CN112079449A - 一种自适应的电磁信号阻垢器及方法 - Google Patents

一种自适应的电磁信号阻垢器及方法 Download PDF

Info

Publication number
CN112079449A
CN112079449A CN202010979001.0A CN202010979001A CN112079449A CN 112079449 A CN112079449 A CN 112079449A CN 202010979001 A CN202010979001 A CN 202010979001A CN 112079449 A CN112079449 A CN 112079449A
Authority
CN
China
Prior art keywords
frequency
electromagnetic signal
data
power
signal source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010979001.0A
Other languages
English (en)
Other versions
CN112079449B (zh
Inventor
蒋钊
皇甫江涛
陈红胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010979001.0A priority Critical patent/CN112079449B/zh
Publication of CN112079449A publication Critical patent/CN112079449A/zh
Application granted granted Critical
Publication of CN112079449B publication Critical patent/CN112079449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Abstract

本发明公开了一种自适应的电磁信号阻垢器及方法。阻垢器包括电磁信号源,数据匹配模块,水状态监测模块和换能器;电磁信号源分别与数据匹配模块、水状态监测模块相连,电磁信号源分别接收数据匹配模块反馈的激光图像数据和水状态监测模块发出的水状态数据,电磁信号源中预设有基于最小二乘模型和像素点匹配法的频率、功率更新方法,方法将根据接收到的激光图像数据和水状态数据给换能器自适应地发出信号,设置在管道内的换能器根据电磁信号源发出的信号产生电磁波作用于水中,从而阻止水垢生成,进而去除管道内的水垢。本发明方法和系统实现成本低,电路紧凑简洁,使用效果良好,可应用与多种场景的阻垢除垢。

Description

一种自适应的电磁信号阻垢器及方法
技术领域
本发明涉及一种电磁信号阻垢器,特别涉及了一种自适应的电磁信号阻垢器及方法。
背景技术
水垢的附着具有一定的危害,轻则会降低换热器的导热效率,影响生产,重则可能需要停产检修,甚至更换换热器,产生不必要的经济损失。因此除垢抑垢有着重要的意义。研究表明,溶解态的离子会被水分子包围形成“水牢”,在管道弯曲部分和分支处,水流状态变换,会消耗水的内在能量,使得水的压力和温度变化,导致“水牢”破裂,离子之间会易于发生反应,且在管道处寻找结晶点从而逐渐形成水垢。若不加干预,水垢结晶会不断生长,逐渐蔓延至管道中笔直的区域。由于产生水垢的化学反应是一个动态平衡,因此,可以利用电磁信号的手段改变动态平衡发生时物质的状态,控制水垢生成的时机和形态,达到阻垢抑垢的效果。
目前的除垢抑垢技术,已经出现了使用电磁波技术达到阻垢抑垢效果的设备,但是对于不同实验条件和应用场景多采用差异较大的电磁波频率,或者对于特定离子获取特定频率实施干预,因此在应用时具有一定的局限性。此外缺乏负载状态变化时的考虑,导致设备做的有效功难以定夺。如何自适应的采取合适的频率施加影响,让能量更有效率的对水垢平衡产生影响,这是一个亟待解决的突破点。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于提供一种自适应的频率和功率选择方案,在现有的电磁水处理技术的基础加入了根据水体状况自适应改变信号频率和功率的功能,并且设计了一种自适应的电磁信号阻垢器,提出了一套完整的阻垢抑垢方案,以达到对特定环境水质加速阻垢除垢过程,实现自动最优的阻垢除垢功能。
为实现上述发明目的,本发明采取的技术方案是:
一、一种自适应的电磁信号阻垢器
电磁信号阻垢器包括电磁信号源,数据匹配模块,水状态监测模块和换能器;电磁信号源分别与数据匹配模块、水状态监测模块相连,电磁信号源分别接收数据匹配模块反馈的激光图像数据和水状态监测模块发出的水状态数据,电磁信号源根据接收到的激光图像数据和水状态数据给换能器自适应地发出信号,设置在管道内不同位置的换能器根据电磁信号源发出的信号产生电磁波作用于水中,从而阻止水垢生成,进而去除管道内的水垢。
电磁信号源内部包含单片机和放大电路;单片机处理数据匹配模块和水状态检测模块测得的数据并加以利用,以及产生或更新所需要的信号,实现对于负载不同状态产生自适应的频率和功率;放大电路处理单片机生成的信号并将信号传输至换能器;所述负载是指换能器和管道构成的整体相对于电磁信号源构成了负载。
所述数据匹配模块包括激光源和光接收机;激光源接收电磁信号源的控制信号后发射激光,产生图像,光接收机记录激光图像并把激光图像反馈给电磁信号源,激光源的光源部分和光接收机的接收探头均位于管道内的水中。
所述水状态监测模块包括硬度电极、温度电极和水流速电极;水状态监测模块通过硬度电极、温度电极和水流速电极各自实时测量管道内水体的硬度、温度和流速参数发送给电磁信号源。
所述换能器使用利兹线线圈缠绕在管道上,或者使用利兹线线圈缠绕在铁氧体上再由铁氧体拼接成多边形环的铁氧体组缠绕在管道上,铁氧体采用两端为圆弧状的长方柱体,铁氧体之间使用塑料螺丝固定。
可在同一管道的不同位置安置多个阻垢器,各个阻垢器独立运行。
二、应用于电磁信号阻垢器的基于最小二乘模型和像素点匹配法的频率、功率更新方法
方法包括以下步骤:
步骤1)电磁信号源以20W的初始功率产生10Hz-1MHz的扫频波,换能器接收扫频波产生扫频频率的电磁波作用于管道内的水体中;
上述扫频波以一定频率间隔平滑递增,同时每个频率保持一段时间,确保后续步骤中的数据匹配成功。
在电磁波的每个频率下,数据匹配模块检测激光图像,对激光图像分析处理得到有效频率,并通过水状态监测模块检测得到有效频率下的水体的硬度、温度以及流速和有效频率一起进行记录作为一组数据,进一步在有效频率下,进行功率变化处理获得有效频率对应的有效功率;
所述步骤1)中,在每个扫频的频率下,使用数据匹配模块中的光接收机接收激光源产生的激光图像,采用像素点匹配算法比对电磁信号源作用前的激光图像和作用后的激光图像获得图像变化率作为水体浊度,当水体浊度高于预设浊度阈值时,记录此时扫频的频率、水体硬度、水体温度以及水体的流速构成一组数据,然后在此扫频的频率下,将功率从5W至30W进行变化;
若变化后的水体浊度变大,则记录当前功率作为有效功率;且若随着功率增大,变化后的水体浊度也继续变大,则记录变化后使得水体浊度最大功率作为有效功率;若变化后的水体浊度不变大,则保持功率为初始功率,并以初始功率为有效功率。
步骤2)利用步骤1)中测得的频率、硬度、温度和流速参数采用最小二乘法,根据残量函数、目标函数的梯度和海森矩阵信息,构建信任域牛顿法对参数进行数据回归,得到频率关于硬度、温度和流速的关系模型,并建立功率与频率的对应关系。
所述步骤2)具体为:
对由步骤1)得到的频率F、硬度h、流速v、温度t,建立如下关系模型:
Figure BDA0002686881590000031
Figure BDA0002686881590000032
Figure BDA0002686881590000033
Figure BDA0002686881590000034
Figure BDA0002686881590000035
其中,x为待定参数向量,x=(x1,x2,...,xn),x∈Rn,x1,x2,...,xn分别表示第1个~第n个待定参数,n为待定参数的总数,h、v、t分别为硬度、流速和温度,
Figure BDA0002686881590000036
表示频率F中关于硬度h的分量,
Figure BDA0002686881590000037
表示频率F中关于流速v的分量,
Figure BDA0002686881590000038
表示频率F中关于温度t的分量,
Figure BDA0002686881590000039
表示常数分量;
对于每一组数据,进一步计算关系模型的残量函数如下:
Figure BDA00026868815900000310
其中,j为数据的组序数,rj(x)为第j组数据的残量,
Figure BDA00026868815900000311
为频率F中关于第j组数据中的硬度h的分量,
Figure BDA00026868815900000312
为频率F中关于第j组数据中的流速v的分量,
Figure BDA00026868815900000313
为频率F中关于第j组数据中的温度t的分量,Fj为第j组的频率F;
然后处理获得残量向量r(x)=(r1(x),r2(x),...,rm(x)),其中,m为数据组的总数,根据向量函数r(x)建立无约束优化问题的目标函数表示如下:
Figure BDA00026868815900000314
再由目标函数f(x)计算得到向量函数r(x)的Jacobi矩阵如下:
Figure BDA0002686881590000041
其中,rj(x)为第j组数据的残量,
Figure BDA0002686881590000042
是rj(x)的梯度,i表示待定参数的序数,由最小二乘算法得到目标函数f(x)的梯度和海森矩阵:
Figure BDA0002686881590000043
Figure BDA0002686881590000044
其中,
Figure BDA0002686881590000045
为目标函数f(x)的梯度,
Figure BDA0002686881590000046
为目标函数f(x)的海森矩阵,T为矩阵转置;
根据残量函数rj(x)、目标函数f(x)的梯度和海森矩阵,采用信任域牛顿法对待定参数向量x进行数据回归,回归迭代得到上述待定参数向量x,从而得到频率F关于硬度h、流速v和温度t的各个拟合函数以及各个拟合函数构成的关系模型,对于待测情况的硬度h、流速v和温度t输入到关系模型获得对应的频率F,从而实现不同情况下的自适应频率更新;
由步骤1)所得的功率P与频率F对应的数组,建立功率与频率的对应关系,随着频率的变更,采取分段匹配的方式自适应更新功率。
步骤3)利用步骤2)得到的关系模型和对应关系以及水状态监测模块的数据,更新电磁信号源的信号频率和功率。
所述步骤3)具体为:
利用水体检测模块读取当前水体状态,利用步骤2)得到的关系模型得到初始频率用以设定电磁信号源的初始频率,电磁信号源每小时读取一次水状态监测模块的数据,采用步骤2)得到的关系模型和对应关系更新电磁信号源的频率和功率。
本发明具有的有益效果是:
本发明提供了基于最小二乘模型和像素点匹配算法的自适应电磁信号阻垢抑垢装置,该装置易于安装操作简便,能根据管道水体状态自动更新作用的信号频率和功率,对于不同场景具有较好的针对性,均能达到较好的处理效果,完成数据采集匹配后可广泛应用于多种场景。
附图说明
图1是电磁信号源示意图。
图2是数据匹配模块工作的示意图。
图3是水状态监测模块示意图。
图4是换能器装置位于水管上的状态示意图。
图5是多个阻垢器共同工作的布局实例示意图。
图中:1电磁信号源,1.1数据匹配模式按键,1.2除垢抑垢模式按键,1.3激光源连线,1.4光接收机连线,1.5硬度电极连线,1.6温度电极连线,1.7水流速电极连线,1.8电磁信号输出线,2数据匹配模块,2.1激光源,2.2光接收机,3水状态监测模块,3.1硬度电极,3.2温度电极,3.3水流速电极,4换能器,4.1利兹线线圈,4.2铁氧体组,5.1铁氧体组1号,5.2铁氧体组2号,5.3铁氧体组3号。
具体实施方式
下面将结合附图和实施例对本发明作进一步描述和说明。
单个阻垢器包括电磁信号源1,数据匹配模块2,水状态监测模块3和换能器4;电磁信号源1分别与数据匹配模块2、水状态监测模块3相连,电磁信号源1分别接收数据匹配模块2反馈的激光图像数据和水状态监测模块3发出的水状态数据,电磁信号源1根据接收到的激光图像数据和水状态数据给换能器4自适应地发出信号,设置在管道内不同位置的换能器4根据电磁信号源1发出的信号产生电磁波作用于水中,从而阻止水垢生成,进而去除管道内的水垢。
如图1所示,电磁信号源1内部包含单片机和放大电路;单片机处理数据匹配模块和水状态检测模块测得的数据并加以利用,以及产生或更新所需要的信号,实现对于负载不同状态产生自适应的频率和功率;放大电路处理单片机生成的信号并将信号传输至换能器4;负载是指换能器和管道构成的整体相对于电磁信号源1构成了负载。对于电磁信号源生成的波形建议为方波和脉冲波。
如图2所示,数据匹配模块2包括激光源2.1和光接收机2.2;激光源2.1接收电磁信号源1的控制信号后发射激光,产生图像,光接收机2.2记录激光图像并把激光图像反馈给电磁信号源1,激光源2.1的光源部分和光接收机2.2的接收探头均位于管道内的水中。
如图3所示,水状态监测模块3包括硬度电极3.1、温度电极3.2和水流速电极3.3;水状态监测模块3通过硬度电极3.1、温度电极3.2和水流速电极3.3各自实时测量管道内水体的硬度、温度和流速参数发送给电磁信号源1。
如图4所示,换能器4使用220股的利兹线以若干圈单层方式组成的利兹线线圈4.1缠绕在管道上,或者使用利兹线线圈4.1缠绕在铁氧体上再由铁氧体拼接成多边形环的铁氧体组4.2缠绕在管道上,铁氧体采用两端为圆弧状的长方柱体,铁氧体之间使用塑料螺丝固定。
在使用过程中,可以根据实际需要,如图5所示,可在同一管道的不同位置安置多个阻垢器,分别为铁氧体组1号5.1、铁氧体组2号5.2和铁氧体组3号5.3,各个阻垢器独立运行,强化整体效果。
实施例
本实施例介绍了多个阻垢器一起使用的情况,系统在工作时,如图5所示,安装3个独立阻垢器的换能器4位于管道的弯曲处以及两个直道上,将三组水状态监测模块3以及数据匹配模块2置入管道对应位置,将电磁信号源1的下侧接口依次接至水状态监测模块3的三个电极以及换能器4上,电磁信号源的右侧接口接至数据匹配模块2的激光源2.1和光接收机2.2上。
下面介绍电磁信号阻垢器的基于最小二乘模型和像素点匹配法的频率、功率更新方法。
对于三个独立的阻垢器,各自从水中离子成垢的化学平衡出发,筛选影响化学平衡的作用频率;包括以下步骤:
步骤1)电磁信号源1以20W的初始功率产生10Hz-1MHz的扫频波,换能器4接收扫频波产生扫频频率的电磁波作用于管道内的水体中;
上述扫频波以一定频率间隔平滑递增,同时每个频率保持一段时间,确保后续步骤中的数据匹配成功。
在每个扫频的频率下,使用数据匹配模块2中的光接收机2.2接收激光源2.1产生的激光图像,采用像素点匹配算法比对电磁信号源1作用前的激光图像和作用后的激光图像获得图像变化率作为水体浊度,
在电磁信号源1产生扫频波前记录为作用前的激光图像,用于与作用后的激光图像进行比对,激光图像传输至电磁信号源1的数据格式为仅包含元素0和1的矩阵形式,将作用前的激光图像的初始图像矩阵记为矩阵P1,作用后的激光图像的任一图像矩阵记为Pk用于与初始图像矩阵P1比对计算图像变化率作为水体浊度。
水体浊度如下:
Figure BDA0002686881590000061
其中,a表示图像矩阵的总行数,b表示矩阵的总列数,i表示矩阵的行数,j表示矩阵的列数。
当水体浊度高于预设浊度阈值时,记录此时扫频的频率、水体硬度、水体温度以及水体的流速构成一组数据,然后在此扫频的频率下,将功率从5W至30W进行变化;
若变化后的水体浊度变大,则记录当前功率作为有效功率;且若随着功率增大,变化后的水体浊度也继续变大,则记录变化后使得水体浊度最大功率作为有效功率;若变化后的水体浊度不变大,则保持功率为初始功率,并以初始功率为有效功率。
步骤2)利用步骤1)中测得的频率、硬度、温度和流速参数采用最小二乘法,根据残量函数、目标函数的梯度和海森矩阵信息,构建信任域牛顿法对参数进行数据回归,得到频率关于硬度、温度和流速的关系模型,并建立功率与频率的对应关系。
对由步骤1)得到的频率F、硬度h、流速v、温度t,建立如下关系模型:
Figure BDA0002686881590000071
Figure BDA0002686881590000072
Figure BDA0002686881590000073
Figure BDA0002686881590000074
Figure BDA0002686881590000075
其中,x为待定参数向量,x=(x1,x2,...,xn),x∈Rn,x1,x2,...,xn分别表示第1个~第n个待定参数,n为待定参数的总数,此模型中n=10,h、v、t分别为硬度、流速和温度,
Figure BDA0002686881590000076
表示频率F中关于硬度h的分量,
Figure BDA0002686881590000077
表示频率F中关于流速v的分量,
Figure BDA0002686881590000078
表示频率F中关于温度t的分量,
Figure BDA0002686881590000079
表示常数分量;
对于每一组数据,进一步计算关系模型的残量函数如下:
Figure BDA00026868815900000710
其中,j为数据的组序数,rj(x)为第j组数据的残量,
Figure BDA00026868815900000711
为频率F中关于第j组数据中的硬度h的分量,
Figure BDA00026868815900000712
为频率F中关于第j组数据中的流速v的分量,
Figure BDA00026868815900000713
为频率F中关于第j组数据中的温度t的分量,Fj为第j组的频率F;
然后处理获得残量向量r(x)=(r1(x),r2(x),...,rm(x)),看做一个Rn→Rm的映射,其中,m为数据组的总数,根据向量函数r(x)建立无约束优化问题的目标函数表示如下:
Figure BDA00026868815900000714
再由目标函数f(x)计算得到向量函数r(x)的Jacobi矩阵如下:
Figure BDA0002686881590000081
其中,rj(x)为第j组数据的残量,
Figure BDA0002686881590000082
是rj(x)的梯度,i表示待定参数的序数,由最小二乘算法得到目标函数f(x)的梯度和海森矩阵:
Figure BDA0002686881590000083
Figure BDA0002686881590000084
其中,
Figure BDA0002686881590000085
为目标函数f(x)的梯度,
Figure BDA0002686881590000086
为目标函数f(x)的海森矩阵,T为矩阵转置;
根据残量函数rj(x)、目标函数f(x)的梯度和海森矩阵,采用信任域牛顿法对待定参数向量x进行数据回归,回归迭代得到上述待定参数向量x,从而得到频率F关于硬度h、流速v和温度t的各个拟合函数以及各个拟合函数构成的关系模型,对于待测情况的硬度h、流速v和温度t输入到关系模型获得对应的频率F,从而实现不同情况下的自适应频率更新;
对于功率的选择,由步骤1)所得的功率P与频率F对应的数组,建立功率与频率的对应关系,随着频率的变更,采取分段匹配的方式自适应更新功率。
步骤3)利用步骤2)得到的关系模型和对应关系以及水状态监测模块3的数据,更新电磁信号源1的信号频率和功率。
利用水体检测模块3读取当前水体状态,利用步骤2)得到的关系模型得到初始频率用以设定电磁信号源1的初始频率,电磁信号源1每小时读取一次水状态监测模块3的数据,采用步骤2)得到的关系模型和对应关系更新电磁信号源1的频率和功率。
在三组阻垢器均独立完成上述步骤后,系统可稳定运行,根据负载变化自适应更新激励信号的频率和功率,激发特定环境管道中流动水体内的高频电磁能量自适应变化来实现自动最优的阻垢除垢效果。
本发明的技术方案不限于上述实例的限制,凡是根据本发明的阻垢方案做出的用于管道阻垢除垢系统,均在本发明的保护范围之内。

Claims (10)

1.一种自适应的电磁信号阻垢器,其特征在于:包括电磁信号源(1),数据匹配模块(2),水状态监测模块(3)和换能器(4);电磁信号源(1)分别与数据匹配模块(2)、水状态监测模块(3)相连,电磁信号源(1)分别接收数据匹配模块(2)反馈的激光图像数据和水状态监测模块(3)发出的水状态数据,电磁信号源(1)根据接收到的激光图像数据和水状态数据给换能器(4)自适应地发出信号,设置在管道内不同位置的换能器(4)根据电磁信号源(1)发出的信号产生电磁波作用于水中,从而阻止水垢生成,进而去除管道内的水垢。
2.根据权利要求1所述的一种自适应的电磁信号阻垢器,其特征在于:电磁信号源(1)内部包含单片机和放大电路;单片机处理数据匹配模块和水状态检测模块测得的数据并加以利用,以及产生或更新所需要的信号,实现对于负载不同状态产生自适应的频率和功率;放大电路处理单片机生成的信号并将信号传输至换能器(4);所述负载是指换能器和管道构成的整体相对于电磁信号源(1)构成了负载。
3.根据权利要求1所述的一种自适应的电磁信号阻垢器,其特征在于:所述数据匹配模块(2)包括激光源(2.1)和光接收机(2.2);激光源(2.1)接收电磁信号源(1)的控制信号后发射激光,产生图像,光接收机(2.2)记录激光图像并把激光图像反馈给电磁信号源(1),激光源(2.1)的光源部分和光接收机(2.2)的接收探头均位于管道内的水中。
4.根据权利要求1所述的一种自适应的电磁信号阻垢器,其特征在于:所述水状态监测模块(3)包括硬度电极(3.1)、温度电极(3.2)和水流速电极(3.3);水状态监测模块(3)通过硬度电极(3.1)、温度电极(3.2)和水流速电极(3.3)各自实时测量管道内水体的硬度、温度和流速参数发送给电磁信号源(1)。
5.根据权利要求1所述的一种自适应的电磁信号阻垢器,其特征在于:所述换能器(4)使用利兹线线圈(4.1)缠绕在管道上,或者使用利兹线线圈(4.1)缠绕在铁氧体上再由铁氧体拼接成多边形环的铁氧体组(4.2)缠绕在管道上,铁氧体采用两端为圆弧状的长方柱体,铁氧体之间使用塑料螺丝固定。
6.根据权利要求1所述的一种自适应的电磁信号阻垢器,其特征在于:可在同一管道的不同位置安置多个阻垢器,各个阻垢器独立运行。
7.应用于权利要求1-6任一所述的电磁信号阻垢器的基于最小二乘模型和像素点匹配法的频率、功率更新方法,其特征在于:包括以下步骤:
步骤1)电磁信号源(1)以20W的初始功率产生10Hz-1MHz的扫频波,换能器(4)接收扫频波产生扫频频率的电磁波作用于管道内的水体中;
上述扫频波以一定频率间隔平滑递增,同时每个频率保持一段时间,确保后续步骤中的数据匹配成功。
在电磁波的每个频率下,数据匹配模块(2)检测激光图像,对激光图像分析处理得到有效频率,并通过水状态监测模块(3)检测得到有效频率下的水体的硬度、温度以及流速和有效频率一起进行记录作为一组数据,进一步在有效频率下,进行功率变化处理获得有效频率对应的有效功率;
步骤2)利用步骤1)中测得的频率、硬度、温度和流速参数采用最小二乘法,根据残量函数、目标函数的梯度和海森矩阵信息,构建信任域牛顿法对参数进行数据回归,得到频率关于硬度、温度和流速的关系模型,并建立功率与频率的对应关系。
步骤3)利用步骤2)得到的关系模型和对应关系以及水状态监测模块(3)的数据,更新电磁信号源(1)的信号频率和功率。
8.根据权利要求7所述的基于最小二乘模型和像素点匹配法的频率、功率更新方法,其特征在于:
所述步骤1)中,在每个扫频的频率下,使用数据匹配模块(2)中的光接收机(2.2)接收激光源(2.1)产生的激光图像,采用像素点匹配算法比对电磁信号源(1)作用前的激光图像和作用后的激光图像获得图像变化率作为水体浊度,当水体浊度高于预设浊度阈值时,记录此时扫频的频率、水体硬度、水体温度以及水体的流速构成一组数据,然后在此扫频的频率下,将功率从5W至30W进行变化;
若变化后的水体浊度变大,则记录当前功率作为有效功率;且若随着功率增大,变化后的水体浊度也继续变大,则记录变化后使得水体浊度最大功率作为有效功率;若变化后的水体浊度不变大,则保持功率为初始功率,并以初始功率为有效功率。
9.根据权利要求7所述的基于最小二乘模型和像素点匹配法的频率、功率更新方法,其特征在于:所述步骤2)具体为:
对由步骤1)得到的频率F、硬度h、流速v、温度t,建立如下关系模型:
Figure FDA0002686881580000021
Figure FDA0002686881580000022
Figure FDA0002686881580000023
Figure FDA0002686881580000031
Figure FDA0002686881580000032
其中,x为待定参数向量,x=(x1,x2,...,xn),x∈Rn,x1,x2,...,xn分别表示第1个~第n个待定参数,n为待定参数的总数,h、v、t分别为硬度、流速和温度,
Figure FDA0002686881580000033
表示频率F中关于硬度h的分量,
Figure FDA0002686881580000034
表示频率F中关于流速v的分量,
Figure FDA0002686881580000035
表示频率F中关于温度t的分量,
Figure FDA0002686881580000036
表示常数分量;
对于每一组数据,进一步计算关系模型的残量函数如下:
Figure FDA0002686881580000037
其中,j为数据的组序数,rj(x)为第j组数据的残量,
Figure FDA0002686881580000038
为频率F中关于第j组数据中的硬度h的分量,
Figure FDA0002686881580000039
为频率F中关于第j组数据中的流速v的分量,
Figure FDA00026868815800000310
为频率F中关于第j组数据中的温度t的分量,Fj为第j组的频率F;
然后处理获得残量向量r(x)=(r1(x),r2(x),...,rm(x)),其中,m为数据组的总数,根据向量函数r(x)建立无约束优化问题的目标函数表示如下:
Figure FDA00026868815800000311
再由目标函数f(x)计算得到向量函数r(x)的Jacobi矩阵如下:
Figure FDA00026868815800000312
其中,rj(x)为第j组数据的残量,
Figure FDA00026868815800000313
是rj(x)的梯度,i表示待定参数的序数,由最小二乘算法得到目标函数f(x)的梯度和海森矩阵:
Figure FDA00026868815800000314
Figure FDA00026868815800000315
其中,
Figure FDA00026868815800000316
为目标函数f(x)的梯度,
Figure FDA00026868815800000317
为目标函数f(x)的海森矩阵,T为矩阵转置;
根据残量函数rj(x)、目标函数f(x)的梯度和海森矩阵,采用信任域牛顿法对待定参数向量x进行数据回归,回归迭代得到上述待定参数向量x,从而得到频率F关于硬度h、流速v和温度t的各个拟合函数以及各个拟合函数构成的关系模型,对于待测情况的硬度h、流速v和温度t输入到关系模型获得对应的频率F,从而实现不同情况下的自适应频率更新;
由步骤1)所得的功率P与频率F对应的数组,建立功率与频率的对应关系,随着频率的变更,采取分段匹配的方式自适应更新功率。
10.根据权利要求7所述的基于最小二乘模型和像素点匹配法的频率、功率更新方法,其特征在于:所述步骤3)具体为:
利用水体检测模块(3)读取当前水体状态,利用步骤2)得到的关系模型得到初始频率用以设定电磁信号源(1)的初始频率,电磁信号源(1)每小时读取一次水状态监测模块(3)的数据,采用步骤2)得到的关系模型和对应关系更新电磁信号源(1)的频率和功率。
CN202010979001.0A 2020-09-17 2020-09-17 一种自适应的电磁信号阻垢器及方法 Active CN112079449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010979001.0A CN112079449B (zh) 2020-09-17 2020-09-17 一种自适应的电磁信号阻垢器及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010979001.0A CN112079449B (zh) 2020-09-17 2020-09-17 一种自适应的电磁信号阻垢器及方法

Publications (2)

Publication Number Publication Date
CN112079449A true CN112079449A (zh) 2020-12-15
CN112079449B CN112079449B (zh) 2021-11-02

Family

ID=73736780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010979001.0A Active CN112079449B (zh) 2020-09-17 2020-09-17 一种自适应的电磁信号阻垢器及方法

Country Status (1)

Country Link
CN (1) CN112079449B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683207A (zh) * 2021-09-09 2021-11-23 瑞纳智能设备股份有限公司 一种智能节能变频电子除垢系统及控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174677A (ja) * 1992-12-08 1994-06-24 Meidensha Corp 酸−アルカリ滴定法におけるpH計の誤差検出方法及び装置
CN1982229A (zh) * 2005-07-06 2007-06-20 迪普尔·英·哈特默特斯卡尔特 水处理装置及使用该装置的水处理方法
CN101707373A (zh) * 2009-11-20 2010-05-12 河海大学 基于自动微分的电力系统状态估计方法
CN102334022A (zh) * 2008-12-26 2012-01-25 通用电气公司 用于监测工业水系统中的局部腐蚀的控制系统
CN204422511U (zh) * 2015-03-23 2015-06-24 哈尔滨易普优能科技有限公司 低压电脉冲阻垢水处理实验测试平台
EP2985264A1 (en) * 2014-08-13 2016-02-17 Sentinel Performance Solutions Ltd Electrolytic water treatment for scale prevention
CN205676240U (zh) * 2016-06-13 2016-11-09 北京恒通智联科技有限公司 一种自适应物理防垢除垢装置
US20180022621A1 (en) * 2016-07-19 2018-01-25 Ecolab Usa Inc. Control of Industrial Water Treatment Via Digital Imaging
CN107656227A (zh) * 2017-09-21 2018-02-02 大连理工大学 基于Levenberg‑Marquardt算法的磁力计校准方法
US20180075370A1 (en) * 2016-09-09 2018-03-15 Nec Laboratories America, Inc. Mining non-linear dependencies via a neighborhood mixture model
CN107949814A (zh) * 2016-04-18 2018-04-20 胜科工业有限公司 用于废水处理工艺控制的系统和方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174677A (ja) * 1992-12-08 1994-06-24 Meidensha Corp 酸−アルカリ滴定法におけるpH計の誤差検出方法及び装置
CN1982229A (zh) * 2005-07-06 2007-06-20 迪普尔·英·哈特默特斯卡尔特 水处理装置及使用该装置的水处理方法
CN102334022A (zh) * 2008-12-26 2012-01-25 通用电气公司 用于监测工业水系统中的局部腐蚀的控制系统
CN101707373A (zh) * 2009-11-20 2010-05-12 河海大学 基于自动微分的电力系统状态估计方法
EP2985264A1 (en) * 2014-08-13 2016-02-17 Sentinel Performance Solutions Ltd Electrolytic water treatment for scale prevention
CN204422511U (zh) * 2015-03-23 2015-06-24 哈尔滨易普优能科技有限公司 低压电脉冲阻垢水处理实验测试平台
CN107949814A (zh) * 2016-04-18 2018-04-20 胜科工业有限公司 用于废水处理工艺控制的系统和方法
CN205676240U (zh) * 2016-06-13 2016-11-09 北京恒通智联科技有限公司 一种自适应物理防垢除垢装置
US20180022621A1 (en) * 2016-07-19 2018-01-25 Ecolab Usa Inc. Control of Industrial Water Treatment Via Digital Imaging
US20180075370A1 (en) * 2016-09-09 2018-03-15 Nec Laboratories America, Inc. Mining non-linear dependencies via a neighborhood mixture model
CN107656227A (zh) * 2017-09-21 2018-02-02 大连理工大学 基于Levenberg‑Marquardt算法的磁力计校准方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683207A (zh) * 2021-09-09 2021-11-23 瑞纳智能设备股份有限公司 一种智能节能变频电子除垢系统及控制方法

Also Published As

Publication number Publication date
CN112079449B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN112079449B (zh) 一种自适应的电磁信号阻垢器及方法
CN101565221A (zh) 高频电磁水净化系统
CN108195937A (zh) 一种基于导波的损伤概率成像方法
CN105241459A (zh) 一种用于室内水下目标定位的时延估计方法及装置
CN103760834A (zh) 一种渔业养殖生长过程物联网监测系统
CN102225390A (zh) 全自动超大功率超声波防垢、除垢装置
WO2021070201A3 (en) Method and system for realtime monitoring and forecasting of fouling of air preheater equipment
CN100419454C (zh) 声源定位装置及其方法及采用该装置的电子设备
CN113274885B (zh) 应用于膜法污水处理的膜污染智能化预警方法
CN103206616A (zh) 发电厂管网泄漏定位检测系统及检测方法
US20160298257A1 (en) System and method for prevention of adhesion of marine organisms to a substrate contacting with seawater
CN110017431A (zh) 基于水下巡检系统的基站及其巡检方法
CN104345636A (zh) 一种基于改进差分算法的溶解氧控制方法
CN103969638A (zh) 一种水声侦听与干扰设备
CN101787363B (zh) 超声波生物处理的并行频率搜索控制方法
CN202808489U (zh) 一种变频直流脉冲除垢器
CN109283909A (zh) 一种海水围网智能排污系统及方法
CN114390399A (zh) 一种空间低频声场重构方法和重构系统
CN210012667U (zh) 管道安装阻垢缓蚀装置
CN109063932B (zh) 一种用于电控箱装配过程的优化调度方法
CN111781324A (zh) 一种基于水下机器人的海洋环境智能监测系统
Attias Source separation with a sensor array using graphical models and subband filtering
CN209764683U (zh) 一种水下装备氧化腐蚀数据探测装置
CN105929786A (zh) 一种水产养殖环境电子监控系统
Azmi et al. Control the Water wheel with the Internet of Things

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant