAS is performed based on the optimal search space to obtain an optimal model structure.
该步骤中,初始超网络的每层中均包含所有的网络结构单元的选项,其中所有的选项以相同的连接权重叠加构成初始超网络的一层结构,初始超网络的每层结构相同,也即是,所有的网络结构单元的选项以均等概率叠加构成一层,多层叠加构成初始超网络。In this step, each layer of the initial super-network contains the options of all network structural units, and all the options are superimposed with the same connection weight to form a one-layer structure of the initial super-network, and each layer of the initial super-network has the same structure, also That is, the options of all network structural units are superimposed with equal probability to form one layer, and the multi-layer superposition constitutes the initial super network.
步骤S103、对初始超网络进行训练,更新初始超网络的模型参数和各层中选项对应的连接权重,得到训练后的超网络。Step S103: Train the initial super-network, update the model parameters of the initial super-network and the connection weights corresponding to the options in each layer, and obtain the trained super-network.
在得到初始超网络之后,利用与目标模型的具体应用场景对应的训练数据,对初始超网络进行训练,在训练过程中更新初始超网络的模型参数和OP(操作,Opration)连接参数,得到训练后的超网络。其中OP连接参数包括各层中选项对应的连接权重。After obtaining the initial super network, use the training data corresponding to the specific application scenario of the target model to train the initial super network, and update the model parameters of the initial super network and the OP (Operation) connection parameters during the training process to obtain training. post-supernetwork. The OP connection parameters include the connection weights corresponding to the options in each layer.
步骤S104、根据训练后的超网络的各层中选项对应的连接权重,确定最优搜索空间,最优搜索空间用于搜索得到最优的目标模型,目标模型用于执行数据处理任务。Step S104: Determine the optimal search space according to the connection weights corresponding to the options in each layer of the trained super-network. The optimal search space is used to search to obtain the optimal target model, and the target model is used to perform data processing tasks.
在得到训练后的超网络之后,根据训练后的超网络的各层中各选项对应的连接权重,对各层的搜索空间中的选项进行筛选,保留连接权重较大的选项,得到最优搜索空间。After the trained super network is obtained, the options in the search space of each layer are filtered according to the connection weight corresponding to each option in each layer of the trained super network, and the option with larger connection weight is reserved to obtain the optimal search. space.
在得到最优搜索空间之后,基于最优搜索空间,可以通过NAS搜索得到最优的目标模型,然后基于目标模型执行相应应用场景的数据处理任务。After obtaining the optimal search space, based on the optimal search space, the optimal target model can be obtained through NAS search, and then the data processing tasks of the corresponding application scenarios can be performed based on the target model.
本实施例通过获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项,这样可以极大地扩展搜索空间,进一步地,通过将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络,对初始超网络进行训练,更新初始超网络的模型参数和各层中选项对应的连接权重,得到训练后的超网络;根据训练后的超网络的各层中选项对应的连接权重,确定最优搜索空间,基于最优搜索空间可以搜索得到最优目标模型,提升所获得的目标模型的性能,使得目标模型的精度更高,且应用于图像处理、自然语言处理、音/视频处理等时数据处理的速度较快。在图像/视频处理场景下,通过应用该技术方案的AI模型对画面内容进行深度感知学习,根据画面场景及复杂度,可以智能调节编码参数,同等画质下可降低带宽成本需求,并且在提高画面质量的同时,大大降低平台的带宽成本求,同时结合画质修复、画质增强、ROI、超分辨率等技术,大大提升了主观视觉体验。进一步地,目前,训练得到的目标模型的核心竞争力是目标模型的精度以及目标模型在硬件上的数据处理的速度,这样,基于同样的硬件,目标模型的精度和效率更高;在保证同样精度和效率的前提下,可以采用更廉价的硬件实现,从而减少硬件成本。In this embodiment, the initial search space is obtained, the initial search space includes the search space of each layer of the target model, and the search space of each layer includes the options of all network structural units, which can greatly expand the search space. All options in the search space are superimposed with the same connection weight to form the initial super-network, train the initial super-network, update the model parameters of the initial super-network and the connection weights corresponding to the options in each layer, and obtain the trained super-network; After calculating the connection weights corresponding to the options in each layer of the super network, the optimal search space can be determined. Based on the optimal search space, the optimal target model can be searched to improve the performance of the obtained target model and make the target model more accurate. And the data processing speed is faster when applied to image processing, natural language processing, audio/video processing, etc. In the image/video processing scenario, the AI model of this technical solution is used to perform depth perception learning on the picture content. According to the picture scene and complexity, the encoding parameters can be intelligently adjusted. The bandwidth cost requirement can be reduced under the same picture quality, and the increase in At the same time of image quality, the bandwidth cost of the platform is greatly reduced. At the same time, combined with image quality repair, image quality enhancement, ROI, super resolution and other technologies, the subjective visual experience is greatly improved. Further, at present, the core competitiveness of the target model obtained by training is the accuracy of the target model and the data processing speed of the target model on the hardware. In this way, based on the same hardware, the accuracy and efficiency of the target model are higher; On the premise of accuracy and efficiency, cheaper hardware can be used to reduce hardware costs.
图2是本申请第二实施例提供的生成搜索空间的方法流程图。在上述实施例一的基础上,本实施例中,对初始超网络进行训练,更新初始超网络的模型参数和各层中选项对应的连接权重,得到训练后的超网络,包括:对初始超网络进行多次迭代训练,在每次迭代过程中更新初始超网络的模型参数和各层中选项对应的连接权重,直至满足迭代停止条件时,得到训练后的超网络。FIG. 2 is a flowchart of a method for generating a search space provided by a second embodiment of the present application. On the basis of the above-mentioned first embodiment, in this embodiment, the initial super-network is trained, the model parameters of the initial super-network and the connection weights corresponding to the options in each layer are updated, and the trained super-network is obtained, including: The network is trained for multiple iterations, and the model parameters of the initial super-network and the connection weights corresponding to the options in each layer are updated in each iteration process, until the iterative stop condition is met, and the trained super-network is obtained.
如图2所示,该方法步骤如下:As shown in Figure 2, the method steps are as follows:
步骤S201、获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项。Step S201 , obtaining an initial search space, the initial search space includes the search spaces of each layer of the target model, and the search space of each layer includes options of all network structural units.
其中,目标模型是指用户通过NAS想要搜索到的,适用于对应场景的数据处理的神经网络模型。当应用于不同的应用场景时,目标模型可以是不同的神经网络模型。Among them, the target model refers to the neural network model that the user wants to search through the NAS and is suitable for the data processing of the corresponding scene. When applied to different application scenarios, the target models can be different neural network models.
神经网络模型由多层结构组合而成,网络结构单元是构成神经网络模型每一层结构的组成单元,每一层结构由一个或多个网络结构单元按照一定的拓扑组合而成。神经网络模型可以包含多个结构相同或不同的网络结构单元。The neural network model is composed of multi-layer structures. The network structure unit is the component unit that constitutes each layer of the neural network model. Each layer structure is composed of one or more network structure units according to a certain topology. A neural network model can contain multiple network structural units with the same or different structures.
网络结构单元可以是构建神经网络模型的基本单元,具体可以是单个网络层,例如单个卷积层或全连接层;或者可以是由多个网络层组合形成的结构单元,例如由卷积层、批量归一化层(Batch Normalization)、非线性层(如Relu)组合形成的块结构(block)。The network structural unit can be the basic unit for building a neural network model, specifically a single network layer, such as a single convolutional layer or a fully connected layer; or a structural unit formed by a combination of multiple network layers, such as a convolutional layer, The block structure (block) formed by the combination of the batch normalization layer (Batch Normalization) and the nonlinear layer (such as Relu).
例如,网络结构单元可以为残差网络ResNet中的残差模块Residual block,也可以是残差模块中的重复单元conv+BN+Relu(卷积层+归一化层+激活层);又或者可以为残差网络RseNet中的一个阶段(stage);还可以是由自定义的层组合形成的结构单元。For example, the network structural unit may be the residual module Residual block in the residual network ResNet, or the repeating unit conv+BN+Relu (convolutional layer + normalization layer + activation layer) in the residual module; or It can be a stage in the residual network RseNet; it can also be a structural unit formed by a custom layer combination.
本实施例中,初始搜索空间是一个搜索空间的空间或者搜索空间的集合,包含了神经网络模型各层的搜索空间。每层的搜索空间包含所有的网络结构单元的选项,其中,每个选项可以是一个网络结构单元的一种可能的结构,可以是历史数据中人工设计的任意一种网络结构单元的结构。每层的搜索空间包含已有的所有人工的网络结构单元的任意组合。每个网络结构单元内部可以是已有的人工设计的结构的组合。初始搜索空间中包含所有层的任意组合。In this embodiment, the initial search space is a space of search spaces or a set of search spaces, including the search spaces of each layer of the neural network model. The search space of each layer contains the options of all network structural units, wherein each option can be a possible structure of a network structural unit, or can be any structure of the artificially designed network structural unit in the historical data. The search space of each layer contains any combination of all existing artificial network structural units. Each network structural unit may be a combination of existing artificially designed structures. The initial search space contains any combination of all layers.
这样,每层的搜索空间初始化情况比传统的搜索空间大很多倍,逐层的搜索空间指数增加,极大地扩展了初始的搜索空间。In this way, the initial search space of each layer is many times larger than the traditional search space, and the search space exponentially increases layer by layer, which greatly expands the initial search space.
可选地,初始搜索空间中各层的任意组合可以以权重叠加的形式表示。Optionally, any combination of layers in the initial search space can be represented in the form of weighted superposition.
步骤S202、将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络。Step S202 , superimposing and adding all options in the search space of each layer with the same connection weight to form an initial super-network.
本实施例中,在进行NAS之前,首先基于初始搜索空间进行搜索空间的搜索,生成最优搜索空间,然后基于最优搜索空间进行NAS,可以搜索得到最优模型结构。In this embodiment, before NAS is performed, a search space is first searched based on the initial search space to generate an optimal search space, and then NAS is performed based on the optimal search space to obtain an optimal model structure.
该步骤中,初始超网络的每层中均包含所有的网络结构单元的选项,其中所有的选项以相同的连接权重叠加构成初始超网络的一层结构,初始超网络的每层结构相同,也即是,所有的网络结构单元的选项以均等概率叠加构成一层,多层叠加构成初始超网络。In this step, each layer of the initial super-network contains the options of all network structural units, and all the options are superimposed with the same connection weight to form a one-layer structure of the initial super-network, and each layer of the initial super-network has the same structure, also That is, the options of all network structural units are superimposed with equal probability to form one layer, and the multi-layer superposition constitutes the initial super network.
步骤S203、对初始超网络进行迭代训练,更新初始超网络的模型参数和各层中选项对应的连接权重。Step S203: Perform iterative training on the initial super-network, and update the model parameters of the initial super-network and the connection weights corresponding to the options in each layer.
在得到初始超网络之后,利用与目标模型的具体应用场景对应的训练数据,对初始超网络循环进行多次迭代训练,在每次迭代训练过程中更新初始超网络的模型参数和OP连接参数,直至满足迭代停止条件时停止迭代,得到训练后的超网络。其中OP连接参数包括各层中选项对应的连接权重。After obtaining the initial super-network, using the training data corresponding to the specific application scenario of the target model, the initial super-network loop is trained for multiple iterations, and the model parameters and OP connection parameters of the initial super-network are updated in each iteration training process. The iteration is stopped until the iteration stopping condition is met, and the trained super network is obtained. The OP connection parameters include the connection weights corresponding to the options in each layer.
进一步地,在每次迭代过程中,交替更新初始超网络的模型参数,以及各层中选项对应的连接权重。具体地,在训练过程中,固定超网络的模型参数,使用第一样本集训练超网络的连接权重;固定超网络的连接权重,使用第二样板训练集训练超网络的模型参数。这样,能够实现超网络的各层中各网络结构单元选项对应的连接权重。Further, in each iteration process, the model parameters of the initial super-network and the connection weights corresponding to the options in each layer are alternately updated. Specifically, in the training process, the model parameters of the super network are fixed, and the connection weights of the super network are trained using the first sample set; the connection weights of the super network are fixed, and the model parameters of the super network are trained using the second template training set. In this way, the connection weight corresponding to each network structural unit option in each layer of the super network can be realized.
可选地,超网络的模型参数和连接权重交替更新的比例可以是1:1,或者是非1:1,该比例可以根据实际应用场景进行配置,也可以在预设搜索空间中进行搜索确定,本实施例此处不做具体限定。Optionally, the ratio of the model parameters and connection weights of the super network to be updated alternately may be 1:1, or non-1:1, and the ratio may be configured according to the actual application scenario, or may be determined by searching in a preset search space, This embodiment is not specifically limited here.
步骤S204、判断是否满足迭代停止条件。Step S204, judging whether the iteration stop condition is satisfied.
在每次迭代训练完成后,判断当前是否满足迭代停止条件。After each iteration training is completed, it is judged whether the current iteration stop condition is satisfied.
如果满足迭代停止条件,则停止循环迭代训练,得到训练后的超网络,执行步骤S205。If the iterative stop condition is satisfied, the loop iterative training is stopped to obtain the trained super network, and step S205 is executed.
如果不满足迭代停止条件,则执行步骤S203,进行下一次迭代训练。If the iterative stop condition is not met, step S203 is executed to perform the next iterative training.
可选地,迭代停止条件可以为:当前的超网络的损失函数满足收敛条件。其中,损失函数满足的收敛条件可以根据实际应用场景进行配置,本实施例此处不做具体限定。Optionally, the iterative stop condition may be: the current loss function of the super-network satisfies the convergence condition. The convergence condition satisfied by the loss function may be configured according to an actual application scenario, which is not specifically limited in this embodiment.
可选地,记录迭代训练的执行次数,迭代停止条件可以为:迭代训练的执行次数大于或等于预设阈值。其中,预设阈值可以根据实际应用场景进行配置,本实施例此处不做具体限定。Optionally, the execution times of the iterative training are recorded, and the iterative stop condition may be: the execution times of the iterative training is greater than or equal to a preset threshold. The preset threshold may be configured according to an actual application scenario, which is not specifically limited in this embodiment.
可选地,迭代停止条件可以为:迭代训练的总时长达到预设搜索时间阈值。其中,预设搜索时间阈值可以根据实际应用场景进行配置,本实施例此处不做具体限定。Optionally, the iterative stop condition may be: the total duration of iterative training reaches a preset search time threshold. The preset search time threshold may be configured according to an actual application scenario, which is not specifically limited in this embodiment.
另外,迭代停止条件还可以根据具体应用场景进行配置和调整,本实施例此处不做具体限定。In addition, the iteration stop condition may also be configured and adjusted according to a specific application scenario, which is not specifically limited in this embodiment.
本实施例的另一可选地实施方式中,最优搜索空间的搜索可以逐层搜索。In another optional implementation manner of this embodiment, the search for the optimal search space may be searched layer by layer.
步骤S205、根据训练后的超网络的各层中选项对应的连接权重,确定最优搜索空间。Step S205: Determine the optimal search space according to the connection weights corresponding to the options in each layer of the trained super-network.
在得到训练后的超网络之后,根据训练后的超网络的各层中各选项对应的连接权重,对各层的搜索空间中的选项进行筛选,保留连接权重较大的选项,得到最优搜索空间。After the trained super network is obtained, the options in the search space of each layer are filtered according to the connection weight corresponding to each option in each layer of the trained super network, and the option with larger connection weight is reserved to obtain the optimal search. space.
示例性地,最优搜索空间包括每层优化后的搜索空间。Exemplarily, the optimal search space includes the optimized search space of each layer.
可选地,针对训练后的超网络的每一层,根据该层中各选项对应的连接权重由大到小的顺序对各选项进行排序,根据排序中的前k个选项,确定该层优化后的搜索空间,从而得到各层优化后的搜索空间,得到最优搜索空间。其中,k为正整数,k的值可以根据实际应用场景进行配置,本实施例此处不做具体限定。Optionally, for each layer of the super network after training, sort the options according to the connection weights corresponding to the options in the layer in descending order, and determine the optimization of the layer according to the top k options in the sorting. Then the optimized search space of each layer is obtained, and the optimal search space is obtained. Wherein, k is a positive integer, and the value of k can be configured according to an actual application scenario, which is not specifically limited in this embodiment.
具体地,每层中按照连接权重的排序,前k个连接权重最大的网络结构单元的选项,构成该层优化后的搜索空间。Specifically, according to the order of connection weights in each layer, the options of the top k network structural units with the largest connection weights constitute the optimized search space of this layer.
可选地,针对训练后的超网络的每一层,可以根据该层的预设权重阈值,筛选出对应连接权重大于预设权重阈值的选项,构成该层优化后的搜索空间,从而得到各层优化后的搜索空间,得到最优搜索空间。其中,不同层的预设权重阈值可以不同,各层的预设权重阈值可以根据实际应用场景进行配置,本实施例此处不做具体限定。Optionally, for each layer of the super-network after training, according to the preset weight threshold of the layer, an option with a corresponding connection weight greater than the preset weight threshold can be selected to form an optimized search space for this layer, so as to obtain each layer. The search space after layer optimization is obtained to obtain the optimal search space. The preset weight thresholds of different layers may be different, and the preset weight thresholds of each layer may be configured according to actual application scenarios, which are not specifically limited in this embodiment.
例如,假设初始搜索空间中每层搜索空间中有10000种可能的选项,初始超网络中每层都由这10000种选项以均等概率叠加构成,例如每个选项的连接权重可以为0.0001,经过多次迭代训练,得到训练后的超网络。在训练后的超网络的各层中,确定连接权重最大的50个选项,作为该层的优化后的搜索空间,假设目标模型包含50层,那么最优搜索空间就包含5050种可能的网络结构单元选项。For example, suppose there are 10,000 possible options in each layer of the initial search space, and each layer in the initial super-network is composed of these 10,000 options superimposed with an equal probability. For example, the connection weight of each option can be 0.0001. Iterative training is performed to obtain the trained super network. In each layer of the super network after training, determine the 50 options with the largest connection weight as the optimized search space of this layer, assuming that the target model contains 50 layers, then the optimal search space contains 50 50 possible networks Structural unit options.
步骤S206、在最优搜索空间中进行神经网络模型搜索,得到目标模型。Step S206 , perform a neural network model search in the optimal search space to obtain a target model.
在确定最优搜索空间之后,基于最优搜索空间,进行NAS,搜索得到最优模型,作为目标模型。After the optimal search space is determined, NAS is performed based on the optimal search space, and the optimal model is obtained by searching, which is used as the target model.
步骤S207、获取待处理数据,利用目标模型对待处理数据进行相应地数据处理。Step S207: Acquire the data to be processed, and use the target model to perform corresponding data processing on the data to be processed.
本实施例中,搜索得到的目标模型可以应用于图像处理、自然语言处理、音/视频处理等场景,执行对应的数据处理任务。In this embodiment, the target model obtained by the search can be applied to scenarios such as image processing, natural language processing, and audio/video processing, to perform corresponding data processing tasks.
示例性地,目标模型应用于图像处理场景时,获取待处理图像,将待处理图像输入目标模型,利用目标模型对待处理图像进行图像处理,得到图像处理结果。Exemplarily, when the target model is applied to an image processing scene, an image to be processed is acquired, the to-be-processed image is input into the target model, and the target model is used to perform image processing on the to-be-processed image to obtain an image processing result.
例如,目标模型可以具体应用于人脸识别,在生成搜索空间的过程中,利用用于训练人脸识别模型的训练集训练初始模型结构并记录性能,以搜索到应用于人脸识别场景的最优搜索空间,进一步得到应用人脸识别场景的最优的目标模型。在应用时,获取待识别的人脸图像,提取人脸图像的人脸特征,将人脸特征输入目标模型,通过目标模型进行人脸识别,输出人脸识别结果。For example, the target model can be specifically applied to face recognition. In the process of generating the search space, use the training set used to train the face recognition model to train the initial model structure and record the performance to search for the most suitable face recognition scene. The optimal search space is further obtained to obtain the optimal target model for the face recognition scene. In application, the face image to be recognized is acquired, the face feature of the face image is extracted, the face feature is input into the target model, the face recognition is performed through the target model, and the face recognition result is output.
另外,目标模型还可以应用于自然语言处理领域。例如,具体可以应用于语音识别的场景,在生成搜索空间的过程中,利用用于训练语音识别模型的训练集训练初始模型结构并记录性能,以搜索到应用于语音识别场景的最优搜索空间,进一步得到应用语音识别场景的最优的目标模型。在应用时,获取待处理的语音数据,提取语音数据的特征,将语音数据的特征输入目标模型,通过目标模型进行语音识别处理,输出语音识别结果。In addition, the target model can also be applied to the field of natural language processing. For example, it can be applied to speech recognition scenarios. In the process of generating the search space, use the training set used to train the speech recognition model to train the initial model structure and record the performance to search for the optimal search space for speech recognition scenarios. , and further obtain the optimal target model for the application of speech recognition scenarios. In application, the voice data to be processed is acquired, the features of the voice data are extracted, the features of the voice data are input into the target model, the voice recognition processing is performed through the target model, and the voice recognition result is output.
本实施例通过获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项,这样可以极大地扩展搜索空间,进一步地,通过对初始超网络进行多次迭代训练,在每次迭代过程中更新初始超网络的模型参数和各层中选项对应的连接权重,直至满足迭代停止条件时,得到训练后的超网络;将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络,最优搜索空间包括每层优化后的搜索空间,针对训练后的超网络的每一层,根据该层中各选项对应的连接权重由大到小的顺序对各选项进行排序,根据排序中的前k个选项,能够确定该层优化后的搜索空间,从而得到最优搜索空间,基于最优搜索空间可以搜索得到最优目标模型,提升所获得的目标模型的性能,使得目标模型的精度更高,且应用于图像处理、自然语言处理、音/视频处理等时数据处理的速度较快。在图像/视频处理场景下,通过应用该技术方案的AI模型对画面内容进行深度感知学习,根据画面场景及复杂度,可以智能调节编码参数,同等画质下可降低带宽成本需求,并且在提高画面质量的同时,大大降低平台的带宽成本求,同时结合画质修复、画质增强、ROI、超分辨率等技术,大大提升了主观视觉体验。进一步地,目前,训练得到的目标模型的核心竞争力是目标模型的精度以及目标模型在硬件上的数据处理的速度,这样,基于同样的硬件,目标模型的精度和效率更高;在保证同样精度和效率的前提下,可以采用更廉价的硬件实现,从而减少硬件成本。In this embodiment, the initial search space is obtained, the initial search space includes the search space of each layer of the target model, and the search space of each layer includes the options of all network structural units, which can greatly expand the search space. Perform multiple iterative training, update the model parameters of the initial super-network and the connection weights corresponding to the options in each layer in each iteration process, until the iterative stop condition is met, the trained super-network is obtained; All options of the super-network are superimposed with the same connection weight to form the initial super-network, and the optimal search space includes the optimized search space of each layer. Sort the options in the smallest order. According to the top k options in the sorting, the optimized search space of this layer can be determined, so as to obtain the optimal search space. Based on the optimal search space, the optimal target model can be searched and improved. The performance of the obtained target model makes the accuracy of the target model higher, and the data processing speed is faster when applied to image processing, natural language processing, audio/video processing, etc. In the image/video processing scenario, the AI model of this technical solution is used to perform depth perception learning on the picture content. According to the picture scene and complexity, the encoding parameters can be intelligently adjusted. The bandwidth cost requirement can be reduced under the same picture quality, and the increase in At the same time of image quality, the bandwidth cost of the platform is greatly reduced. At the same time, combined with image quality repair, image quality enhancement, ROI, super resolution and other technologies, the subjective visual experience is greatly improved. Further, at present, the core competitiveness of the target model obtained by training is the accuracy of the target model and the data processing speed of the target model on the hardware. In this way, based on the same hardware, the accuracy and efficiency of the target model are higher; On the premise of accuracy and efficiency, cheaper hardware can be used to reduce hardware costs.
图3是本申请第三实施例提供的生成搜索空间的装置示意图。本申请实施例提供的生成搜索空间的装置可以执行生成搜索空间的方法实施例提供的处理流程。如图3所示,该生成搜索空间的装置30包括:初始搜索空间模块301,搜索模块302和最优搜索空间确定模块303。FIG. 3 is a schematic diagram of an apparatus for generating a search space provided by a third embodiment of the present application. The apparatus for generating a search space provided by the embodiment of the present application may execute the processing flow provided by the embodiment of the method for generating a search space. As shown in FIG. 3 , the
具体地,初始搜索空间模块301用于获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项。Specifically, the initial
搜索模块302用于:将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络;对初始超网络进行训练,更新初始超网络的模型参数和各层中选项对应的连接权重,得到训练后的超网络。The
最优搜索空间确定模块303用于根据训练后的超网络的各层中选项对应的连接权重,确定最优搜索空间,最优搜索空间用于搜索得到最优的目标模型,目标模型用于执行数据处理任务。The optimal search
本申请实施例提供的装置可以具体用于执行上述第一实施例提供的方法实施例,具体功能此处不再赘述。The apparatus provided in this embodiment of the present application may be specifically configured to execute the method embodiment provided in the foregoing first embodiment, and the specific functions will not be repeated here.
本实施例通过获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项,这样可以极大地扩展搜索空间,进一步地,通过将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络,对初始超网络进行训练,更新初始超网络的模型参数和各层中选项对应的连接权重,得到训练后的超网络;根据训练后的超网络的各层中选项对应的连接权重,确定最优搜索空间,基于最优搜索空间可以搜索得到最优目标模型,提升所获得的目标模型的性能,使得目标模型的精度更高,且应用于图像处理、自然语言处理、音/视频处理等时数据处理的速度较快。在图像/视频处理场景下,通过应用该技术方案的AI模型对画面内容进行深度感知学习,根据画面场景及复杂度,可以智能调节编码参数,同等画质下可降低带宽成本需求,并且在提高画面质量的同时,大大降低平台的带宽成本求,同时结合画质修复、画质增强、ROI、超分辨率等技术,大大提升了主观视觉体验。进一步地,目前,训练得到的目标模型的核心竞争力是目标模型的精度以及目标模型在硬件上的数据处理的速度,这样,基于同样的硬件,目标模型的精度和效率更高;在保证同样精度和效率的前提下,可以采用更廉价的硬件实现,从而减少硬件成本。In this embodiment, the initial search space is obtained, the initial search space includes the search space of each layer of the target model, and the search space of each layer includes the options of all network structural units, which can greatly expand the search space. All options in the search space are superimposed with the same connection weight to form the initial super-network, train the initial super-network, update the model parameters of the initial super-network and the connection weights corresponding to the options in each layer, and obtain the trained super-network; After calculating the connection weights corresponding to the options in each layer of the super network, the optimal search space can be determined. Based on the optimal search space, the optimal target model can be searched to improve the performance of the obtained target model and make the target model more accurate. And the data processing speed is faster when applied to image processing, natural language processing, audio/video processing, etc. In the image/video processing scenario, the AI model of this technical solution is used to perform depth perception learning on the picture content. According to the picture scene and complexity, the encoding parameters can be intelligently adjusted. The bandwidth cost requirement can be reduced under the same picture quality, and the increase in At the same time of image quality, the bandwidth cost of the platform is greatly reduced. At the same time, combined with image quality repair, image quality enhancement, ROI, super resolution and other technologies, the subjective visual experience is greatly improved. Further, at present, the core competitiveness of the target model obtained by training is the accuracy of the target model and the data processing speed of the target model on the hardware. In this way, based on the same hardware, the accuracy and efficiency of the target model are higher; On the premise of accuracy and efficiency, cheaper hardware can be used to reduce hardware costs.
图4是本申请第四实施例提供的生成搜索空间的装置示意图。在上述第三实施例的基础上,本实施例中,最优搜索空间确定模块还用于:FIG. 4 is a schematic diagram of an apparatus for generating a search space provided by a fourth embodiment of the present application. On the basis of the above-mentioned third embodiment, in this embodiment, the optimal search space determination module is further used for:
最优搜索空间包括每层优化后的搜索空间,针对训练后的超网络的每一层,根据该层中各选项对应的连接权重由大到小的顺序对各选项进行排序,根据排序中的前k个选项,确定该层优化后的搜索空间。The optimal search space includes the optimized search space of each layer. For each layer of the super-network after training, the options are sorted according to the order of the connection weights corresponding to the options in the layer from large to small. The first k options determine the optimized search space for this layer.
在一种可选的实施方式中,搜索模块还用于:In an optional implementation manner, the search module is also used for:
对初始超网络进行多次迭代训练,在每次迭代过程中更新初始超网络的模型参数和各层中选项对应的连接权重,直至满足迭代停止条件时,得到训练后的超网络。The initial super-network is iteratively trained for many times, and the model parameters of the initial super-network and the connection weights corresponding to the options in each layer are updated in each iteration process, until the iterative stop condition is met, and the trained super-network is obtained.
在一种可选的实施方式中,迭代停止条件包括:In an optional embodiment, the iterative stop condition includes:
迭代训练的次数大于或者等于预设阈值;或,当前的超网络的性能满足收敛条件。The number of times of iterative training is greater than or equal to the preset threshold; or, the performance of the current super-network satisfies the convergence condition.
在一种可选的实施方式中,最优搜索空间确定模块还用于:In an optional implementation manner, the optimal search space determination module is further used for:
在每次迭代过程中,交替更新初始超网络的模型参数,以及各层中选项对应的连接权重。During each iteration, the model parameters of the initial super-network and the connection weights corresponding to the options in each layer are updated alternately.
在一种可选的实施方式中,如图4所示,生成搜索空间的装置30还包括:In an optional implementation manner, as shown in FIG. 4 , the
神经网络模型搜索模块304,用于:在最优搜索空间中进行神经网络模型搜索,得到目标模型。The neural network
在一种可选的实施方式中,如图4所示,生成搜索空间的装置30还包括:In an optional implementation manner, as shown in FIG. 4 , the
数据处理模块305,用于:获取待处理数据,利用目标模型对待处理数据进行相应地数据处理。The
在一种可选的实施方式中,数据处理模块305还用于:In an optional implementation manner, the
获取待处理图像,将待处理图像输入目标模型,利用目标模型对待处理图像进行图像处理,得到图像处理结果。The to-be-processed image is acquired, the to-be-processed image is input into the target model, and the target model is used to perform image processing on the to-be-processed image to obtain an image processing result.
本申请实施例提供的装置可以具体用于执行上述第二实施例提供的方法实施例,具体功能此处不再赘述。The apparatus provided in this embodiment of the present application may be specifically configured to execute the method embodiment provided in the foregoing second embodiment, and the specific functions will not be repeated here.
本实施例通过获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项,这样可以极大地扩展搜索空间,进一步地,通过对初始超网络进行多次迭代训练,在每次迭代过程中更新初始超网络的模型参数和各层中选项对应的连接权重,直至满足迭代停止条件时,得到训练后的超网络;将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络,最优搜索空间包括每层优化后的搜索空间,针对训练后的超网络的每一层,根据该层中各选项对应的连接权重由大到小的顺序对各选项进行排序,根据排序中的前k个选项,能够确定该层优化后的搜索空间,从而得到最优搜索空间,基于最优搜索空间可以搜索得到最优目标模型,提升所获得的目标模型的性能,使得目标模型的精度更高,且应用于图像处理、自然语言处理、音/视频处理等时数据处理的速度较快。在图像/视频处理场景下,通过应用该技术方案的AI模型对画面内容进行深度感知学习,根据画面场景及复杂度,可以智能调节编码参数,同等画质下可降低带宽成本需求,并且在提高画面质量的同时,大大降低平台的带宽成本求,同时结合画质修复、画质增强、ROI、超分辨率等技术,大大提升了主观视觉体验。进一步地,目前,训练得到的目标模型的核心竞争力是目标模型的精度以及目标模型在硬件上的数据处理的速度,这样,基于同样的硬件,目标模型的精度和效率更高;在保证同样精度和效率的前提下,可以采用更廉价的硬件实现,从而减少硬件成本。In this embodiment, the initial search space is obtained, the initial search space includes the search space of each layer of the target model, and the search space of each layer includes the options of all network structural units, which can greatly expand the search space. Perform multiple iterative training, update the model parameters of the initial super-network and the connection weights corresponding to the options in each layer in each iteration process, until the iterative stop condition is met, the trained super-network is obtained; All options of the super-network are superimposed with the same connection weight to form the initial super-network, and the optimal search space includes the optimized search space of each layer. Sort the options in the smallest order. According to the top k options in the sorting, the optimized search space of this layer can be determined, so as to obtain the optimal search space. Based on the optimal search space, the optimal target model can be searched and improved. The performance of the obtained target model makes the accuracy of the target model higher, and the data processing speed is faster when applied to image processing, natural language processing, audio/video processing, etc. In the image/video processing scenario, the AI model of this technical solution is used to perform depth perception learning on the picture content. According to the picture scene and complexity, the encoding parameters can be intelligently adjusted. The bandwidth cost requirement can be reduced under the same picture quality, and the increase in At the same time of image quality, the bandwidth cost of the platform is greatly reduced. At the same time, combined with image quality repair, image quality enhancement, ROI, super resolution and other technologies, the subjective visual experience is greatly improved. Further, at present, the core competitiveness of the target model obtained by training is the accuracy of the target model and the data processing speed of the target model on the hardware. In this way, based on the same hardware, the accuracy and efficiency of the target model are higher; On the premise of accuracy and efficiency, cheaper hardware can be used to reduce hardware costs.
根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。According to the embodiments of the present application, the present application further provides an electronic device and a readable storage medium.
如图5所示,是根据本申请实施例的生成搜索空间的方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。As shown in FIG. 5 , it is a block diagram of an electronic device of a method for generating a search space according to an embodiment of the present application. Electronic devices are intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
如图5所示,该电子设备包括:一个或多个处理器Y01、存储器Y02,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图5中以一个处理器Y01为例。As shown in FIG. 5, the electronic device includes: one or more processors Y01, a memory Y02, and interfaces for connecting various components, including a high-speed interface and a low-speed interface. The various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired. The processor may process instructions executed within the electronic device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface. In other embodiments, multiple processors and/or multiple buses may be used with multiple memories, if desired. Likewise, multiple electronic devices may be connected, each providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multiprocessor system). In FIG. 5, a processor Y01 is taken as an example.
存储器Y02即为本申请所提供的非瞬时计算机可读存储介质。其中,存储器存储有可由至少一个处理器执行的指令,以使至少一个处理器执行本申请所提供的生成搜索空间的方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的生成搜索空间的方法。The memory Y02 is the non-transitory computer-readable storage medium provided in this application. The memory stores instructions executable by at least one processor, so that the at least one processor executes the method for generating a search space provided by the present application. The non-transitory computer-readable storage medium of the present application stores computer instructions for causing a computer to execute the method of generating a search space provided by the present application.
存储器Y02作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的生成搜索空间的方法对应的程序指令/模块(例如,附图3所示的初始搜索空间模块301,搜索模块302和最优搜索空间确定模块303)。处理器Y01通过运行存储在存储器Y02中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的生成搜索空间的方法。As a non-transitory computer-readable storage medium, the memory Y02 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules (such as program instructions/modules corresponding to the method for generating a search space in the embodiments of the present application). , the initial
存储器Y02可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据生成搜索空间的电子设备的使用所创建的数据等。此外,存储器Y02可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器Y02可选包括相对于处理器Y01远程设置的存储器,这些远程存储器可以通过网络连接至生成搜索空间的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory Y02 can include a stored program area and a stored data area, wherein the stored program area can store an operating system, an application program required by at least one function; the stored data area can store data created according to the use of the electronic device that generates the search space, etc. . In addition, the memory Y02 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. In some embodiments, the memory Y02 may optionally include memory located remotely from the processor Y01, and these remote memories may be connected via a network to the electronic device generating the search space. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
生成搜索空间的方法的电子设备还可以包括:输入装置Y03和输出装置Y04。处理器Y01、存储器Y02、输入装置Y03和输出装置Y04可以通过总线或者其他方式连接,图5中以通过总线连接为例。The electronic device of the method for generating a search space may further include: an input device Y03 and an output device Y04. The processor Y01, the memory Y02, the input device Y03, and the output device Y04 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 5 .
输入装置Y03可接收输入的数字或字符信息,以及产生与生成搜索空间的电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置Y04可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。The input device Y03 can receive input numerical or character information, and generate key signal input related to user settings and function control of the electronic device generating the search space, such as touch screen, keypad, mouse, trackpad, touchpad, pointing stick, One or more input devices such as mouse buttons, trackballs, joysticks, etc. The output device Y04 may include a display device, an auxiliary lighting device (eg, LED), and a haptic feedback device (eg, a vibration motor), and the like. The display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
这些计算机程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算机程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。These computer programs (also referred to as programs, software, software applications, or codes) include machine instructions for programmable processors and may be implemented using high-level procedural and/or object-oriented programming languages, and/or assembly/machine languages Computer program. As used herein, the terms "machine-readable medium" and "computer-readable medium" refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals. The term "machine-readable signal" refers to any signal used to provide machine instructions and/or data to a programmable processor.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。A computer system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
根据本申请实施例的技术方案,通过获取初始搜索空间,初始搜索空间包含目标模型各层的搜索空间,每层的搜索空间包含所有网络结构单元的选项,这样可以极大地扩展搜索空间,进一步地,通过将每层的搜索空间中的所有选项以相同的连接权重叠加构成初始超网络,对初始超网络进行训练,更新初始超网络的模型参数和各层中选项对应的连接权重,得到训练后的超网络;根据训练后的超网络的各层中选项对应的连接权重,确定最优搜索空间,基于最优搜索空间可以搜索得到最优目标模型,提升所获得的目标模型的性能,使得目标模型的精度更高,且应用于图像处理、自然语言处理、音/视频处理等时数据处理的速度较快。在图像/视频处理场景下,通过应用该技术方案的AI模型对画面内容进行深度感知学习,根据画面场景及复杂度,可以智能调节编码参数,同等画质下可降低带宽成本需求,并且在提高画面质量的同时,大大降低平台的带宽成本求,同时结合画质修复、画质增强、ROI、超分辨率等技术,大大提升了主观视觉体验。进一步地,目前,训练得到的目标模型的核心竞争力是目标模型的精度以及目标模型在硬件上的数据处理的速度,这样,基于同样的硬件,目标模型的精度和效率更高;在保证同样精度和效率的前提下,可以采用更廉价的硬件实现,从而减少硬件成本。According to the technical solutions of the embodiments of the present application, by obtaining the initial search space, the initial search space includes the search space of each layer of the target model, and the search space of each layer includes the options of all network structural units, which can greatly expand the search space, and further , by superimposing all options in the search space of each layer with the same connection weight to form an initial super-network, train the initial super-network, update the model parameters of the initial super-network and the connection weights corresponding to the options in each layer, and get the post-training According to the connection weights corresponding to the options in each layer of the trained super network, the optimal search space is determined. Based on the optimal search space, the optimal target model can be searched to improve the performance of the obtained target model, so that the target The accuracy of the model is higher, and the data processing speed is faster when applied to image processing, natural language processing, audio/video processing, etc. In the image/video processing scenario, the AI model of this technical solution is used to perform depth perception learning on the picture content. According to the picture scene and complexity, the encoding parameters can be intelligently adjusted. The bandwidth cost requirement can be reduced under the same picture quality, and the increase in At the same time of image quality, the bandwidth cost of the platform is greatly reduced. At the same time, combined with image quality repair, image quality enhancement, ROI, super resolution and other technologies, the subjective visual experience is greatly improved. Further, at present, the core competitiveness of the target model obtained by training is the accuracy of the target model and the data processing speed of the target model on the hardware. In this way, based on the same hardware, the accuracy and efficiency of the target model are higher; On the premise of accuracy and efficiency, cheaper hardware can be used to reduce hardware costs.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present application can be performed in parallel, sequentially or in different orders, and as long as the desired results of the technical solutions disclosed in the present application can be achieved, no limitation is imposed herein.
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present application. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011020815.8A CN112100466A (en) | 2020-09-25 | 2020-09-25 | Method, apparatus, device and storage medium for generating search space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011020815.8A CN112100466A (en) | 2020-09-25 | 2020-09-25 | Method, apparatus, device and storage medium for generating search space |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112100466A true CN112100466A (en) | 2020-12-18 |
Family
ID=73755325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011020815.8A Pending CN112100466A (en) | 2020-09-25 | 2020-09-25 | Method, apparatus, device and storage medium for generating search space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112100466A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112766282A (en) * | 2021-01-18 | 2021-05-07 | 上海明略人工智能(集团)有限公司 | Image recognition method, device, equipment and computer readable medium |
CN113744729A (en) * | 2021-09-17 | 2021-12-03 | 北京达佳互联信息技术有限公司 | Speech recognition model generation method, device, equipment and storage medium |
CN116051964A (en) * | 2023-03-30 | 2023-05-02 | 阿里巴巴(中国)有限公司 | Deep learning network determining method, image classifying method and device |
WO2024127462A1 (en) * | 2022-12-12 | 2024-06-20 | Nec Corporation | Automatic machine learning development system, automatic machine learning development method and program |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201818183D0 (en) * | 2018-11-08 | 2018-12-26 | Robinson Healthcare Ltd | Vaginal speculum |
CN110826696A (en) * | 2019-10-30 | 2020-02-21 | 北京百度网讯科技有限公司 | Search space construction method and device of hyper network and electronic equipment |
WO2020068437A1 (en) * | 2018-09-28 | 2020-04-02 | Xilinx, Inc. | Training of neural networks by including implementation cost as an objective |
WO2020082663A1 (en) * | 2018-10-26 | 2020-04-30 | 北京图森未来科技有限公司 | Structural search method and apparatus for deep neural network |
CN111382868A (en) * | 2020-02-21 | 2020-07-07 | 华为技术有限公司 | Neural network structure search method and neural network structure search device |
WO2020160252A1 (en) * | 2019-01-30 | 2020-08-06 | Google Llc | Task-aware neural network architecture search |
CN111667057A (en) * | 2020-06-05 | 2020-09-15 | 北京百度网讯科技有限公司 | Method and apparatus for searching model structure |
-
2020
- 2020-09-25 CN CN202011020815.8A patent/CN112100466A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020068437A1 (en) * | 2018-09-28 | 2020-04-02 | Xilinx, Inc. | Training of neural networks by including implementation cost as an objective |
WO2020082663A1 (en) * | 2018-10-26 | 2020-04-30 | 北京图森未来科技有限公司 | Structural search method and apparatus for deep neural network |
GB201818183D0 (en) * | 2018-11-08 | 2018-12-26 | Robinson Healthcare Ltd | Vaginal speculum |
WO2020160252A1 (en) * | 2019-01-30 | 2020-08-06 | Google Llc | Task-aware neural network architecture search |
CN110826696A (en) * | 2019-10-30 | 2020-02-21 | 北京百度网讯科技有限公司 | Search space construction method and device of hyper network and electronic equipment |
CN111382868A (en) * | 2020-02-21 | 2020-07-07 | 华为技术有限公司 | Neural network structure search method and neural network structure search device |
CN111667057A (en) * | 2020-06-05 | 2020-09-15 | 北京百度网讯科技有限公司 | Method and apparatus for searching model structure |
Non-Patent Citations (1)
Title |
---|
卞伟伟;邱旭阳;申研;: "基于神经网络结构搜索的目标识别方法", 空军工程大学学报(自然科学版), no. 04, 25 August 2020 (2020-08-25) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112766282A (en) * | 2021-01-18 | 2021-05-07 | 上海明略人工智能(集团)有限公司 | Image recognition method, device, equipment and computer readable medium |
CN112766282B (en) * | 2021-01-18 | 2024-04-12 | 上海明略人工智能(集团)有限公司 | Image recognition method, device, equipment and computer readable medium |
CN113744729A (en) * | 2021-09-17 | 2021-12-03 | 北京达佳互联信息技术有限公司 | Speech recognition model generation method, device, equipment and storage medium |
WO2024127462A1 (en) * | 2022-12-12 | 2024-06-20 | Nec Corporation | Automatic machine learning development system, automatic machine learning development method and program |
CN116051964A (en) * | 2023-03-30 | 2023-05-02 | 阿里巴巴(中国)有限公司 | Deep learning network determining method, image classifying method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102484617B1 (en) | Method and apparatus for generating model for representing heterogeneous graph node, electronic device, storage medium and program | |
KR102648232B1 (en) | Multi-mode pre-training model acquisition method, device, electronic equipment and storage medium | |
EP3869403A2 (en) | Image recognition method, apparatus, electronic device, storage medium and program product | |
CN111144108B (en) | Modeling method and device of emotion tendentiousness analysis model and electronic equipment | |
CN112100466A (en) | Method, apparatus, device and storage medium for generating search space | |
US11914964B2 (en) | Method and apparatus for training semantic representation model, device and computer storage medium | |
CN111667056B (en) | Method and apparatus for searching model structures | |
CN111680517B (en) | Method, apparatus, device and storage medium for training model | |
JP2022013600A (en) | Generation method of event relation, device, electronic apparatus, and storage medium | |
CN111967569B (en) | Neural network structure generation method and device, storage medium and electronic equipment | |
CN111968631B (en) | Interaction method, device, equipment and storage medium of intelligent equipment | |
JP2021197159A (en) | Method for pre-training graph neural network, program, and device | |
JP2022505015A (en) | Vector representation generation method of knowledge graph, equipment and electronic equipment | |
JP2021111334A (en) | Method of human-computer interactive interaction based on retrieval data, device, and electronic apparatus | |
CN111078878B (en) | Text processing method, device, equipment and computer readable storage medium | |
CN111967591B (en) | Automatic pruning method and device for neural network and electronic equipment | |
CN111767833A (en) | Model generation method, device, electronic device and storage medium | |
CN110852449A (en) | Model migration method and electronic device | |
CN113657468A (en) | Pre-training model generation method and device, electronic equipment and storage medium | |
CN114492788A (en) | Method and device for training deep learning model, electronic equipment and storage medium | |
CN111611364B (en) | Intelligent response method, device, equipment and storage medium | |
CN112215243A (en) | Image feature extraction method, device, equipment and storage medium | |
CN112580723B (en) | Multi-model fusion method, device, electronic equipment and storage medium | |
CN111680599B (en) | Face recognition model processing method, device, equipment and storage medium | |
CN111782979B (en) | Brand classification method, device and equipment for interest points and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20250221 |
|
AD01 | Patent right deemed abandoned |