CN112098938B - 一种基于六元锥矢量阵的水声目标降维匹配声场定位方法 - Google Patents

一种基于六元锥矢量阵的水声目标降维匹配声场定位方法 Download PDF

Info

Publication number
CN112098938B
CN112098938B CN202010896336.6A CN202010896336A CN112098938B CN 112098938 B CN112098938 B CN 112098938B CN 202010896336 A CN202010896336 A CN 202010896336A CN 112098938 B CN112098938 B CN 112098938B
Authority
CN
China
Prior art keywords
sound
array
vector
sound source
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010896336.6A
Other languages
English (en)
Other versions
CN112098938A (zh
Inventor
宋海岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang Institute of Technology
Original Assignee
Heilongjiang Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang Institute of Technology filed Critical Heilongjiang Institute of Technology
Priority to CN202010896336.6A priority Critical patent/CN112098938B/zh
Publication of CN112098938A publication Critical patent/CN112098938A/zh
Application granted granted Critical
Publication of CN112098938B publication Critical patent/CN112098938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/20Position of source determined by a plurality of spaced direction-finders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

本发明涉及一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,属于水声目标定位技术领域。本发明利用六元锥矢量阵,可获得关于声源的方位角、俯仰角、深度以及水平距离的完备信息,且利用逐次获得的估计信息对最终的水平距离估计进行降维处理,通过空间扫描降维有效提高了估计效率。本发明利用最小规模立体阵—六元锥矢量阵,既具有全空域定位能力,又具有优于线列阵和平面阵的定位精度,同时还保留立体阵的空域分维特性优势,具有良好的对称性和平稳性。

Description

一种基于六元锥矢量阵的水声目标降维匹配声场定位方法
技术领域
本发明涉及一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,属于水声定位技术领域。
背景技术
目前对水下目标声源的定位方法越来越丰富。按照应答器基阵基线的长度来分类,可以分为长基线定位、短基线定位、超短基线定位以及前三种方式的组合定位等;按照工作方式来分类,可分为主动声呐定位和被动声呐定位;按照基阵的类型定位,可分为水平阵定位、垂直阵定位、三元阵定位、平面阵定位、立体阵定位等;同时还有一些应用广泛的定位方法,如波束形成、匹配场处理声源定位、水下GPS技术等。但总体上说,利用大型阵列以获得更好的定位效果是目前的主流发展思想,但由此带来的系统庞大,维护困难,算法复杂度高,定位精度的环境适应性差等是亟待解决的问题。
对水下目标进行匹配场被动定位是最为先进的水声定位方法,其通过对海洋声信道特性声场建立数学模型,将实际测量得到的声场与海洋声学模型建立的声场通过匹配场处理算法匹配进行,找出最大相关的点对应的水平距离和深度,即估计的真实声源的深度及水平距离。但该方法的缺点是对信道的建模方法复杂,对垂直阵列的数量需求较大,同时仅能获得深度和方位二维空间的扫描匹配结果,无法获得方位角信息。此外,长基线方法通过空间布放距离较远的大基阵,各个阵元的时延差进行定位解算,虽可以获得方位信息的估计结果,但无法获得深度信息,且在海洋多途信道条件下的时延估计误差较大,定位性能下降严重。水下三维矢量水听器可共点同步测量得到声场中的声压和质点振速信息,为声场信息的全面感知和获取创造了更有利的条件,且声压振速联合处理可将隐含在信号中的角度信息提取出来,但在自由场条件下的方位估计方法无法直接应用于水下多途环境。
基于以上分析可知,利用最小规模立体矢量阵,同时解决方位角、俯仰角、深度和水平距离的估计,是解决目前定位方法存在问题的一种有效方法。
发明内容
本发明的目的是一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,以解决现有的水下目标声源定位方法存在的问题。
一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,所述定位方法包括以下步骤:
步骤一、利用六元锥矢量阵接收水中目标发出的声信号,生成声压和振速数据;
步骤二、由六元锥矢量阵各阵元的x和y方向的平均复声强得到6×1维方位角矢量
步骤三、利用方位角矢量得到六元锥矢量阵合成水平振速Vi r(rs,t);
步骤四、由六元锥矢量阵各阵元的垂直z方向平均复声强与合成水平平均复声强获得6×1维俯仰角矢量
步骤五、对声压平均复声强进行高分辨谱估计获得调制频率并利用调制关系获得 6×1维声源深度矢量
步骤六、由平均俯仰角,确定声源距离该阵列的参考距离为rc
步骤七、在rc附近感兴趣的声源水平距离范围内进行扫描,利用已得到的俯仰角矢量、方位角矢量和深度矢量,对匹配声场进行降维,在一维空间不同扫描距离rj处生成联合导向矢量Dj
步骤八、在rj处利用联合导向矢量Dj,对声压协方差矩阵利用最小方差无畸变响应处理器获得稳健空间谱估计值P(rj);
步骤九、对全部扫描距离进行空间谱估计,由空间谱矢量PJ的最大值所在距离来确定声源距离。
进一步的,在步骤一中,具体的,海水深度为H,六元锥矢量阵中心阵元的布放深度为zr≈H,阵元间距为d,设置六元锥矢量阵中心阵元为参考阵元,忽略海水声速分层带来的声线弯曲,并由于矢量水听器布放于海底附近而忽略海底反射声的影响,在深度为zs(zr>>zs)的水下声源产生的水下声场是直达声和海表面反射声的干涉声场。
将声源位置表示为矢量rs=[rs,zsss],rs为声源与参考阵元之间的水平距离,zs为声源深度,θs为声源入射俯仰角,φs为声源入射方位角,六元锥矢量阵的坐标矢量为 xr=[0,0,0,d,-d,0],yr=[0,-d,d,0,0,0]和zr=[zr,zr,zr,zr,zr,zr-d],六元锥矢量阵第i(i=1,2,…,6)个阵元接收到声源发出声波的声压信号表示为:
其中正体j表示虚部。Pi1(rs,t)和Pi2(rs,t)分别表示声源到第i个阵元的直达声和海面反射声声压信号,水中声速为c时波数为k=ω/c,ω为角频率,ρ为海水密度,s(t)是声源时域信号,η是海面反射系数,对于平整海面有η≈-1,是直达声和海面反射声声程,即Rsi为声源到第i个阵元的直达声和海面反射声的平均声程,sinθsi=zr/Rsi,θsi为声源到第i个阵元的直达声和海面反射声的加权平均俯仰角,分别为声源到第i个阵元的直达声俯仰角和海面反射声俯仰角,有φsi为声源到第i个阵元的方位角,
第i个矢量水听器接收到的水平x方向和y方向,以及垂直z方向的质点振速信号分别表示为:
进一步的,在步骤二中,具体的,计算六元锥矢量阵第i个阵元x和y方向的平均复声强分别为:
其中,-表示取时间平均。
根据y方向和x方向的平均复声强的比值来确定水平方位角
则六元锥矢量阵的6×1维方位角矢量估计结果为:
其中*表示复共轭算子,T表示转置,tg-1表示反正切运算。
进一步的,在步骤三中,具体的,对于第i个阵元,由于则指向方向的合成水平振速Vi r(rs,t)表示为:
进一步的,在步骤四中,具体的,计算六元锥矢量阵第i个阵元,合成水平平均复声强和垂直平均复声强分别为:
根据的比值来确定俯仰角有:
则六元锥矢量阵的6×1维方位角矢量估计结果为:
进一步的,在步骤五中,具体的,利用式(1)式中的声压信号近似形式,可得到六元锥矢量阵第i个阵元的声压平均复声强为:
上式表明,每个阵元数据的声强谱具有与声源深度zs、波数k和俯仰角θsi有关的周期性调制项。通过对平均复声强的高分辨谱分析来估计,获得调制周期频率的估计结果,利用俯仰角的估计值,以及调制频率满足的关系,得到每个阵元估计的声源深度值如下:
则六元锥矢量阵的6×1维深度矢量估计结果为:
进一步的,在步骤六中,具体的,由计算均值得到平均俯仰角计算均值得到平均俯仰角zb,进一步得到声源距离该阵列的参考距离rc为:
进一步的,在步骤七中,具体的,由得到平均俯仰角得到声源距离该阵列的参考距离rc为:在rc附近声源可能出现的[rmin,rmax]范围内,设置合适的扫描步长,则共有J个扫描距离,在扫描距离rj(j=1,2,…,J)处,直达声和反射声声程矢量分别为:
在扫描距离rj处,根据直角坐标系下三角函数关系 分别为扫描点rj处的直达声俯仰角矢量和反射声俯仰角矢量,有:
6×2维的方位导向矩阵W表示为:
6×2维距离导向矩阵Aj表示为:
6×1维联合导向矢量Dj表示为:
其中sin-1表示反正弦运算,⊙表示矢量对应元素点乘运算。
对联合导向矢量Dj进行模矢量归一化后得到:
其中|| ||2表示模2运算。
进一步的,在步骤八中,具体的,由各个阵元声压数据构成6×L维六元阵声压矩阵Pp,L为信号快拍数。由三维振速数据构成6×L维六元阵联合振速矩阵Vc。第i个阵元对应的联合振速Vi c(rs,t)表示为:
由Rcov=(Pp+Vc)Vc H/L运算得到6×6维声压振速互协方差矩阵,其中H表示共轭转置运算符,利用最小方差无畸变响应处理器获得稳健空间谱估计值P(rj),
其中I6为对角线元素为1,其他元素均为0的6×6矩阵,ε为约束参数,一般根据噪声干扰水平选取。
进一步的,在步骤九中,具体的,对全部J个扫描距离进行如(25)式的估计,得到 J×1维空间谱矢量PJ,对PJ最大值取归一化,有:
PJ=PJ/max(PJ)  (26)
空间谱最大值所在距离确定为声源距离的估计结果。
本发明的主要优点是:
(1)利用六元阵各自解算信息的平均值对方位角、俯仰角和声源深度进行估算,保证了信息的冗余,减少了单独阵元定位误差偏离带来的影响。并为距离扫描建立联合导向矢量确定了高可靠度的先验信息。
(2)利用已获得的方位角、俯仰角和声源深度估计结果,对空间扫描进行降维处理,将一般的声场二维扫描,简化为水平距离一维扫描,大大减小了空间扫描的计算量。
(3)仅利用最小规模立体阵—六元锥矢量阵即可获得声源的方位角、俯仰角、深度以及水平距离的完备信息,克服了海洋信道建模、定位方法信息缺失等问题,是一种信息全面和快速的水下目标定位方法。
(4)该方法使用的阵型为最小规模立体阵,具有完美的对称结构,底端为一平面,在水下布放和安装较为容易,姿态的平稳性较高,实际应用十分方便。
附图说明
图1为六元锥矢量阵示意图;
图2为中心参考阵元接收干涉声线示意图;
图3为方位角、俯仰角及声源深度估计结果;
图4为水平距离扫描归一化空间谱曲线。
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提出了一种新的水中目标定位方法,该方法利用最小规模立体阵—六元锥矢量阵,既具有全空域定位能力,又具有优于线列阵和平面阵的定位精度,同时还保留立体阵的空域分维特性优势。本专利通过对与声场结构有关的声强信息解算,可逐步获得关于声源的方位角、俯仰角、深度有关的估计信息,并利用该估计信息对最终的空间扫描进行降维处理,简化为水平距离一维扫描,大大减小了空间扫描的计算量,该方法可获得关于声源的方位角、俯仰角、深度以及水平距离的完备信息,且使用阵型为最小规模立体阵,在水下布放和安装较为容易,具有很高的应用价值。
参照图1所示,一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,所述定位方法包括以下步骤:
步骤一、利用六元锥矢量阵接收水中目标发出的声信号,生成声压和振速数据;
步骤二、由六元锥矢量阵各阵元的x和y方向的平均复声强得到6×1维方位角矢量
步骤三、利用方位角矢量得到六元锥矢量阵合成水平振速Vi r(rs,t);
步骤四、由六元锥矢量阵各阵元的垂直z方向平均复声强与合成水平平均复声强获得6×1维俯仰角矢量
步骤五、对声压平均复声强进行高分辨谱估计获得调制频率并利用调制关系获得 6×1维声源深度矢量
步骤六、由平均俯仰角,确定声源距离该阵列的参考距离为rc
步骤七、在rc附近感兴趣的声源水平距离范围内进行扫描,利用已得到的俯仰角矢量、方位角矢量和深度矢量,对匹配声场进行降维,在一维空间不同扫描距离rj处生成联合导向矢量Dj
步骤八、在rj处利用联合导向矢量Dj,对声压协方差矩阵利用最小方差无畸变响应处理器获得稳健空间谱估计值P(rj);
步骤九、对全部扫描距离进行空间谱估计,由空间谱矢量PJ的最大值所在距离来确定声源距离。
进一步的,在步骤一中,具体的,海水深度为H,六元锥矢量阵中心阵元的布放深度为zr≈H,阵元间距为d,设置六元锥矢量阵中心阵元为参考阵元,忽略海水声速分层带来的声线弯曲,并由于矢量水听器布放于海底附近而忽略海底反射声的影响,在深度为zs(zr>>zs)的水下声源产生的水下声场是直达声和海表面反射声的干涉声场。
将声源位置表示为矢量rs=[rs,zsss],rs为声源与参考阵元之间的水平距离,zs为声源深度,θs为声源入射俯仰角,φs为声源入射方位角,六元锥矢量阵的坐标矢量为 xr=[0,0,0,d,-d,0],yr=[0,-d,d,0,0,0]和zr=[zr,zr,zr,zr,zr,zr-d],六元锥矢量阵第i(i=1, 2,…,6)个阵元接收到声源发出声波的声压信号表示为:
其中正体j表示虚部。Pi1(rs,t)和Pi2(rs,t)分别表示声源到第i个阵元的直达声和海面反射声声压信号,水中声速为c时波数为k=ω/c,ω为角频率,ρ为海水密度,s(t)是声源时域信号,η是海面反射系数,对于平整海面有η≈-1,是直达声和海面反射声声程,即Rsi为声源到第i个阵元的直达声和海面反射声的平均声程,sinθsi=zr/Rsi,θsi为声源到第i个阵元的直达声和海面反射声的加权平均俯仰角,分别为声源到第i个阵元的直达声俯仰角和海面反射声俯仰角,有φsi为声源到第i个阵元的方位角,
第i个矢量水听器接收到的水平x方向和y方向,以及垂直z方向的质点振速信号分别表示为:
进一步的,在步骤二中,具体的,计算六元锥矢量阵第i个阵元x和y方向的平均复声强分别为:
其中,-表示取时间平均。
根据y方向和x方向的平均复声强的比值来确定水平方位角
则六元锥矢量阵的6×1维方位角矢量估计结果为:
其中*表示复共轭算子,T表示转置,tg-1表示反正切运算。
进一步的,在步骤三中,具体的,对于第i个阵元,由于则指向方向的合成水平振速Vi r(rs,t)表示为:
进一步的,在步骤四中,具体的,计算六元锥矢量阵第i个阵元,合成水平平均复声强和垂直平均复声强分别为:
根据的比值来确定俯仰角有:
则六元锥矢量阵的6×1维方位角矢量估计结果为:
进一步的,在步骤五中,具体的,利用式(1)式中的声压信号近似形式,可得到六元锥矢量阵第i个阵元的声压平均复声强为:
上式表明,每个阵元数据的声强谱具有与声源深度zs、波数k和俯仰角θsi有关的周期性调制项。通过对平均复声强的高分辨谱分析来估计,获得调制周期频率的估计结果,利用俯仰角的估计值,以及调制频率满足的关系,得到每个阵元估计的声源深度值如下:
则六元锥矢量阵的6×1维深度矢量估计结果为:
进一步的,在步骤六中,具体的,由计算均值得到平均俯仰角计算均值得到平均俯仰角zb,进一步得到声源距离该阵列的参考距离rc为:
进一步的,在步骤七中,具体的,由得到平均俯仰角得到声源距离该阵列的参考距离rc为:在rc附近声源可能出现的[rmin,rmax]范围内,设置合适的扫描步长,则共有J个扫描距离,在扫描距离rj(j=1,2,…,J)处,直达声和反射声声程矢量分别为:
在扫描距离rj处,根据直角坐标系下三角函数关系 分别为扫描点rj处的直达声俯仰角矢量和反射声俯仰角矢量,有:
6×2维的方位导向矩阵W表示为:
6×2维距离导向矩阵Aj表示为:
6×1维联合导向矢量Dj表示为:
其中sin-1表示反正弦运算,⊙表示矢量对应元素点乘运算。(⊙这个符号有的word打开不显示)
对联合导向矢量Dj进行模矢量归一化后得到:
其中|| ||2表示模2运算。
进一步的,在步骤八中,具体的,由各个阵元声压数据构成6×L维六元阵声压矩阵Pp,L为信号快拍数。由三维振速数据构成6×L维六元阵联合振速矩阵Vc。第i个阵元对应的联合振速Vi c(rs,t)表示为:
由Rcov=(Pp+Vc)Vc H/L运算得到6×6维声压振速互协方差矩阵,其中H表示共轭转置运算符,利用最小方差无畸变响应处理器获得稳健空间谱估计值P(rj),
其中I6为对角线元素为1,其他元素均为0的6×6矩阵,ε为约束参数,一般根据噪声干扰水平选取。
进一步的,在步骤九中,具体的,对全部J个扫描距离进行如(25)式的估计,得到 J×1维空间谱矢量PJ,对PJ最大值取归一化,有:
PJ=PJ/max(PJ)  (26)
空间谱最大值所在距离确定为声源距离的估计结果。
下面提供本发明的一具体实施例:
实例参数设置如下:海水深度为1km,六元锥矢量阵布放于距离海底附近,阵元间距 10m。声源频率为200Hz,采样率为6.4kHz,水中声速1480m/s。声源位于水下深度5m处,与水听器的水平方位角为40度,水平距离为5km。在谱级信噪比为5dB条件下,利用本专利方法依次得到6个阵元的估计结果(如图3所示),并依据以上估计值在水平距离1km 到10km范围内,进行扫描,得到归一化空间谱(如图4所示)。得到的方位角估计结果平均值为38.4度,俯仰角估计结果平均值为9.3度,声源深度估计结果平均值为4.7m,在获得以上估计结果的基础上,进行空间降维距离扫描,距离扫描方位为1km~20km,最终由曲线最大值所在的位置确定声源水平距离估计结果为4.8km。以上估计结果综合了模型选取误差和噪声影响,在较小的系统规模下得到了较为可靠置信的定位结果。
根据图中的估计结果可知,该阵列可较高精度的获得对方位角、俯仰角、声源深度和声源水平距离的综合定位结果,保证了信息的完备性,并且阵列构成较为简单,将以往基于匹配场空间深度—距离的二维联合扫描,转化为在方位角-俯仰角-深度信息估计结果之后,对距离方向上的一维扫描,大大的简化了扫描维度和运算量。
本发明提出了一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,该方法利用最小规模立体阵—六元锥矢量阵,既具有全空域定位能力,又具有优于线列阵和平面阵的定位精度,同时还保留立体阵的空域分维特性优势,具有良好的对称性和平稳性。本专利通过对与声场结构有关的平均复声强信息解算,可逐步获得关于声源的方位角、俯仰角、深度有关的估计信息,并利用该估计信息对最终的空间扫描进行降维处理,将一般的声场二维扫描,简化为水平距离一维扫描,大大减小了空间扫描的计算量,提高了定位速度。该方法可获得关于声源的方位角、俯仰角、深度以及水平距离的完备信息,且使用阵型为最小规模立体阵,在水下布放和安装较为容易,具有很高的应用价值。

Claims (10)

1.一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,所述定位方法包括以下步骤:
步骤一、利用六元锥矢量阵接收水中目标发出的声信号,生成声压和振速数据;
步骤二、由六元锥矢量阵各阵元的x和y方向的平均复声强得到6×1维方位角矢量
步骤三、利用方位角矢量得到六元锥矢量阵合成水平振速
步骤四、由六元锥矢量阵各阵元的垂直z方向平均复声强与合成水平平均复声强获得6×1维俯仰角矢量
步骤五、对声压平均复声强进行高分辨谱估计获得调制频率并利用调制关系获得6×1维声源深度矢量
步骤六、由平均俯仰角,确定声源距离该阵列的参考距离为rc
步骤七、在rc附近感兴趣的声源水平距离范围内进行扫描,利用已得到的俯仰角矢量、方位角矢量和深度矢量,对匹配声场进行降维,在一维空间不同扫描距离rj处生成联合导向矢量Dj
步骤八、在rj处利用联合导向矢量Dj,对声压协方差矩阵利用最小方差无畸变响应处理器获得稳健空间谱估计值P(rj);
步骤九、对全部扫描距离进行空间谱估计,由空间谱矢量PJ的最大值所在距离来确定声源距离。
2.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤一中,具体的,海水深度为H,六元锥矢量阵中心阵元的布放深度为zr≈H,阵元间距为d,设置六元锥矢量阵中心阵元为参考阵元,忽略海水声速分层带来的声线弯曲,并由于矢量水听器布放于海底附近而忽略海底反射声的影响,在深度为zs(zr>>zs)的水下声源产生的水下声场是直达声和海表面反射声的干涉声场,
将声源位置表示为矢量rs=[rs,zsss],rs为声源与参考阵元之间的水平距离,zs为声源深度,θs为声源入射俯仰角,φs为声源入射方位角,六元锥矢量阵的坐标矢量为xr=[0,0,0,d,-d,0],yr=[0,-d,d,0,0,0]和zr=[zr,zr,zr,zr,zr,zr-d],六元锥矢量阵第i(i=1,2,…,6)个阵元接收到声源发出声波的声压信号表示为:
其中正体j表示虚部,Pi1(rs,t)和Pi2(rs,t)分别表示声源到第i个阵元的直达声和海面反射声声压信号,水中声速为c时波数为k=ω/c,ω为角频率,ρ为海水密度,s(t)是声源时域信号,η是海面反射系数,是直达声和海面反射声声程,即Rsi为声源到第i个阵元的直达声和海面反射声平均声程,sinθsi=zr/Rsi,θsi为声源到第i个阵元的直达声和海面反射声的加权平均俯仰角,分别为声源到第i个阵元的直达声俯仰角和海面反射声俯仰角,有φsi为声源到第i个阵元的方位角,
第i个矢量水听器接收到的水平x方向和y方向,以及垂直z方向的质点振速信号分别表示为:
3.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤二中,具体的,计算六元锥矢量阵第i个阵元x和y方向的平均复声强分别为:
其中,-表示取时间平均,
根据y方向和x方向的平均复声强的比值来确定水平方位角
则六元锥矢量阵的6×1维方位角矢量估计结果为:
其中*表示复共轭算子,T表示转置,tg-1表示反正切运算。
4.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤三中,具体的,对于第i个阵元,由于则指向方向的合成水平振速表示为:
5.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤四中,具体的,计算六元锥矢量阵第i个阵元,合成水平平均复声强和垂直平均复声强分别为:
根据的比值来确定俯仰角有:
则六元锥矢量阵的6×1维方位角矢量估计结果为:
6.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤五中,具体的,利用式(1)式中的声压信号近似形式,得到六元锥矢量阵第i个阵元的声压平均复声强为:
上式表明,每个阵元数据的声强谱具有与声源深度zs、波数k和俯仰角θsi有关的周期性调制项,通过对平均复声强的高分辨谱分析来估计,获得调制周期频率的估计结果,利用俯仰角的估计值,以及调制频率满足的关系,得到每个阵元估计的声源深度值如下:
则六元锥矢量阵的6×1维深度矢量估计结果为:
7.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤六中,具体的,由计算均值得到平均俯仰角计算均值得到平均俯仰角zb,进一步得到声源距离该阵列的参考距离rc为:
8.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤七中,具体的,在rc附近声源出现的[rmin,rmax]范围内,设置合适的扫描步长,则共有J个扫描距离,在扫描距离rj(j=1,2,…,J)处,直达声和反射声声程矢量分别为:
在扫描距离rj处,根据直角坐标系下三角函数关系 分别为扫描点rj处的直达声俯仰角矢量和反射声俯仰角矢量,有:
6×2维的方位导向矩阵W表示为:
6×2维距离导向矩阵Aj表示为:
6×1维联合导向矢量Dj表示为:
其中sin-1表示反正弦运算,⊙表示矢量对应元素点乘运算,
对联合导向矢量Dj进行模矢量归一化后得到:
其中|| ||2表示模2运算。
9.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤八中,具体的,由各个阵元声压数据构成6×L维六元阵声压矩阵Pp,L为信号快拍数,由三维振速数据构成6×L维六元阵联合振速矩阵Vc,第i个阵元对应的联合振速表示为:
运算得到6×6维声压振速互协方差矩阵,其中H表示共轭转置运算符,利用最小方差无畸变响应处理器获得稳健空间谱估计值P(rj),
其中I6为对角线元素为1,其他元素均为0的6×6矩阵,ε为约束参数,根据噪声干扰水平选取。
10.根据权利要求1所述的一种基于六元锥矢量阵的水声目标降维匹配声场定位方法,其特征在于,在步骤九中,具体的,对全部J个扫描距离进行如(25)式的估计,得到J×1维空间谱矢量PJ,对PJ最大值取归一化,有:
PJ=PJ/max(PJ)                         (26)
空间谱最大值所在距离确定为声源距离的估计结果。
CN202010896336.6A 2020-08-31 2020-08-31 一种基于六元锥矢量阵的水声目标降维匹配声场定位方法 Active CN112098938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010896336.6A CN112098938B (zh) 2020-08-31 2020-08-31 一种基于六元锥矢量阵的水声目标降维匹配声场定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010896336.6A CN112098938B (zh) 2020-08-31 2020-08-31 一种基于六元锥矢量阵的水声目标降维匹配声场定位方法

Publications (2)

Publication Number Publication Date
CN112098938A CN112098938A (zh) 2020-12-18
CN112098938B true CN112098938B (zh) 2023-04-18

Family

ID=73756870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010896336.6A Active CN112098938B (zh) 2020-08-31 2020-08-31 一种基于六元锥矢量阵的水声目标降维匹配声场定位方法

Country Status (1)

Country Link
CN (1) CN112098938B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299156B (zh) * 2023-05-26 2023-08-15 中国海洋大学 一种水听器垂直阵阵元位置估计方法及其优化策略
CN116593965B (zh) * 2023-07-19 2023-09-29 中国海洋大学 一种基于远场机会声源的水平阵阵型估计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308222A2 (en) * 1987-09-16 1989-03-22 Horizon Exploration Limited Point location determination at or close to the surface of the sea
JP2012150059A (ja) * 2011-01-20 2012-08-09 Chubu Electric Power Co Inc 音源推定方法及び音源推定装置
CN105005026A (zh) * 2015-06-08 2015-10-28 中国船舶重工集团公司第七二六研究所 一种近场目标声源三维被动定位方法
CN105842656A (zh) * 2016-05-31 2016-08-10 黑龙江工程学院 基于雅克比旋转联合对角化的空时频方位估计方法
CN107966677A (zh) * 2017-11-16 2018-04-27 黑龙江工程学院 一种基于空间稀疏约束的圆阵模态域方位估计方法
CN110068796A (zh) * 2019-03-31 2019-07-30 天津大学 一种用于声源定位的麦克风阵列方法
CN111077497A (zh) * 2019-12-30 2020-04-28 北京信息科技大学 一种用于声源定位的装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912178B2 (en) * 2002-04-15 2005-06-28 Polycom, Inc. System and method for computing a location of an acoustic source
US10012733B2 (en) * 2015-06-07 2018-07-03 Geoffrey Louis Barrows Localization method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308222A2 (en) * 1987-09-16 1989-03-22 Horizon Exploration Limited Point location determination at or close to the surface of the sea
JP2012150059A (ja) * 2011-01-20 2012-08-09 Chubu Electric Power Co Inc 音源推定方法及び音源推定装置
CN105005026A (zh) * 2015-06-08 2015-10-28 中国船舶重工集团公司第七二六研究所 一种近场目标声源三维被动定位方法
CN105842656A (zh) * 2016-05-31 2016-08-10 黑龙江工程学院 基于雅克比旋转联合对角化的空时频方位估计方法
CN107966677A (zh) * 2017-11-16 2018-04-27 黑龙江工程学院 一种基于空间稀疏约束的圆阵模态域方位估计方法
CN110068796A (zh) * 2019-03-31 2019-07-30 天津大学 一种用于声源定位的麦克风阵列方法
CN111077497A (zh) * 2019-12-30 2020-04-28 北京信息科技大学 一种用于声源定位的装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"一种空间锥形六元麦克风阵列及其定位精度";王学青 等;《解放军理工大学学报(自然科学版)》;第第6卷卷(第第4期期);全文 *
"基于虚拟阵列的压缩波束形成方位估计方法";宋海岩 等;《黑龙江工程学院学报》;第第32卷卷(第第2期期);全文 *

Also Published As

Publication number Publication date
CN112098938A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN108828522B (zh) 一种利用垂直阵lcmv波束形成的水下目标辐射噪声测量方法
Hamson The modelling of ambient noise due to shipping and wind sources in complex environments
CN112098938B (zh) 一种基于六元锥矢量阵的水声目标降维匹配声场定位方法
CN112269164A (zh) 深海可靠声路径下基于干涉结构匹配处理弱目标定位方法
CN103454616B (zh) 一种十字型振速梯度水听器的方位估计方法
Zhao et al. Open-lake experimental investigation of azimuth angle estimation using a single acoustic vector sensor
CN109725285B (zh) 一种基于mvdr协方差矩阵元素自适应相角转换的doa估计方法
CN108845325A (zh) 拖曳线列阵声纳子阵误差失配估计方法
CN114280541B (zh) 一种基于深海分布式垂直线列阵的目标被动定位方法
CN113011006B (zh) 一种基于互相关函数脉冲波形匹配的目标深度估计方法
CN112987004A (zh) 一种浅海环境下基于水平阵列的水面水下目标分类方法
CN112269163B (zh) 一种基于坐底单三维矢量水听器的水中声源方位深度协同跟踪方法
CN112285647B (zh) 一种基于稀疏表示与重构的信号方位高分辨估计方法
CN108845307A (zh) 一种基于傅里叶积分法的水下目标辐射噪声测量方法
CN109061654B (zh) 一种深海环境下单圆环阵主动三维定位方法
Lv et al. Analysis of wave fluctuation on underwater acoustic communication based USV
CN111679248B (zh) 一种基于海底水平l型阵列的目标方位和距离联合稀疏重构定位方法
CN103048641A (zh) 具有联合约束优化形式的矢量阵稳健聚焦处理方法
Wu et al. Passive source depth estimation using beam intensity striations of a horizontal linear array in deep water
CN111381212A (zh) 基于子阵划分的虚拟超短基线定位方法
CN114925496B (zh) 一种海洋环境噪声预报方法
CN115902849A (zh) 一种基于波束输出强度重采样的深海声源深度估计方法
CN113126029B (zh) 适用于深海可靠声路径环境的多传感器脉冲声源定位方法
CN113126030B (zh) 基于宽带声场干涉结构的深海直达声区目标深度估计方法
Gebbie et al. Optimal environmental estimation with ocean ambient noise

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant