CN112100286A - Computer-aided decision-making method, device, system and server based on multi-dimensional data - Google Patents
Computer-aided decision-making method, device, system and server based on multi-dimensional data Download PDFInfo
- Publication number
- CN112100286A CN112100286A CN202010822614.3A CN202010822614A CN112100286A CN 112100286 A CN112100286 A CN 112100286A CN 202010822614 A CN202010822614 A CN 202010822614A CN 112100286 A CN112100286 A CN 112100286A
- Authority
- CN
- China
- Prior art keywords
- data
- decision
- making
- distributed
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012545 processing Methods 0.000 claims abstract description 39
- 238000004458 analytical method Methods 0.000 claims abstract description 31
- 238000007405 data analysis Methods 0.000 claims abstract description 27
- 238000000605 extraction Methods 0.000 claims abstract description 11
- 238000007781 pre-processing Methods 0.000 claims abstract description 11
- 238000012549 training Methods 0.000 claims abstract description 4
- 201000010099 disease Diseases 0.000 claims description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 20
- 238000003062 neural network model Methods 0.000 claims description 18
- 238000011156 evaluation Methods 0.000 claims description 17
- 238000010801 machine learning Methods 0.000 claims description 16
- 238000002610 neuroimaging Methods 0.000 claims description 16
- 238000013523 data management Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 6
- 238000013528 artificial neural network Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 238000013499 data model Methods 0.000 claims description 4
- 210000004556 brain Anatomy 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 238000003745 diagnosis Methods 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 3
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000004931 aggregating effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002598 diffusion tensor imaging Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000036642 wellbeing Effects 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229940088592 immunologic factor Drugs 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 208000024335 physical disease Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/283—Multi-dimensional databases or data warehouses, e.g. MOLAP or ROLAP
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/957—Browsing optimisation, e.g. caching or content distillation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
- G06F21/6245—Protecting personal data, e.g. for financial or medical purposes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioethics (AREA)
- Computing Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Pathology (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本发明公开了一种基于多维度数据的计算机辅助决策方法、装置、系统及服务器,所述方法包括数据获取、数据处理、数据分析和决策;所述装置包括采集与录入单元、处理与分析单元、存储单元、决策与显示单元;所述系统包括采集与录入设备、分布式服务器和用户端设备;所述分布式服务器用于分布式的队列、数据库和容器编排;所述系统将获取的信息数据发送到分布式队列,由容器化服务进行信息格式化、预处理与特征提取后存储在分布式数据库中,由数据分析服务容器进行模型训练和决策,将辅助决策结果发送给用户端。本发明跨平台、去中心化、隐私安全,利用大数据和人工智能技术,适用于辅助医生利用客观生物学判据辅助进行决策场景。
The invention discloses a computer-aided decision-making method, device, system and server based on multi-dimensional data. The method includes data acquisition, data processing, data analysis and decision-making; the device includes a collection and input unit, a processing and analysis unit , storage unit, decision-making and display unit; the system includes acquisition and input equipment, distributed server and client equipment; the distributed server is used for distributed queue, database and container arrangement; the information obtained by the system The data is sent to the distributed queue, and the containerized service performs information formatting, preprocessing, and feature extraction, and then stores it in the distributed database. The data analysis service container conducts model training and decision-making, and sends the auxiliary decision-making results to the client. The invention is cross-platform, decentralized, privacy-safe, uses big data and artificial intelligence technology, and is suitable for assisting doctors to use objective biological criteria to assist in decision-making scenarios.
Description
技术领域technical field
本发明涉及基于多维度数据的计算机辅助决策方法、装置、系统及服务器,属于计算机辅助决策领域。The invention relates to a computer-aided decision-making method, device, system and server based on multi-dimensional data, and belongs to the field of computer-aided decision-making.
背景技术Background technique
随着计算机辅助决策技术的发展,越来越多的疾病预警模型被用于辅助医生进行疾病诊断、预后。但由于神经精神疾病的诊断暂时缺乏客观生物学判据,更多依赖于医生的主观判断,因此研究出神经精神疾病的发病潜在因素,建立起疾病预警模型变得十分紧迫。临床上,确诊神经精神疾病及其严重程度方法有如下几种:受测者病史收集、精神检查和躯体与实验室检查,病史包括既往史、个人史及家族史;精神检查主要通过临床量表的方式评估;躯体与实验室检查主要包括:常规检查、神经电生理和影像学检查。With the development of computer-aided decision-making technology, more and more disease early warning models are used to assist doctors in disease diagnosis and prognosis. However, because the diagnosis of neuropsychiatric diseases temporarily lacks objective biological criteria and relies more on the subjective judgment of doctors, it is very urgent to study the underlying factors of neuropsychiatric diseases and establish disease early warning models. Clinically, the methods for diagnosing neuropsychiatric diseases and their severity are as follows: collection of the subject's medical history, psychiatric examination, and physical and laboratory examinations. The physical and laboratory examinations mainly include: routine examinations, neurophysiological and imaging examinations.
目前,学术界流行的神经精神疾病辅助决策研究主要采用统计学或机器学习等方法,对受测者的多维度医学数据进行分析,寻找潜在的诱病因素、建立有效的预警模型。但由于病人病史、量表数据以及医学检查数据均含有大量隐私信息,数据维护和管理都很困难,缺乏有效的统一数据库。同时,现有模型都针对小数据集进行设计,无法满足对统一数据库收集的信息进行大数据分析和模型建模,造成研究困难,甚至有时得出错误的结果,无法为医生提供正确妥当的辅助。At present, the popular neuropsychiatric disease-assisted decision-making research in academia mainly adopts methods such as statistics or machine learning to analyze the multi-dimensional medical data of the subjects, find potential disease-inducing factors, and establish an effective early warning model. However, due to the large amount of private information contained in patient medical history, scale data and medical examination data, data maintenance and management are very difficult, and an effective unified database is lacking. At the same time, the existing models are all designed for small data sets, which cannot meet the requirements of big data analysis and model modeling of the information collected in the unified database, resulting in research difficulties, and sometimes even erroneous results, which cannot provide doctors with correct and appropriate assistance. .
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决上述现有技术的缺陷,提供了基于多维度数据的计算机辅助决策方法、装置、系统及服务器,其基于多站点分布式数据存储与分析,适用于要求隐私安全和多维度大数据分析的计算机辅助决策场景,能够在保证数据安全的同时提供可靠的辅助决策结果,该系统使用者为医生和受测者,具有功能完善、操作简单、保护隐私、稳定可靠的优点。The purpose of the present invention is to solve the above-mentioned defects of the prior art, and provide a computer-aided decision-making method, device, system and server based on multi-dimensional data. The computer-aided decision-making scenario of dimensional big data analysis can provide reliable auxiliary decision-making results while ensuring data security. The system users are doctors and subjects, and it has the advantages of complete functions, simple operation, privacy protection, stability and reliability.
本发明的第一个目的在于提供一种基于多维度数据的计算机辅助决策方法。The first object of the present invention is to provide a computer-aided decision-making method based on multi-dimensional data.
本发明的第二个目的在于提供一种用于计算机辅助决策的多维度数据处理装置。The second object of the present invention is to provide a multi-dimensional data processing device for computer-aided decision-making.
本发明的第三个目的在于提供一种用于计算机辅助决策的数据管理与分析系统。The third object of the present invention is to provide a data management and analysis system for computer-aided decision-making.
本发明的第四个目的在于提供一种用于计算机辅助决策的多中心分布式服务器。The fourth object of the present invention is to provide a multi-center distributed server for computer-aided decision-making.
本发明的第一个目的可以通过采取如下技术方案达到:The first purpose of the present invention can be achieved by adopting the following technical solutions:
一种基于多维度数据的计算机辅助决策方法,所述方法包括:A computer-aided decision-making method based on multi-dimensional data, the method comprising:
多维度数据采集,受测者信息录入,并由前端设备发送到分布式队列中;Multi-dimensional data collection, the information of the subjects is input, and sent to the distributed queue by the front-end equipment;
对队列中的数据进行信息格式化和预处理与特征提取,并将处理后数据存储到分布式数据库中;Perform information formatting, preprocessing and feature extraction on the data in the queue, and store the processed data in a distributed database;
对分布式数据库中提取的各维度数据进行针对性分析,经过训练得到相应的辅助决策模型,并将模型存储到数据库中;Perform targeted analysis on the data of each dimension extracted from the distributed database, obtain the corresponding auxiliary decision-making model after training, and store the model in the database;
根据各维度输入数据使用特定的辅助决策模型进行推断和决策,输出预测数据与相似关联类型数据,发送到用户端设备供医生与受测者查看。According to the input data of each dimension, use a specific auxiliary decision-making model for inference and decision-making, output prediction data and similar related type data, and send it to the user-end equipment for doctors and subjects to view.
进一步地,所述多维度数据包括神经影像数据、量表测评数据、生化信息数据,所述受测者信息包括人口学信息、临床信息、患病史。进一步地,Further, the multi-dimensional data includes neuroimaging data, scale evaluation data, and biochemical information data, and the subject information includes demographic information, clinical information, and disease history. further,
所述辅助决策模型针对特定数据,包括机器学习模型、深度神经网络模型和图神经网络模型,其中,The auxiliary decision-making model is for specific data, including machine learning models, deep neural network models and graph neural network models, wherein,
所述机器学习模型以结构化数据为输入,包括经过计算的神经影像和生化信息特征数据,以及经过量化处理的量表测评、人口学信息、临床信息和患病史,以损失函数为评价准则,采用最优化算法求解损失最小时的机器学习模型参数,输出特征权重和决策结果,求参公式如下:The machine learning model takes structured data as input, including calculated neuroimaging and biochemical information characteristic data, as well as quantified scale evaluation, demographic information, clinical information and disease history, and takes the loss function as the evaluation criterion , using the optimization algorithm to solve the machine learning model parameters when the loss is the smallest, and output the feature weights and decision results. The parameter formula is as follows:
θ=argmin(L(y,f(x)))θ=argmin(L(y,f(x)))
其中θ为机器学习模型参数,L为损失函数,f为机器学习模型函数,y为标签,x为输入;where θ is the machine learning model parameter, L is the loss function, f is the machine learning model function, y is the label, and x is the input;
所述深度神经网络模型以图像数据或与机器学习模型相同的结构化数据为输入,以损失函数为评价准则,以反向传播为最优化算法,使用多层神经元拟合输入输出映射函数,输出特征贡献度和决策结果,深度神经网络模型中神经网络层算子如下:The deep neural network model takes image data or the same structured data as the machine learning model as input, takes the loss function as the evaluation criterion, takes the back propagation as the optimization algorithm, and uses the multi-layer neuron to fit the input-output mapping function, Output feature contribution and decision results. The neural network layer operators in the deep neural network model are as follows:
Z=a(W·A)Z=a(W·A)
其中Z为层输出,a为激活函数,W为权值矩阵,A为层输入;where Z is the layer output, a is the activation function, W is the weight matrix, and A is the layer input;
所述图神经网络模型以由神经影像数据计算和构建的脑连接网络节点特征向量与邻接矩阵为输入,针对其拓扑结构特点,通过聚合网络节点和连接边特征,有监督地学习融合节点特征和网络信息的高层特征,发掘针对决策目标的显著性图谱,输出决策结果,图神经网络模型中图神经网络层算子如下:The graph neural network model takes the brain connection network node feature vector and the adjacency matrix calculated and constructed from the neuroimaging data as input, and according to its topological structure characteristics, by aggregating network node and connecting edge features, supervised learning and fusion node features and High-level features of network information, discover saliency maps for decision-making targets, and output decision-making results. The graph neural network layer operators in the graph neural network model are as follows:
Z=a(L·H·W)Z=a(L·H·W)
其中Z为层输出,a为激活函数,L为拉普拉斯矩阵,H为层输入,W为权值矩阵。where Z is the layer output, a is the activation function, L is the Laplacian matrix, H is the layer input, and W is the weight matrix.
本发明的第二个目的可以通过采取如下技术方案达到:The second object of the present invention can be achieved by adopting the following technical solutions:
一种用于计算机辅助决策的多维度数据处理装置,所述装置包括:A multi-dimensional data processing device for computer-aided decision-making, the device comprising:
采集与录入单元,用于设备采集多维度数据,以及人工录入受测者信息;The collection and input unit is used for the equipment to collect multi-dimensional data and to manually input the information of the test subjects;
处理与分析单元,用于格式化信息、数据预处理与特征提取,以及分析数据库中的数据得到辅助决策模型;The processing and analysis unit is used for formatting information, data preprocessing and feature extraction, and analyzing the data in the database to obtain an auxiliary decision-making model;
存储单元,用于存储待处理数据队列、待分析数据、分析模型和分析结果数据;A storage unit for storing the queue of data to be processed, the data to be analyzed, the analysis model and the analysis result data;
决策与显示单元,用于使用模型对输入数据进行决策并输出预测数据与相似关联类型数据,整合并显示结果信息,辅助医生进行疾病诊断。The decision-making and display unit is used to use the model to make decisions on the input data and output the predicted data and similar related type data, integrate and display the result information, and assist the doctor in the diagnosis of the disease.
本发明的第三个目的可以通过采取如下技术方案达到:The third object of the present invention can be achieved by adopting the following technical solutions:
一种用于计算机辅助决策的数据管理与分析系统,所述系统包括:A data management and analysis system for computer-aided decision-making, the system includes:
采集与录入设备,用于采集多维度数据,包括神经影像数据、量表测评数据、生化信息数据,以及录入受测者信息,包括人口学信息、临床信息、患病史;Collection and input equipment, used to collect multi-dimensional data, including neuroimaging data, scale evaluation data, biochemical information data, and input subject information, including demographic information, clinical information, and medical history;
分布式服务器,用于存储待处理消息队列,管理和调度数据处理与分析容器,实例化容器服务进行数据处理和分析,保存经过处理与分析后的数据,发送辅助决策结果到用户端;Distributed server, used to store pending message queues, manage and schedule data processing and analysis containers, instantiate container services for data processing and analysis, save processed and analyzed data, and send auxiliary decision-making results to the client;
用户端设备,用于接收、整合并展示辅助决策结果,包括模型性能指标、模型输入特征的贡献度图谱、模型对输入数据的决策结果和置信度、相似病例临床信息和诊断结果。The user-end device is used to receive, integrate and display the auxiliary decision-making results, including model performance indicators, the contribution map of the model's input features, the model's decision-making results and confidence in the input data, clinical information and diagnosis results of similar cases.
进一步地,所述分布式服务器包括分布式队列、分布式数据库和分布式容器编排;Further, the distributed server includes distributed queues, distributed databases and distributed container orchestration;
所述分布式队列,用于接收并临时存储多站点待处理数据,并发送到可用服务器进行处理与分析;The distributed queue is used to receive and temporarily store multi-site pending data, and send it to an available server for processing and analysis;
所述分布式数据库,分布于各个数据源,用于保存多站点数据,保证数据隐私安全,并满足分布式数据分析;The distributed database, distributed in each data source, is used for storing multi-site data, ensuring data privacy and security, and satisfying distributed data analysis;
所述分布式容器编排,用于部署容器化服务进行数据处理与分析,由主节点服务器进行统一容器编排,确保系统高可用;The distributed container orchestration is used to deploy containerized services for data processing and analysis, and the master node server performs unified container orchestration to ensure high system availability;
进一步地,所述分布式数据库,用于以受测者为单位保存结构化与非结构化数据,包括神经影像数据、量表测评数据、生化信息数据、人口学信息、临床信息、患病史、数据分析中间结果、数据模型和辅助决策结果。Further, the distributed database is used to store structured and unstructured data in units of subjects, including neuroimaging data, scale evaluation data, biochemical information data, demographic information, clinical information, and medical history. , Data analysis intermediate results, data models and decision aids results.
进一步地,所述分布式容器编排,其中的每一个节点服务器都保存全部的容器镜像,包括数据处理服务容器、数据分析服务容器和用户端服务容器,并由主节点统一进行容器创建和服务调度。Further, in the distributed container orchestration, each node server saves all container images, including data processing service containers, data analysis service containers and client service containers, and the master node uniformly performs container creation and service scheduling. .
本发明的第四个目的可以通过采取如下技术方案达到:The fourth object of the present invention can be achieved by adopting the following technical solutions:
一种用于计算机辅助决策的多中心分布式服务器,单个服务器包括中央处理单元、图形处理单元、存储单元,所述中央处理单元执行存储单元存储的程序运行容器化服务时,实现上述基于多维度数据的计算机辅助决策方法。A multi-center distributed server for computer-aided decision-making. A single server includes a central processing unit, a graphics processing unit, and a storage unit. When the central processing unit executes a program stored in the storage unit to run a containerized service, the above-mentioned multidimensional Computer-aided decision-making methods for data.
本发明相对于现有技术具有如下的有益效果:The present invention has the following beneficial effects with respect to the prior art:
1、本发明的计算机辅助决策系统采用浏览器/服务器架构,可供多用户、跨平台、同时使用,方便快捷;后台采用分布式服务器,可分别部署在多个站点,支持去中心化数据管理,安全有效;用户端学习与使用成本低,对用户友好,支持定制,尤其对于需要客观判据辅助决策的医生来说,其能根据医生录入和设备采集到的数据信息,快速生成模型决策结果,并结合疾病预测和相似病例,为医生提供详实有效的结果报告,辅助医生进行决策。1. The computer-aided decision-making system of the present invention adopts a browser/server architecture, which can be used by multiple users, across platforms, and at the same time, which is convenient and fast; the background adopts a distributed server, which can be deployed in multiple sites respectively, and supports decentralized data management. , safe and effective; the user-side learning and use cost is low, user-friendly, and supports customization, especially for doctors who need objective criteria to assist decision-making, it can quickly generate model decision-making results based on data information entered by doctors and data collected by equipment , and combined with disease prediction and similar cases, to provide doctors with detailed and effective result reports to assist doctors in decision-making.
2、本发明采用分布式大数据管理和分析技术,对分布于不同医院和其他站点的数据进行安全、可靠的管理和分析,能够在各站点保护其数据隐私安全的同时,结合大数据和人工智能技术,对大量、多维度的数据进行分析,将其用于决策模型构建,得到可靠有效的辅助决策结果。2. The present invention adopts distributed big data management and analysis technology to carry out safe and reliable management and analysis of data distributed in different hospitals and other sites, and can combine big data and artificial intelligence while protecting the privacy and security of data at each site. Intelligent technology analyzes a large amount of multi-dimensional data and uses it to build a decision-making model to obtain reliable and effective auxiliary decision-making results.
3、本发明的用户端通过前端网页页面展示的可视化内容包括疾病预测和相似病例报告,其中疾病预测报告包括模型性能指标、模型输入特征的贡献度图谱、模型对输入数据的决策结果和置信度,帮助医生在能够判断模型可靠程度的同时得到直接的疾病预测结果;相似病例报告包含后台模型使用输入数据在分布式数据库中进行相似性检索后得到的相似性程度高的病例信息,包括临床信息、诊断结果,帮助医生进一步评估受测者病情。3. The visual content displayed by the user terminal of the present invention through the front-end web page includes disease prediction and similar case reports, wherein the disease prediction report includes model performance indicators, model input features contribution graph, model decision results and confidence levels for input data , to help doctors obtain direct disease prediction results while judging the reliability of the model; similar case reports include case information with a high degree of similarity obtained after the background model uses the input data to perform similarity retrieval in the distributed database, including clinical information , diagnosis results, help doctors to further evaluate the patient's condition.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
图1为本发明实施例1的计算机辅助决策方法的流程图;1 is a flowchart of a computer-aided decision-making method according to Embodiment 1 of the present invention;
图2为本发明实施例2的计算机辅助决策装置的结构框图;2 is a structural block diagram of a computer-aided decision-making apparatus according to Embodiment 2 of the present invention;
图3为本发明实施例3的计算机辅助决策系统的总体结构图。FIG. 3 is an overall structural diagram of a computer-aided decision-making system according to Embodiment 3 of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention. .
实施例1:Example 1:
如图1所示,本实施例提供了一种基于多维度数据的计算机辅助决策方法,该方法通过分布式服务器实现,包括以下步骤:As shown in FIG. 1 , the present embodiment provides a computer-aided decision-making method based on multi-dimensional data. The method is implemented by a distributed server and includes the following steps:
S101、多维度数据采集,受测者信息录入,并由前端设备发送到分布式队列中。S101, multi-dimensional data collection, the information of the subject is input, and sent to the distributed queue by the front-end device.
设备采集与录入的多维度数据与受测者信息将直接发送到分布式队列中,由分部署在布式服务器上的容器化服务进行进一步地数据处理。The multi-dimensional data and testee information collected and entered by the device will be directly sent to the distributed queue, and further data processing will be performed by the containerized service deployed on the distributed server.
本实施中,多维度数据包括神经影像数据、量表测评数据、生化信息数据,神经影像数据、量表测评数据、生化信息数据的具体说明如下:In this implementation, multi-dimensional data includes neuroimaging data, scale evaluation data, and biochemical information data. The specific descriptions of neuroimaging data, scale evaluation data, and biochemical information data are as follows:
1.神经影像数据:包括结构与功能磁共振成像(Structural/FunctionalMagnetic Resonance Imaging,简称s/fMRI)、弥散张量成像(Diffusion Tensor Imaging,简称DTI)、脑电(Electroencephalogram,简称EEG);1. Neuroimaging data: including Structural/Functional Magnetic Resonance Imaging (s/fMRI), Diffusion Tensor Imaging (DTI), Electroencephalogram (EEG);
2.量表测评数据:包括神经精神疾病诊断和研究中常用的自评及他评量表、阳性与阴性症状量表(Positive And Negative Syndrome Scale,简称PANSS)、汉密尔顿抑郁、汉密尔顿焦虑、Young躁狂评定、UKU副作用量表、自知力和治疗态度问卷(Insight andTreatment Attitude Questionnaire,简称ITAQ)、大体功能评定、临床总体印象量表(Clinical Global Impression,CGI)、PHQ-9抑郁筛查量表、健康调查简表(the MOS itemshort from health survey,简称SF-12)、症状自评量表(The self-report symptominventory,简称SCL-90)、总体幸福感量表(General Well-Being Schedule,简称GWB)。2. Scale evaluation data: including self-assessment and other scales commonly used in the diagnosis and research of neuropsychiatric diseases, Positive And Negative Syndrome Scale (PANSS), Hamilton Depression, Hamilton Anxiety, Young Mania Crazy rating, UKU side effect scale, Insight and Treatment Attitude Questionnaire (ITAQ), gross functional assessment, Clinical Global Impression (CGI), PHQ-9 depression screening scale , Health Survey Short Form (the MOS itemshort from health survey, referred to as SF-12), symptom self-rating scale (The self-report symptominventory, referred to as SCL-90), general well-being scale (General Well-Being Schedule, referred to as GWB).
3.生化信息数据:包括肠道菌群数据和血液指标数据,肠道菌群数据具体为受测者的肠道微生物的α多样性、β多样性、菌群组成分析、菌群差异分析、KEGG(KyotoEncyclopedia of Genes and Genomes,京都基因与基因组百科全书)功能分析结果;血液指标数据具体为血细胞数量、免疫因子、氧化应激。3. Biochemical information data: including intestinal flora data and blood index data, the intestinal flora data is specifically the α diversity, β diversity, flora composition analysis, flora difference analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes, Kyoto Encyclopedia of Genes and Genomes) functional analysis results; blood index data are specifically the number of blood cells, immune factors, and oxidative stress.
本实施中,受测者信息包括人口学信息、临床信息、患病史,人口学信息、临床信息、患病史的具体说明如下:In this implementation, the subject information includes demographic information, clinical information, and medical history. The specific descriptions of demographic information, clinical information, and medical history are as follows:
1.人口学信息:包括受测者年龄、性别等基本信息;1. Demographic information: including basic information such as the age and gender of the subjects;
2.临床信息:包括受测者躯体疾病、临床症状、医生临床评估;2. Clinical information: including the subject's physical disease, clinical symptoms, and doctor's clinical assessment;
3.患病史:包括个人病史和家族病史。3. Medical history: including personal medical history and family medical history.
S102、对队列中的数据进行信息格式化和预处理与特征提取,并将处理后数据存储到分布式数据库中。S102. Perform information formatting, preprocessing and feature extraction on the data in the queue, and store the processed data in a distributed database.
本实施中,信息格式化包括对医生录入的受测者信息进行量化和结构化处理,保证数据一致性。In this implementation, the information formatting includes quantifying and structuring the test subject information entered by the doctor to ensure data consistency.
本实施中,预处理与特征提取包括神经影像数据的预处理和特征提取,对所提取特征的具体说明如下:In this implementation, preprocessing and feature extraction include preprocessing and feature extraction of neuroimaging data, and the specific description of the extracted features is as follows:
1.结构磁共振成像:灰质体积、白质体积和结构连接网络;1. Structural MRI: gray matter volume, white matter volume, and structural connectivity networks;
2.功能磁共振成像:区域一致性、低频振荡振幅、度中心度和功能连接网络;2. Functional magnetic resonance imaging: regional consistency, low frequency oscillation amplitude, degree centrality and functional connectivity network;
3.弥散张量成像:各向异性分数、平均弥散度、径向弥散度、轴向弥散度和张量网络;3. Diffusion tensor imaging: fractional anisotropy, mean dispersion, radial dispersion, axial dispersion and tensor network;
4.脑电:事件相关电位、复杂度和脑功能网络拓扑属性。4. EEG: Event-related potentials, complexity and topological properties of brain functional networks.
S103、对分布式数据库中提取的数据进行分析,训练辅助决策模型,再存储到数据库中。S103: Analyze the data extracted from the distributed database, train an auxiliary decision-making model, and store the data in the database.
本实施中,辅助决策模型包括图神经网络模型、机器学习模型、深度神经网络模型,图神经网络模型、机器学习模型、深度神经网络模型的具体说明如下:In this implementation, the auxiliary decision-making model includes a graph neural network model, a machine learning model, and a deep neural network model. The specific descriptions of the graph neural network model, the machine learning model, and the deep neural network model are as follows:
1.图神经网络模型:针对网络数据的拓扑结构特点,通过聚合网络图数据中节点和边特征,有监督地学习包含节点特征和网络信息的高层特征,完成节点和图分类和预测任务;1. Graph neural network model: According to the topology characteristics of network data, by aggregating node and edge features in network graph data, supervised learning of high-level features including node features and network information, to complete node and graph classification and prediction tasks;
2.机器学习模型:针对结构化数据的向量化特征,从模型空间选取合适模型,使用最优化算法拟合决策函数,完成数据判别和预测任务;2. Machine learning model: According to the vectorized features of structured data, select the appropriate model from the model space, use the optimization algorithm to fit the decision function, and complete the data discrimination and prediction tasks;
3.深度神经网络模型:针对结构化数据的向量化特征,使用基于正向推演和反向传播的最优化算法更新深度神经网络中神经元变量,以之拟合原始模型函数,完成数据判别和预测任务。3. Deep neural network model: According to the vectorized characteristics of structured data, the optimization algorithm based on forward deduction and back propagation is used to update the neuron variables in the deep neural network to fit the original model function to complete data discrimination and analysis. prediction task.
S104、使用指定的辅助决策模型以输入数据为基础进行决策,输出预测数据与相似关联类型数据,发送到用户端设备供医生与受测者查看。S104 , use the specified auxiliary decision-making model to make decisions based on the input data, output the predicted data and data of similar association types, and send them to the client device for the doctor and the subject to view.
本实施中,输出到用户端设备的内容包括疾病预测与相似病例数据,疾病预测与相似病例数据的具体说明如下:In this implementation, the content output to the client device includes disease prediction and similar case data. The specific description of disease prediction and similar case data is as follows:
1.疾病预测:包括模型性能指标、模型输入特征的贡献度图谱、模型对输入数据的决策结果和置信度,帮助医生在能够判断模型可靠程度的同时得到直接的疾病预测结果;1. Disease prediction: including model performance indicators, the contribution map of model input features, the model's decision-making results and confidence in the input data, helping doctors to obtain direct disease prediction results while judging the reliability of the model;
2.相似病例:包括后台模型使用输入数据在分布式数据库中进行相似性检索后得到的相似性程度高的病例信息,包括临床信息、诊断结果,帮助医生进一步评估受测者病情。2. Similar cases: including the case information with a high degree of similarity obtained after the background model uses the input data to perform similarity retrieval in the distributed database, including clinical information and diagnosis results, to help doctors further evaluate the patient's condition.
上述步骤S102~S104中的数据、模型和结果将持久化存储到分布式数据库中。The data, models and results in the above steps S102 to S104 will be persistently stored in the distributed database.
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤可以通过程序来指令相关的硬件来完成,相应的程序可以存储于计算机可读存储介质中。Those skilled in the art can understand that all or part of the steps in the methods of the above embodiments can be implemented by instructing relevant hardware through a program, and the corresponding program can be stored in a computer-readable storage medium.
应当注意,尽管在附图中以特定顺序描述了上述实施例的方法操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。It should be noted that although the method operations of the above-described embodiments are depicted in a particular order in the drawings, this does not require or imply that the operations must be performed in that particular order, or that all illustrated operations must be performed to achieve the desired results . Conversely, the depicted steps may change the order of execution. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined to be performed as one step, and/or one step may be decomposed into multiple steps to be performed.
实施例2:Example 2:
如图2所示,本实施例提供了一种用于计算机辅助决策的多维度数据处理装置,该装置应用于实现上述方法,包括采集与录入单元501、处理与分析单元502、存储单元503、决策与显示单元504,各个单元的具体功能如下:As shown in FIG. 2 , this embodiment provides a multi-dimensional data processing device for computer-aided decision-making. The device is applied to implement the above method, and includes a collection and
所述采集与录入单元501,用于设备采集多维度数据,以及人工录入受测者信息;The collection and
所述处理与分析单元502,用于格式化信息、数据预处理与特征提取,以及分析数据库中的数据得到模型;The processing and
所述存储单元503,用于存储待处理数据队列、待分析数据、分析模型和分析结果数据;The
所述决策与显示单元504,用于使用模型对输入数据进行决策并输出疾病预测和相似病例,整合并显示结果信息,辅助医生进行疾病诊断。The decision-making and
需要说明的是,上述实施例提供的装置仅以上述各功能单元的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。It should be noted that, the apparatus provided in the above-mentioned embodiments only takes the division of the above-mentioned functional units as an example. Functional unit to complete all or part of the functions described above.
实施例3:Example 3:
如图3所示,本实施例提供了一种用于计算机辅助决策的数据管理与分析系统,该系统包括采集与录入设备、分布式服务器和用户端设备。As shown in FIG. 3 , this embodiment provides a data management and analysis system for computer-aided decision-making. The system includes a collection and input device, a distributed server, and a client device.
采集与录入设备采集多维度数据,包括神经影像数据、量表测评数据、生化信息数据,并录入受测者信息,包括人口学信息、临床信息、患病史。采集和录入得到的数据将通过http协议发送到存储在分布式服务器上的分布式队列中。除此意外,分布式服务器管理和调度数据处理与分析容器,实例化容器服务进行数据处理和分析,存储经过处理与分析后的数据,并发送辅助决策结果到用户端。用户端设备接收、整合并展示辅助决策结果,包括模型性能指标、模型输入特征的贡献度图谱、模型对输入数据的决策结果和置信度、相似病例临床信息和诊断结果。The collection and input equipment collects multi-dimensional data, including neuroimaging data, scale evaluation data, and biochemical information data, and records the subject information, including demographic information, clinical information, and medical history. The collected and entered data will be sent to the distributed queue stored on the distributed server through the http protocol. In addition to this, the distributed server manages and schedules data processing and analysis containers, instantiates container services for data processing and analysis, stores processed and analyzed data, and sends auxiliary decision-making results to the client. The client device receives, integrates and displays the auxiliary decision-making results, including model performance indicators, the contribution map of the model input features, the model's decision results and confidence in the input data, clinical information and diagnosis results of similar cases.
本实施中,采集与录入设备集成了数据发送模块,包括处理器、存储器、输入/输出单元等部件,处理器运行存储在存储器内的程序,通过输入/输出单元根据网络传输协议将获取的数据发送到指定网络地址。In this implementation, the acquisition and input device integrates a data transmission module, including a processor, a memory, an input/output unit and other components. The processor runs the program stored in the memory, and the input/output unit transmits the acquired data according to the network transmission protocol through the input/output unit. Send to the specified network address.
本实施中,所述分布式服务器上部署了分布式队列、分布式数据库和分布式容器编排,分布式队列、分布式数据库和分布式容器编排的具体说明如下:In this implementation, distributed queues, distributed databases, and distributed container orchestration are deployed on the distributed server. The specific descriptions of distributed queues, distributed databases, and distributed container orchestration are as follows:
1.分布式队列,用于接收并临时存储多站点待处理数据,并发送到可用服务器进行处理与分析;1. A distributed queue for receiving and temporarily storing multi-site pending data, and sending it to an available server for processing and analysis;
2.分布式数据库,分布于各个数据源,以受测者为单位保存结构化与非结构化数据,包括神经影像数据、量表测评数据、生化信息数据、人口学信息、临床信息、患病史、数据分析中间结果、数据模型和辅助决策结果;其去中心化存储保证数据隐私安全,并满足分布式数据分析;2. Distributed database, distributed in various data sources, storing structured and unstructured data in units of subjects, including neuroimaging data, scale evaluation data, biochemical information data, demographic information, clinical information, disease information History, data analysis intermediate results, data models and auxiliary decision-making results; its decentralized storage ensures data privacy and security, and satisfies distributed data analysis;
3.分布式容器编排,用于部署容器化服务进行数据处理与分析,由主节点服务器进行统一容器编排,确保系统高可用,每一个从节点服务器都保存全部的容器镜像,包括数据处理服务容器、数据分析服务容器和用户端服务容器,并由主节点统一进行容器创建和服务调度。3. Distributed container orchestration is used to deploy containerized services for data processing and analysis. The master node server performs unified container orchestration to ensure high system availability. Each slave node server saves all container images, including data processing service containers. , data analysis service container and client service container, and the master node uniformly performs container creation and service scheduling.
本实施中,所述容器镜像包括数据处理服务容器、数据分析服务容器和用户端服务容器,数据处理服务容器、数据分析服务容器和用户端服务容器的具体说明如下:In this implementation, the container image includes a data processing service container, a data analysis service container, and a client service container. The specific descriptions of the data processing service container, the data analysis service container, and the client service container are as follows:
1.数据处理服务容器:包含数据处理服务所需的系统环境、软件依赖和服务接口程序。其服务接口程序整合了上述实施例1中预处理和特征提取程序,能够有针对性地处理相应数据,并连接分布式数据库,将处理结果保存在其中;1. Data processing service container: contains the system environment, software dependencies and service interface programs required for data processing services. Its service interface program integrates the preprocessing and feature extraction programs in the above-mentioned embodiment 1, can process corresponding data in a targeted manner, and connect to a distributed database, and save the processing results therein;
2.数据分析服务容器:包含数据分析服务所需的系统环境、软件依赖和服务接口程序。其服务接口程序整合了上述实施例1中辅助决策模型训练和推演程序,能够对特定数据使用特定模型接口进行训练、推演,并连接分布式数据库,将得到的辅助决策模型和结果数据保存在其中;2. Data analysis service container: It contains the system environment, software dependencies and service interface programs required by the data analysis service. Its service interface program integrates the auxiliary decision-making model training and deduction program in the above-mentioned embodiment 1, and can use a specific model interface to train and deduce specific data, and connect to a distributed database, and save the obtained auxiliary decision-making model and result data in it. ;
3.用户端服务容器:包含用户端服务所需的系统环境、软件依赖、静态资源和服务接口程序。其服务接口程序能够根据用户请求返回特定响应和静态界面,并连接分布式数据库,整合用户请求的数据并返回到用户端,展示在静态界面中。3. Client service container: Contains the system environment, software dependencies, static resources and service interface programs required for client services. Its service interface program can return a specific response and a static interface according to the user's request, connect to the distributed database, integrate the data requested by the user and return it to the user, and display it in the static interface.
本实施例中的多维度数据以及用户端展示内容的说明可以参见上述实施例1,在此不再赘述。For the description of the multi-dimensional data and the content displayed by the user terminal in this embodiment, reference may be made to the foregoing Embodiment 1, and details are not repeated here.
实施例4:Example 4:
本实施例提供了一种用于计算机辅助决策的多中心分布式服务器,该服务器包括中央处理单元、图形处理单元、存储单元,其特征在于,所述分布式服务器分别实现分布式队列、分布式数据库和分布式容器编排。所述服务器在运行容器化服务时,实现上述实施例1的基于多维度数据的计算机辅助决策方法,如下:This embodiment provides a multi-center distributed server for computer-aided decision-making, the server includes a central processing unit, a graphics processing unit, and a storage unit, characterized in that the distributed server implements distributed queues, distributed Database and distributed container orchestration. When the server runs the containerized service, the computer-aided decision-making method based on multi-dimensional data of the above-mentioned embodiment 1 is implemented as follows:
将前端设备发送的多维度数据、受测者信息存储到分布式队列中;Store the multi-dimensional data and testee information sent by the front-end equipment in the distributed queue;
对队列中的数据进行信息格式化和预处理与特征提取,并将处理后数据存储到分布式数据库中;Perform information formatting, preprocessing and feature extraction on the data in the queue, and store the processed data in a distributed database;
对分布式数据库中提取的数据进行分析,训练辅助决策模型,再存储到数据库中;Analyze the data extracted from the distributed database, train the auxiliary decision-making model, and store it in the database;
使用指定的辅助决策模型以输入数据为基础进行决策,输出预测数据与相似关联类型数据,发送到用户端设备供医生与受测者查看。Use the specified auxiliary decision-making model to make decisions based on input data, output prediction data and data of similar association types, and send them to the user-end equipment for doctors and subjects to view.
综上所述,本发明系统可以实现面向计算机辅助决策,为医生或受测者提供了一个操作简单、功能完善的辅助决策系统,且其中包含基于图神经网络、机器学习、深度神经网络的多维度数据分析模型,以及分布式队列、数据库和容器编排,保护了受测者医学信息的隐私的同时,为大数据分析提供途径,提高了辅助决策模型的可靠性,而其提供的辅助决策结果。To sum up, the system of the present invention can realize computer-oriented decision-making, and provide a simple operation and perfect function decision-making system for doctors or subjects. The dimensional data analysis model, as well as the arrangement of distributed queues, databases and containers, protects the privacy of the subjects' medical information, provides a way for big data analysis, improves the reliability of the auxiliary decision-making model, and provides auxiliary decision-making results. .
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。The above is only a preferred embodiment of the patent of the present invention, but the protection scope of the patent of the present invention is not limited to this. The technical solution and the inventive concept of the invention are equivalently replaced or changed, all belong to the protection scope of the patent of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010822614.3A CN112100286A (en) | 2020-08-14 | 2020-08-14 | Computer-aided decision-making method, device, system and server based on multi-dimensional data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010822614.3A CN112100286A (en) | 2020-08-14 | 2020-08-14 | Computer-aided decision-making method, device, system and server based on multi-dimensional data |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112100286A true CN112100286A (en) | 2020-12-18 |
Family
ID=73753902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010822614.3A Pending CN112100286A (en) | 2020-08-14 | 2020-08-14 | Computer-aided decision-making method, device, system and server based on multi-dimensional data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112100286A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112687392A (en) * | 2020-12-24 | 2021-04-20 | 深圳市智连众康科技有限公司 | AI-based intelligent alopecia decision method, device and computer-readable storage medium |
CN113160984A (en) * | 2021-04-20 | 2021-07-23 | 郑州大学第一附属医院 | Nasal nursing sensitivity quality evaluation index system |
CN113590691A (en) * | 2021-08-04 | 2021-11-02 | 浙江网商银行股份有限公司 | Target object processing method and device |
CN114149254A (en) * | 2021-12-10 | 2022-03-08 | 鞍山浦项特种耐火材料有限公司 | Unfired sliding plate and preparation method thereof |
CN115357554A (en) * | 2022-10-24 | 2022-11-18 | 浪潮电子信息产业股份有限公司 | Graph neural network compression method and device, electronic equipment and storage medium |
CN116269392A (en) * | 2023-05-22 | 2023-06-23 | 华南理工大学 | A multi-parameter coupling stress level assessment method and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1914617A (en) * | 2004-02-03 | 2007-02-14 | 美国西门子医疗解决公司 | Systems and methods for automated diagnosis and decision support for heart related diseases and conditions |
CN105096225A (en) * | 2014-05-13 | 2015-11-25 | 深圳华大基因研究院 | Analysis system, apparatus and method for assisting disease diagnosis and treatment |
US20160260023A1 (en) * | 2015-03-02 | 2016-09-08 | Northrop Grumman Systems Corporation | Digital object library management system for machine learning applications |
US20170011183A1 (en) * | 2015-07-07 | 2017-01-12 | Seven Medical, Inc. | Integrated medical platform |
CN109830303A (en) * | 2019-02-01 | 2019-05-31 | 上海众恒信息产业股份有限公司 | Clinical data mining analysis and aid decision-making method based on internet integration medical platform |
CN110097930A (en) * | 2019-04-04 | 2019-08-06 | 华南理工大学 | Schizophrenia medical data processing method, device, system, server and medium |
-
2020
- 2020-08-14 CN CN202010822614.3A patent/CN112100286A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1914617A (en) * | 2004-02-03 | 2007-02-14 | 美国西门子医疗解决公司 | Systems and methods for automated diagnosis and decision support for heart related diseases and conditions |
CN105096225A (en) * | 2014-05-13 | 2015-11-25 | 深圳华大基因研究院 | Analysis system, apparatus and method for assisting disease diagnosis and treatment |
US20160260023A1 (en) * | 2015-03-02 | 2016-09-08 | Northrop Grumman Systems Corporation | Digital object library management system for machine learning applications |
US20170011183A1 (en) * | 2015-07-07 | 2017-01-12 | Seven Medical, Inc. | Integrated medical platform |
CN109830303A (en) * | 2019-02-01 | 2019-05-31 | 上海众恒信息产业股份有限公司 | Clinical data mining analysis and aid decision-making method based on internet integration medical platform |
CN110097930A (en) * | 2019-04-04 | 2019-08-06 | 华南理工大学 | Schizophrenia medical data processing method, device, system, server and medium |
Non-Patent Citations (1)
Title |
---|
安德鲁·凯莱赫等, 北京:机械工业出版社 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112687392A (en) * | 2020-12-24 | 2021-04-20 | 深圳市智连众康科技有限公司 | AI-based intelligent alopecia decision method, device and computer-readable storage medium |
CN113160984A (en) * | 2021-04-20 | 2021-07-23 | 郑州大学第一附属医院 | Nasal nursing sensitivity quality evaluation index system |
CN113160984B (en) * | 2021-04-20 | 2022-09-27 | 郑州大学第一附属医院 | Nasal nursing sensitivity quality evaluation index system |
CN113590691A (en) * | 2021-08-04 | 2021-11-02 | 浙江网商银行股份有限公司 | Target object processing method and device |
CN114149254A (en) * | 2021-12-10 | 2022-03-08 | 鞍山浦项特种耐火材料有限公司 | Unfired sliding plate and preparation method thereof |
CN114149254B (en) * | 2021-12-10 | 2023-06-06 | 鞍山浦项特种耐火材料有限公司 | Unfired skateboard and preparation method thereof |
CN115357554A (en) * | 2022-10-24 | 2022-11-18 | 浪潮电子信息产业股份有限公司 | Graph neural network compression method and device, electronic equipment and storage medium |
CN115357554B (en) * | 2022-10-24 | 2023-02-24 | 浪潮电子信息产业股份有限公司 | Graph neural network compression method and device, electronic equipment and storage medium |
CN116269392A (en) * | 2023-05-22 | 2023-06-23 | 华南理工大学 | A multi-parameter coupling stress level assessment method and system |
CN116269392B (en) * | 2023-05-22 | 2023-07-18 | 华南理工大学 | A multi-parameter coupling stress level assessment method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112100286A (en) | Computer-aided decision-making method, device, system and server based on multi-dimensional data | |
NL1032580C2 (en) | Systems, methods and equipment for monitoring the progress and treatment of disease through category indices. | |
US9002769B2 (en) | Method and system for supporting a clinical diagnosis | |
CN102667786A (en) | Protocol guided imaging procedure | |
JP2014520335A (en) | Evaluation system and evaluation method | |
Anouncia et al. | Design of a diabetic diagnosis system using rough sets | |
Pavlov et al. | Reference medical datasets (MosMedData) for independent external evaluation of algorithms based on artificial intelligence in diagnostics | |
Marquez et al. | Involving stakeholders in the implementation of microservice-based systems: A case study in an ambient-assisted living system | |
CN111292815A (en) | Community big data health service system based on cloud | |
CN113362931B (en) | Attribute analysis method, device and system based on knowledge graph | |
CN113744845A (en) | Medical image processing method, device, equipment and medium based on artificial intelligence | |
Kampouraki et al. | e-Doctor: a web based support vector machine for automatic medical diagnosis | |
Owens et al. | A review of applications of artificial intelligence in veterinary medicine | |
Uciteli et al. | An ontologically founded architecture for information systems in clinical and epidemiological research | |
Wadhera | Multimodal Kernel-based discriminant correlation analysis data-fusion approach: an automated autism spectrum disorder diagnostic system | |
CN110097930A (en) | Schizophrenia medical data processing method, device, system, server and medium | |
CN113571142B (en) | Mental image integrated system | |
CN115809239A (en) | Scalable visual analysis pipeline for large data sets | |
Medeiros et al. | EEG as a potential ground truth for the assessment of cognitive state in software development activities: A multimodal imaging study | |
Georgieva-Tsaneva | Effective information methods for description and storage of data in health care | |
Bhavani et al. | Cimidx: Prototype for a cloud-based system to support intelligent medical image diagnosis with efficiency | |
CN112992358A (en) | Rehabilitation condition evaluation system and method for traditional Chinese medicine internal medicine patient | |
CN112420197A (en) | Intelligent public health service management system and method | |
Martynov et al. | Testing of the assisting software for radiologists analysing head CT images: lessons learned | |
Canino et al. | Geoblood: a web based tool for geo-analysis of biological data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |