CN112082094A - 基于异构传感器的管道异常信号定位检测方法及装置 - Google Patents

基于异构传感器的管道异常信号定位检测方法及装置 Download PDF

Info

Publication number
CN112082094A
CN112082094A CN202010806386.0A CN202010806386A CN112082094A CN 112082094 A CN112082094 A CN 112082094A CN 202010806386 A CN202010806386 A CN 202010806386A CN 112082094 A CN112082094 A CN 112082094A
Authority
CN
China
Prior art keywords
fusion
sound source
sensor
feature
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010806386.0A
Other languages
English (en)
Inventor
蔡绍滨
王宇昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Listening Intelligent Technology Co Ltd
Original Assignee
Suzhou Listening Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Listening Intelligent Technology Co Ltd filed Critical Suzhou Listening Intelligent Technology Co Ltd
Priority to CN202010806386.0A priority Critical patent/CN112082094A/zh
Publication of CN112082094A publication Critical patent/CN112082094A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明提供基于异构传感器的管道异常信号定位检测方法,获取通过异构传感器阵列采集的声振信号,并进行预处理;对预处理数据进行融合,得到融合声源的融合特征数据;获得融合声源的位置信息和融合声源的特征信息;获取理想环境下样本库中正常声源信号的理想特征数据;根据融合特征数据和理想特征数据获得相似度;根据相似度及融合声源的特征信息判断声振信号是否异常。本发明采用不同的异构传感器进行信号采集,通过融合算法对预处理后的数据进行融合,去除掉地面以外的声源信号,根据声源定位算法获得融合声源的坐标和声音强度,有利于后续故障排查;根据相似度及融合声源的声音强度判断信号是否异常,提高地埋管道异常检测和定位的准确性。

Description

基于异构传感器的管道异常信号定位检测方法及装置
技术领域
本发明涉及地埋管道的异常检测领域,具体涉及一种基于异构传感器的管道异常信号定位检测方法及装置。
背景技术
供水管道漏损检测根据原理不同,可大体归为两类:被动检测与主动检测。被动检测法是一种最直接、最原始的方法,一般是等到管道泄漏水体溢出地面后被人发现进而采取检修的方法,此方法只能修复明漏,而管道泄漏中更为普遍存在的暗漏则需要采取主动检测法检出以及维修。主动检测方法是针对不能被人直接发现的暗漏,利用不同原理的仪器及控制方法,进行人为漏点查找的方法,主要包括:音检漏法、相关分析检漏法、区域检漏法、示踪气体法、负压波法、探地雷达检漏法、瞬变流模型法。但是这些方法都具有自身固有的缺点和不足。
目前,我国各个城市的自来水公司普遍采用人工听音检漏法结合国外漏损监测设备进行城市供水管网的漏损控制。
当供水管道发生泄漏时,泄漏的高压水流摩擦管壁,并冲击周围的土壤介质,导致土壤与管道均产生不同程度的振动,并以声波的形式向四周扩散。同时,泄漏的产生导致泄漏点管内水压降低,产生气穴,并且水流状态发生改变,形成湍流。气穴的消失与流态的改变均会与管壁耦合产生振动。各种不同类型的振动源激励产生不同频率的声波沿管道以及土壤介质向远处传播,听音法检漏时可在管道裸露处直接拾取声音信号,也可在地面拾取声音信号。一般,声音信号沿土壤传播的距离比较有限,在漏点附近采用地面拾音也能比较准确的判断漏点的存在。
目前,人工听音检漏法主要采用手持听音设备进行地埋水管泄露监测。此类方法对操作环境要求较高,一般在夜晚环境噪声比较微弱的时候进行,另外听音法对操作工人的经验有很强的依赖性,并且长时间从事音听工作也会对人体健康造成损害。
发明内容
针对现有技术的不足之处,本发明的目的在于提供一种基于异构传感器的管道异常信号定位检测方法及装置。
本发明的技术方案概述如下:
一方面,本发明提供一种基于异构传感器的管道异常信号定位检测方法,其特征在于,包括:
获取通过异构传感器阵列采集的声振信号,并进行预处理,得到预处理数据;
基于云模型的融合算法对所述预处理数据进行融合,得到融合声源的融合特征数据;
基于声源定位算法获得融合声源的位置信息和融合声源的特征信息;所述融合声源的位置信息表征所述融合声源的位置;
获取理想环境下,样本库中正常声源信号的理想特征数据;根据所述融合特征数据和所述理想特征数据,获得相似度;
根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常。
进一步地,所述基于声源定位算法获得融合声源的位置信息和融合声源的特征信息,包括:
建立坐标系;以异构声振传感器阵列的中心为原点,建立直角坐标或球坐标;
根据信号衰减公式和距离公式联立方程计算出每一融合声源的位置信息和特征信息;其中,所述位置信息为坐标信息,所述特征信息为声音强度。
进一步地,根据所述融合特征数据和所述理想特征数据,获得相似度,包括:
根据所述融合特征数据和所述理想特征数据,基于距离数学模型得出特征距离;根据所述特征距离,获得相似度。
进一步地,所述根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常,包括:
当所述融合声源的特征信息满足预定条件时,判断所述相似度是否超过阈值;
当所述相似度小于阈值时,所述声振信号异常;
当所述相似度大于阈值时,所述声振信号正常。
进一步地,所述根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常,包括:
判断所述相似度是否超过阈值;
当所述相似度小于阈值时,所述声振信号异常;
当所述相似度大于阈值时,再判断所述融合声源的特征信息是否满足预定条件;
当所述融合声源的特征信息满足预定条件时,所述声振信号正常。
进一步地,所述异构传感器阵列包括至少四个异构声振传感器,所述至少四个异构声振传感器中包括至少一地面拾音传感器和辅助传感器,所述至少四个异构声振传感器为不同的传感器。
进一步地,所述基于云模型的融合算法对所述预处理数据进行融合,得到融合声源的融合特征数据,包括:
根据异构传感器阵列中的每一传感器Si的数据,得到每个传感器的特征数据;
通过集结算法将辅助传感器与地面拾音传感器的特征数据进行融合,得到融合特征数据。
进一步地,所述根据异构传感器阵列中的每一传感器Si的数据,得到每个传感器的特征数据,包括:
获取每一传感器Si采集到的N个采样信号的特征H(H1,H2,...,Hn);基于第一计算模型,得到每一传感器Si的特征数据;
其中每一传感器Si的特征数据包括特征云的期望、特征云的熵、特征云的超熵;
其中,所述第一计算模型为:
Figure BDA0002629275860000041
Figure BDA0002629275860000042
Figure BDA0002629275860000043
Figure BDA0002629275860000044
其中,Ex为特征云的期望,En为特征云的熵,He为特征云的超熵。
进一步地,所述每个传感器的特征数据包括每个传感器的特征云的期望、特征云的熵、特征云的超熵;
融合声源的融合特征数据包括融合特征云的期望、融合特征云的熵、融合特征云的超熵;
所述集结算法为:
Figure BDA0002629275860000045
Figure BDA0002629275860000046
Figure BDA0002629275860000047
其中,ωi为各辅助异构传感器与S1的信号敏感性比例系数;Ex1为所述地面拾音传感器的特征数据,Exi为第i辅助传感器的特征数据。
相应地,本发明还提供了一种基于异构传感器的地埋管道定位检测装置,包括:
预处理模块,用于获取通过异构传感器阵列采集的声振信号,并进行预处理,得到预处理数据;
数据融合模块,用于基于云模型的融合算法对所述预处理数据进行融合,得到融合声源的融合特征数据;
定位模块,用于基于声源定位算法获得融合声源的位置信息和融合声源的特征信息;所述融合声源的位置信息表征所述融合声源的位置;
获取模块,用于获取理想环境下,样本库中正常声源信号的理想特征数据;根据所述融合特征数据和所述理想特征数据,获得相似度;
判别模块,用于根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常。
相比现有技术,本发明的有益效果在于:
本发明提供的基于异构传感器的管道异常信号检测方法,采用多个构造不同、原理和敏感性的异构传感器进行信号采集,利用时频分析方法对环境原始信号进行预处理;通过融合算法对预处理后的数据进行融合,去除掉地面以外的声源信号,通过与正常信号的特征进行云模型匹配比对判别地下声源是否存在异常。
本发明根据声源定位算法计算出融合声源的位置和特征,获得了融合声源的坐标和声音强度,有利于后续的故障排查和维修活动的开展。
本发明提供的基于异构传感器的管道异常信号检测方法有效地避免空气传播的外部噪音干扰,且根据融合特征数据和理想特征数据之间相似度以及融合声源的声音强度来判断信号是否异常,提高基于声振信号的地埋管道异常信号检测和定位的准确性和易用性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的基于异构传感器的管道异常信号定位检测方法的流程示意图;
图2为本发明的基于异构传感器的管道异常信号定位检测方法的另一流程示意图;
图3为本发明的基于异构传感器的管道异常信号定位检测装置的方框示意图。
附图标记:10、预处理模块;20、预处理模块;30、定位模块;40、获取模块;50、判别模块。
具体实施方式
下面结合附图对本发明做进一步的详细说明,本发明的前述和其它目的、特征、方面和优点将变得更加明显,以令本领域技术人员参照说明书文字能够据以实施。在附图中,为清晰起见,可对形状和尺寸进行放大,并将在所有图中使用相同的附图标记来指示相同或相似的部件。在下列描述中,诸如中心、厚度、高度、长度、前部、背部、后部、左边、右边、顶部、底部、上部、下部等用词为基于附图所示的方位或位置关系。特别地,“高度”相当于从顶部到底部的尺寸,“宽度”相当于从左边到右边的尺寸,“深度”相当于从前到后的尺寸。这些相对术语是为了说明方便起见并且通常并不旨在需要具体取向。涉及附接、联接等的术语(例如,“连接”和“附接”)是指这些结构通过中间结构彼此直接或间接固定或附接的关系、以及可动或刚性附接或关系,除非以其他方式明确地说明。
接下来,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
在地埋管道状态监测中,由于管道铺设的历史因素和成本因素,无法在管道上放置应力波、负压波装置进行泄漏检测,因此,利用地面拾音方式对地埋管道的声振信号进行检测是一种常用测漏的手段。
传统的地面拾音手段,通过单个振动传感器沿着管线采集管道通过地面传递上来的一组振动信号,通过简单的信号时频处理手段进行处理,进而对比波形、频谱、能量等特性确定是否存在异常信号。虽然传统方法取得一定成效,但是由于外界信号的干扰,存在较大的误差,无法把异常目标的特征和位置确定下来,不利于后续的故障排查和维修活动的开展。
本发明针对外界信号的干扰大造成检测误差较大的问题,提出了一种基于异构传感器的地埋管道检测方法。
实施例1:
如图1-2所示,本发明的一种基于异构传感器的地埋管道定位检测方法,包括:
S10、获取通过异构传感器阵列采集的声振信号,并进行预处理,得到预处理数据。
步骤S10包括获取异构传感器阵列采集的声振信号,采用时频分析方法对原始的声振信号进行预处理,得到预处理数据;其中,时频分析方法包括傅里叶变换或小波包分解。
传统的振动信号分析和处理方法一般都是采用傅里叶变换,小波包分解是一种窗口面积固定但其形状可改变,即时间和频率窗都可改变的时频局部化分析方法,由于它在分解的过程中只对低频信号再分解,对高频信号不再实施分解,使得它的频率分辨率随频率升高而降低。
步骤S10中的异构传感器阵列包括至少四个异构声振传感器,至少四个异构声振传感器中包括至少一地面拾音传感器和辅助传感器,至少四个异构声振传感器为不同的传感器。异构传感器阵列的采集范围为半径为1-3米的球形区域。
此外,辅助传感器包括但不限于传声器、压电振动传感器。引入不同构造、不同原理、不同敏感性的传感器进行环境信号采集,由于不与地面接触,不会采集到地底传来的微弱信号,可以借助多源数据融合手段提取地底信号并定位。
S20、基于云模型的融合算法对预处理数据进行融合,得到融合声源的融合特征数据。融合算法包括云模型及集结算法。
步骤S20包括:
S21、根据异构传感器阵列中的每一传感器Si的数据,得到每个传感器的特征数据,并建立云模型。
其中,特征数据包括特征云的期望、特征云的熵、特征云的超熵;
步骤S21具体包括:
获取每一传感器Si采集到的N个采样信号的特征H(H1,H2,...,Hn);基于第一计算模型,得到每一传感器Si的特征数据;将每一传感器Si的数据转化为云模型。
其中,每一传感器Si的特征数据包括特征云的期望、特征云的熵、特征云的超熵。
第一计算模型为:
Figure BDA0002629275860000081
Figure BDA0002629275860000082
Figure BDA0002629275860000083
Figure BDA0002629275860000084
其中,Ex为特征云的期望,En为特征云的熵,He为特征云的超熵。通过将特征云的3个数字特征Ex、En、He输入正向云发生器实现从定性到定量的映射,产生云滴,绘制出云图即云模型。
S22、通过集结算法将辅助传感器与地面拾音传感器的特征数据进行融合,得到融合特征数据。
其中,设每一组异构传感器S中有m种异构传感器,S1为地面拾音的传感器,其余传感器为辅助传感器。
融合特征数据包括融合特征云的期望、融合特征云的熵、融合特征云的超熵;
步骤S22中的集结算法为:
Figure BDA0002629275860000085
Figure BDA0002629275860000086
Figure BDA0002629275860000087
其中,ωi为各辅助异构传感器与S1的信号敏感性比例系数;其中
Figure BDA0002629275860000091
Ex1为地面拾音传感器的特征数据,Exi为第i辅助传感器的的特征数据,即除地面拾音传感器的辅助传感器的特征数据。
S30、基于声源定位算法获得融合声源的位置信息和融合声源的特征信息。
其中,融合声源的位置信息表征融合声源的位置,特征信息表征融合声源的强度。
其中位置信息具体为融合声源的坐标,特征信息具体为该融合声源的声音强度。
声源定位算法包括信号衰减公式和距离公式的联立方程。
具体,S30包括:
S31、建立坐标系;以异构声振传感器阵列的中心为原点,建立直角坐标或球坐标。
存在n(n≥4)组异构传感器组成阵列,每一组异构传感器中有m种异构传感器,以异构传感器阵列建立坐标系,以中心为原点(0,0,0),异构传感器i的坐标为(xi、yi、zi)。
S32、数据定位,根据信号衰减公式和距离公式联立方程计算出每一个地下融合声源的位置信息和特征信息,即Fj(xfj,yfj,zfj,wfj),xfj,yfj,zfj为该融合声源的坐标,wfi表示该融合声源的声音强度。
信号衰减公式:
Figure BDA0002629275860000092
其中,Δw表示信号衰减量,ri表示传感器i和声源的距离。
距离公式:
Figure BDA0002629275860000093
其中,ri表示传感器i和声源的距离,xi,yi,zi为异构传感器i的坐标,xfj,yfj,zfj为声源的坐标。
求融合声源Fj(xfj,yfj,zfj,wfj)的联立方程如下;
Figure BDA0002629275860000101
通过上述步骤根据声源定位算法计算出融合声源的位置信息和特征信息,获得了融合声源的坐标和强度,有利于后续的故障排查和维修活动的开展。
S40、获取理想环境下,样本库中正常声源信号的理想特征数据;根据融合特征数据和理想特征数据,获得相似度。
具体地,步骤S40包括:
S41、获取理想环境下,正常声源信号的理想特征数据。
具体地,构建一理想环境,仅存在地下正常声源信号;在理想环境下,通过步骤S20基于云模型的多源融合算法对预处理数据进行融合,得到正常声源信号的理想特征数据Ex1、En1、He1)。
S42、根据融合特征数据和理想特征数据,获得相似度。
包括:S421、根据融合特征数据和理想特征数据,基于距离数学模型得出特征距离。
其中,距离数学模型为:
Figure BDA0002629275860000102
Ex1、En1、He1为理想特征数据,Ex2、En2、He2为待检测声源的融合特征数据。
S422、根据特征距离,获得相似度。
在有效论域表示U={Xmin,Xmax}下,相似度为:
Figure BDA0002629275860000103
sim值越大表示越相似。
S50、根据相似度及融合声源的特征信息判断声振信号是否异常。
具体地,步骤S50包括:当融合声源的特征信息满足预定条件时,判断相似度是否超过阈值;预定条件为声音强度阈值范围;即当融合声源的特征信息满足声音强度阈值范围时,判断相似度是否超过阈值;
当相似度小于阈值时,声振信号异常;
当相似度大于阈值时,声振信号正常。
即与理想特征数据相似度越高,则越正常,反之,则存在异常。
在其他实施例中,S50还包括:判断相似度是否超过阈值;
当相似度小于阈值时,声振信号异常;即当相似度小于阈值时,即可判断声振信号异常,无需继续判断融合声源的特征信息是否满足预定条件。
当相似度大于阈值时,再判断融合声源的特征信息是否满足预定条件;
当融合声源的特征信息满足预定条件时,声振信号正常。
预定条件为声音强度阈值范围;即当相似度大于阈值且融合声源的特征信息满足声音强度阈值范围时,说明声振信号正常。
实施例2:
本发明还提供了一种基于异构传感器的地埋管道定位检测装置,包括:
预处理模块10,用于获取通过异构传感器阵列采集的声振信号,并进行预处理,得到预处理数据。
具体用于获取异构传感器阵列采集的声振信号,采用时频分析方法对原始的声振信号进行预处理,得到预处理数据;其中,时频分析方法包括傅里叶变换或小波包分解。
异构传感器阵列包括至少四个异构声振传感器,至少四个异构声振传感器中包括至少一地面拾音传感器和辅助传感器,至少四个异构声振传感器为不同的传感器。异构传感器阵列的采集范围为半径为1-3米的球形区域。
此外,辅助传感器包括但不限于传声器、压电振动传感器。引入不同构造、不同原理、不同敏感性的传感器进行环境信号采集,由于不与地面接触,不会采集到地底传来的微弱信号,可以借助多源数据融合手段提取地底信号并定位。
数据融合模块20,用于基于云模型的融合算法对预处理数据进行融合,得到融合声源的融合特征数据。其中,融合算法包括云模型及集结算法。
具体用于:S21、根据异构传感器阵列中的每一传感器Si的数据,得到每个传感器的特征数据,并建立云模型。
其中,特征数据包括特征云的期望、特征云的熵、特征云的超熵;
步骤S21具体包括:
获取每一传感器Si采集到的N个采样信号的特征H(H1,H2,...,Hn);基于第一计算模型,得到每一传感器Si的特征数据;将每一传感器Si的数据转化为云模型。
其中,每一传感器Si的特征数据包括特征云的期望、特征云的熵、特征云的超熵。
第一计算模型为:
Figure BDA0002629275860000121
Figure BDA0002629275860000122
Figure BDA0002629275860000123
Figure BDA0002629275860000124
其中,Ex为特征云的期望,En为特征云的熵,He为特征云的超熵。通过将特征云的3个数字特征Ex、En、He输入正向云发生器实现从定性到定量的映射,产生云滴,绘制出云图即云模型。
S22、通过集结算法将辅助传感器与地面拾音传感器的特征数据进行融合,得到融合特征数据。
其中,设每一组异构传感器S中有m种异构传感器,S1为地面拾音的传感器,其余传感器为辅助传感器。
融合特征数据包括融合特征云的期望、融合特征云的熵、融合特征云的超熵;
步骤S22中的集结算法为:
Figure BDA0002629275860000125
Figure BDA0002629275860000131
Figure BDA0002629275860000132
其中,ωi为各辅助异构传感器与S1的信号敏感性比例系数;其中
Figure BDA0002629275860000133
Ex1为地面拾音传感器的特征数据,Exi为第i辅助传感器的的特征数据,即除地面拾音传感器的辅助传感器的特征数据。
定位模块30,用于基于声源定位算法获得融合声源的位置信息和融合声源的特征信息。
其中,融合声源的位置信息表征融合声源的位置,特征信息表征融合声源的强度。
其中位置信息具体为融合声源的坐标,特征信息具体为该融合声源的声音强度。
声源定位算法包括信号衰减公式和距离公式的联立方程。
具体,S30包括:
S31、建立坐标系;以异构声振传感器阵列的中心为原点,建立直角坐标或球坐标。
存在n(n≥4)组异构传感器组成阵列,每一组异构传感器中有m种异构传感器,以异构传感器阵列建立坐标系,以中心为原点(0,0,0),异构传感器i的坐标为(xi、yi、zi)。
S32、数据定位,根据信号衰减公式和距离公式联立方程计算出每一个地下融合声源的位置信息和特征信息,即Fj(xfj,yfj,zfj,wfj),xfj,yfj,zfj为该融合声源的坐标,wfi表示该融合声源的声音强度。
信号衰减公式:
Figure BDA0002629275860000134
其中,Δw表示信号衰减量,ri表示传感器i和声源的距离。
距离公式:
Figure BDA0002629275860000135
其中,ri表示传感器i和声源的距离,xi,yi,zi为异构传感器i的坐标,xfj,yfj,zfj为声源的坐标。
求融合声源Fj(xfj,yfj,zfj,wfj)的联立方程如下;
Figure BDA0002629275860000141
通过上述步骤根据声源定位算法计算出融合声源的位置信息和特征信息,获得了融合声源的坐标和强度,有利于后续的故障排查和维修活动的开展。
获取模块40,用于获取理想环境下,样本库中正常声源信号的理想特征数据;根据融合特征数据和理想特征数据,获得相似度。;
具体用于:S41获取理想环境下,正常声源信号的理想特征数据。
构建一理想环境,仅存在地下正常声源信号;在理想环境下,通过步骤S20基于云模型的多源融合算法对预处理数据进行融合,得到正常声源信号的理想特征数据Ex1、En1、He1
S42根据融合特征数据和理想特征数据,获得相似度。
包括:S421根据融合特征数据和理想特征数据,基于距离数学模型得出特征距离。
其中,距离数学模型为:
Figure BDA0002629275860000142
Ex1、En1、He1为理想特征数据,Ex2、En2、He2为待检测声源的融合特征数据。
S422、根据特征距离,获得相似度。
在有效论域表示U={Xmin,Xmax}下,相似度为:
Figure BDA0002629275860000143
sim值越大表示越相似。
判别模块50、用于执行S50根据相似度及融合声源的特征信息判断声振信号是否异常。
具体地,步骤S50包括当融合声源的特征信息满足预定条件时,判断相似度是否超过阈值;预定条件为声音强度阈值范围;即当融合声源的特征信息满足声音强度阈值范围时,判断相似度是否超过阈值;
当相似度小于阈值时,声振信号异常;
当相似度大于阈值时,声振信号正常。
即与理想特征数据相似度越高,则越正常,反之,则存在异常。
在其他实施例中,S50还包括:判断相似度是否超过阈值;
当相似度小于阈值时,声振信号异常;即当相似度小于阈值时,即可判断声振信号异常,无需继续判断融合声源的特征信息是否满足预定条件。
当相似度大于阈值时,再判断融合声源的特征信息是否满足预定条件;
当融合声源的特征信息满足预定条件时,声振信号正常。
预定条件为声音强度阈值范围;即当相似度大于阈值且融合声源的特征信息满足声音强度阈值范围时,说明声振信号正常。
本发明提供的基于异构传感器的管道异常信号检测方法,采用多个构造不同、原理和敏感性的异构传感器进行信号采集,利用时频分析方法对环境原始信号进行预处理;通过融合算法对预处理后的数据进行融合,去除掉地面以外的声源信号,通过与正常信号的特征进行云模型匹配比对判别地下声源是否存在异常。
本发明根据声源定位算法计算出融合声源的位置和特征,获得了融合声源的坐标和声音强度,有利于后续的故障排查和维修活动的开展。
本发明提供的基于异构传感器的管道异常信号检测方法有效地避免空气传播的外部噪音干扰,且根据融合特征数据和理想特征数据之间相似度以及融合声源的声音强度来判断信号是否异常,提高基于声振信号的地埋管道异常信号检测和定位的准确性和易用性。
此外,装置实施例中的装置与方法实施例基于同样地发明构思。
本发明实施例还提供了一种存储介质,存储介质包括存储器和处理器,存储器中存储有至少一条指令和至少一段程序,至少一条指令和至少一段程序由处理器加载并执行以实现如上述任一的基于异构传感器的管道异常信号定位检测方法。
需要说明的是:上述本发明实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置和电子设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述说明已经充分揭露了本发明的具体实施方式。需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (10)

1.一种基于异构传感器的管道异常信号定位检测方法,其特征在于,包括:
获取通过异构传感器阵列采集的声振信号,并进行预处理,得到预处理数据;
基于云模型的融合算法对所述预处理数据进行融合,得到融合声源的融合特征数据;
基于声源定位算法获得融合声源的位置信息和融合声源的特征信息;所述融合声源的位置信息表征所述融合声源的位置;
获取理想环境下,样本库中正常声源信号的理想特征数据;根据所述融合特征数据和所述理想特征数据,获得相似度;
根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常。
2.如权利要求1所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,所述基于声源定位算法获得融合声源的位置信息和融合声源的特征信息,包括:
建立坐标系;以异构声振传感器阵列的中心为原点,建立直角坐标或球坐标;
根据信号衰减公式和距离公式联立方程计算出每一融合声源的位置信息和特征信息;其中,所述位置信息为坐标信息,所述特征信息为声音强度。
3.如权利要求1所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,
根据所述融合特征数据和所述理想特征数据,获得相似度,包括:
根据所述融合特征数据和所述理想特征数据,基于距离数学模型得出特征距离;根据所述特征距离,获得相似度。
4.如权利要求1所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,所述根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常,包括:
当所述融合声源的特征信息满足预定条件时,判断所述相似度是否超过阈值;
当所述相似度小于阈值时,所述声振信号异常;
当所述相似度大于阈值时,所述声振信号正常。
5.如权利要求1所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,所述根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常,包括:
判断所述相似度是否超过阈值;
当所述相似度小于阈值时,所述声振信号异常;
当所述相似度大于阈值时,再判断所述融合声源的特征信息是否满足预定条件;
当所述融合声源的特征信息满足预定条件时,所述声振信号正常。
6.如权利要求1所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,所述异构传感器阵列包括至少四个异构声振传感器,所述至少四个异构声振传感器中包括至少一地面拾音传感器和辅助传感器,所述至少四个异构声振传感器为不同的传感器。
7.如权利要求6所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,所述基于云模型的融合算法对所述预处理数据进行融合,得到融合声源的融合特征数据,包括:
根据异构传感器阵列中的每一传感器Si的数据,得到每个传感器的特征数据;
通过集结算法将辅助传感器与地面拾音传感器的特征数据进行融合,得到融合特征数据。
8.如权利要求7所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,所述根据异构传感器阵列中的每一传感器Si的数据,得到每个传感器的特征数据,包括:
获取每一传感器Si采集到的N个采样信号的特征H(H1,H2,...,Hn);基于第一计算模型,得到每一传感器Si的特征数据;
其中每一传感器Si的特征数据包括特征云的期望、特征云的熵、特征云的超熵;
其中,所述第一计算模型为:
Figure FDA0002629275850000031
Figure FDA0002629275850000032
Figure FDA0002629275850000033
Figure FDA0002629275850000034
其中,Ex为特征云的期望,En为特征云的熵,He为特征云的超熵。
9.如权利要求7所述的基于异构传感器的管道异常信号定位检测方法,其特征在于,所述每个传感器的特征数据包括每个传感器的特征云的期望、特征云的熵、特征云的超熵;
融合声源的融合特征数据包括融合特征云的期望、融合特征云的熵、融合特征云的超熵;
所述集结算法为:
Figure FDA0002629275850000035
Figure FDA0002629275850000036
Figure FDA0002629275850000037
其中,ωi为各辅助异构传感器与S1的信号敏感性比例系数;Ex1为所述地面拾音传感器的特征数据,Exi为第i辅助传感器的特征数据。
10.一种基于异构传感器的管道异常信号定位检测装置,其特征在于,包括:
预处理模块,用于获取通过异构传感器阵列采集的声振信号,并进行预处理,得到预处理数据;
数据融合模块,用于基于云模型的融合算法对所述预处理数据进行融合,得到融合声源的融合特征数据;
定位模块,用于基于声源定位算法获得融合声源的位置信息和融合声源的特征信息;所述融合声源的位置信息表征所述融合声源的位置;
获取模块,用于获取理想环境下,样本库中正常声源信号的理想特征数据;根据所述融合特征数据和所述理想特征数据,获得相似度;
判别模块,用于根据所述相似度及所述融合声源的特征信息判断所述声振信号是否异常。
CN202010806386.0A 2020-08-12 2020-08-12 基于异构传感器的管道异常信号定位检测方法及装置 Pending CN112082094A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010806386.0A CN112082094A (zh) 2020-08-12 2020-08-12 基于异构传感器的管道异常信号定位检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010806386.0A CN112082094A (zh) 2020-08-12 2020-08-12 基于异构传感器的管道异常信号定位检测方法及装置

Publications (1)

Publication Number Publication Date
CN112082094A true CN112082094A (zh) 2020-12-15

Family

ID=73727871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010806386.0A Pending CN112082094A (zh) 2020-08-12 2020-08-12 基于异构传感器的管道异常信号定位检测方法及装置

Country Status (1)

Country Link
CN (1) CN112082094A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115615624A (zh) * 2022-12-13 2023-01-17 杭州兆华电子股份有限公司 一种基于无人巡检装置的设备泄漏检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136876A (en) * 1987-01-16 1992-08-11 The Dow Chemical Company Apparatus and process for determining fluid leak rates
US5172597A (en) * 1990-11-14 1992-12-22 General Electric Company Method and application for measuring sound power emitted by a source in a background of ambient noise
CN110319357A (zh) * 2018-03-30 2019-10-11 中国科学院声学研究所 一种采用声注入的气体管道泄漏检测定位系统及方法
CN111209434A (zh) * 2020-01-09 2020-05-29 国网江苏省电力有限公司徐州供电分公司 一种基于多源异构数据融合的变电站设备巡检系统及方法
CN111461090A (zh) * 2020-06-17 2020-07-28 杭州云智声智能科技有限公司 一种基于环境样本基云模型的声振信号处理方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136876A (en) * 1987-01-16 1992-08-11 The Dow Chemical Company Apparatus and process for determining fluid leak rates
US5172597A (en) * 1990-11-14 1992-12-22 General Electric Company Method and application for measuring sound power emitted by a source in a background of ambient noise
CN110319357A (zh) * 2018-03-30 2019-10-11 中国科学院声学研究所 一种采用声注入的气体管道泄漏检测定位系统及方法
CN111209434A (zh) * 2020-01-09 2020-05-29 国网江苏省电力有限公司徐州供电分公司 一种基于多源异构数据融合的变电站设备巡检系统及方法
CN111461090A (zh) * 2020-06-17 2020-07-28 杭州云智声智能科技有限公司 一种基于环境样本基云模型的声振信号处理方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王娇: "《基于多传感器信息融合的管道泄漏智能诊断与定位方法的研究》", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115615624A (zh) * 2022-12-13 2023-01-17 杭州兆华电子股份有限公司 一种基于无人巡检装置的设备泄漏检测方法及系统

Similar Documents

Publication Publication Date Title
CN110231409B (zh) 一种地下管道损伤的检测方法及系统
KR960000996B1 (ko) 매설관체의 이상위치 검출방법 및 장치
CN101832472B (zh) 利用次声波实现管道泄漏检测的系统
CN106704834A (zh) 一种次声波监测和定位管道泄漏的装置及方法
CN109781836A (zh) 光缆和电缆外皮故障与路由探测仪及其操作方法
KR102293302B1 (ko) 누수 감지 장치 및 시스템
CN104316277B (zh) 基于声检测与盲信号分离的气密性监测方法
US20190025159A1 (en) Vibration and noise mapping system and method
CN112161755B (zh) 地埋管道检测方法、装置、异构传感器阵列及存储介质
CN112082094A (zh) 基于异构传感器的管道异常信号定位检测方法及装置
KR102313851B1 (ko) 누수음 관리 운영 시스템
KR101896863B1 (ko) 설비 이상 감지 장치
CN103047542B (zh) 三点式地下管道漏水检测方法
CN103090194A (zh) 地下管道漏水检测方法
CN204944771U (zh) 泄漏检测仪
CN110132509A (zh) 一种埋地管道破损点定位系统和方法
CN114909610B (zh) 一种水下油气管道泄漏检测与定位的方法及控制系统
CN110987318A (zh) 一种高压管道气体泄露自动检测装置和检测方法
CN113109435B (zh) 一种管道损伤声子能量波诊断系统及定位方法
JPH11142280A (ja) 管路検査方法
CN115561310A (zh) 能够处理接地极缺陷回波信号中非随机相干噪声的方法
CN212989685U (zh) 一种偶极发射换能器测试装置
JP2005522702A (ja) パラメトリック変換を用いて物体の位置を特定するための方法および装置
CN109441823B (zh) 一种用于检测涡旋式空调压缩机微小泄漏的装置和方法
CN113311258A (zh) 一种半电波暗室装置及电磁兼容emc测试方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201215

RJ01 Rejection of invention patent application after publication