CN112073392B - LoRaWAN-based efficient wireless seismic data transmission protocol design method - Google Patents

LoRaWAN-based efficient wireless seismic data transmission protocol design method Download PDF

Info

Publication number
CN112073392B
CN112073392B CN202010869773.9A CN202010869773A CN112073392B CN 112073392 B CN112073392 B CN 112073392B CN 202010869773 A CN202010869773 A CN 202010869773A CN 112073392 B CN112073392 B CN 112073392B
Authority
CN
China
Prior art keywords
factor
spread spectrum
preamble
seismograph
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010869773.9A
Other languages
Chinese (zh)
Other versions
CN112073392A (en
Inventor
佟训乾
杨泓渊
张林行
张怀柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202010869773.9A priority Critical patent/CN112073392B/en
Publication of CN112073392A publication Critical patent/CN112073392A/en
Application granted granted Critical
Publication of CN112073392B publication Critical patent/CN112073392B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/03Protocol definition or specification 
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/223Radioseismic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques

Abstract

The invention discloses a LoRaWAN-based high-efficiency wireless seismic data transmission protocol design method, which comprises the following steps: spread spectrum factor distribution based on transmission weight, transmission time sequence distribution based on a hash function and spread spectrum factor distribution, wherein the spread spectrum factor is adjusted in a coarse granularity mode at a seismometer terminal, and the collision weight balance of different spread spectrum factor channels is realized by performing fine granularity adjustment by a gateway according to the initial distribution result of the seismometer terminal; and (3) transmission time sequence distribution, namely, according to built-in GPS high-precision time service of the seismograph, using Hash function mapping to grant the seismograph to transmit time sequence, converting 'uncertain collision' into 'deterministic collision', and realizing large-scale and reliable wireless seismic data transmission network construction. The invention has the beneficial effects that: by the technical scheme of the invention, the network capacity can be effectively expanded, the data extraction rate of the network is improved, and the problems of data conflict and network delay in the traditional method can be solved.

Description

LoRaWAN-based efficient wireless seismic data transmission protocol design method
Technical Field
The invention belongs to the field of wireless seismic data transmission protocol design, and particularly relates to a LoRaWAN-based efficient wireless seismic data transmission protocol design method.
Background
Seismic exploration is evolving towards large-scale and high-density acquisition. Wireless seismic exploration equipment has played an increasingly important role in the oil and gas industry in recent years due to its portability compared to conventional equipment with thick cables. Due to the large amount of seismic data, data transmission is usually limited by the bandwidth of a wireless channel, so that data transmission conflicts and transmission delay are too high, and real-time data recovery becomes a difficult task. Currently, the emerging LoRaWAN can effectively improve wireless data transmission efficiency by means of low power consumption, long-distance communication, and its unique spread spectrum technology. Therefore, the large-scale seismic data transmission work is met by improving the self-adaptive spreading factor distribution scheme of the existing hardware resources and the multi-seismograph terminal channel distribution scheme, and the design of a special high-efficiency wireless seismic data transmission protocol is a new research idea.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a LoRaWAN-based high-efficiency wireless seismic data transmission protocol design method, wherein a spread spectrum factor is adjusted in a coarse granularity mode at a seismograph terminal, and a gateway adjusts the fine granularity mode according to the initial distribution result of the seismograph terminal to realize collision weight balance of channels with different spread spectrum factors; according to built-in GPS high-precision time service of the seismograph, Hash function mapping is used for granting the seismograph to send time sequence, uncertainty collision is converted into certainty collision, and large-scale and reliable wireless seismic data transmission network construction is achieved.
The present invention is achieved in such a way that,
a LoRaWAN-based efficient wireless seismic data transmission protocol design method comprises the following steps:
A. after the gateway broadcasts the wireless signal quality test beacon, the seismograph terminal determines the available spread spectrum factor range according to the received power, and the lower the spread spectrum factor is, the higher the probability of being selected is in the available range;
B. the gateway stores the spread spectrum factor distribution condition of the seismograph terminal in NSFIn setting the blocking weight P of the communication channel with the same spreading factor1x6Spreading factor versus transmission time weight w1x6Establishing a congestion degree function of a spread spectrum factor communication channel;
C. data packet construction, namely constructing the duration T of the preamble code of the data packet according to the relative transmission time weights of different spreading factorspreambleData packet preamble length npreambleLength of bytes n of communication loadpayloadThe wireless data transmission time objective function of (1);
D. c, according to the data packet constructed in the step C, a hash function H is established through a gateway by combining the unique ID of each seismograph terminal and built-in GPS high-precision time servicei(k) Obtaining a time series slot index kindexAnd accurate time synchronization is provided for a transmission network.
Further, the step B gateway stores the spreading factor distribution condition of the seismograph terminal in NSFIn setting the blocking weight P of the communication channel with the same spreading factor1x6Spreading factor versus transmission time weight w1x6Establishing a congestion level function for a spreading factor communication channel, comprising the steps of: the spread factor distribution of the seismographs in the LoRaWAN network is stored in NSF,NSFIndicates that there is N in the networkSFThe node is using a spreading factor i]Carrying out transmission; the number of seismographs with the same minimum available spreading factor is stored at NSFIn, NSFIs represented by the ith value ofSFSeismographs use spreading factor [ i ]]Transmitting, wherein spreading factor SF is {7,8 …,12 };
definition P1x6As the weight of congestion, w1x6Is a spreading factor relative to a transmission time weight, wsThe relative transmission weight when the spreading factor is s, the congestion degree function:
Figure BDA0002650597140000021
P=NSF·w
wherein P represents the congestion degree of the spread spectrum factor channel as a spread spectrum factor SF;
data receiving collision weight is generated by calculating that relative transmission time of different spreading factors is the same, adjacent weights are compared according to the sequence after coarse/fine granularity adjustment, balancing is carried out based on the optimal distribution time weight balancing strategy of the pixel, after all balancing is completed, the adjusted weights are output, and the collision time weights of different spreading factors are converted into seismograph data volume of each communication channel.
Further, the step C specifically includes the steps of:
the target function of the duration of the data packet in the wireless data transmission process of the seismograph, which is the sum of the duration of the preamble and the duration of the transmitted data packet, is as follows:
Figure BDA0002650597140000031
wherein T ispreambleIs the duration of the preamble, npreambleIs the length of the preamble, npayloadByte length for payload:
Figure BDA0002650597140000032
wherein PL represents the number of bytes of the payload, when the data packet has a header, IH is 1, otherwise 0; when low rate optimization is enabled, DE 1 is otherwise 0, CR denotes the coding rate, 1 corresponds to 4/5, and 4 corresponds to 4/8.
Further, the step D includes the steps of:
each seismometer terminal uses its globally unique 32-bit address identification, or uses the equipment number connected to the terminal as key k, and uses its assigned hash function Hi(k) To obtain the slot index kindex
kindex=Hi(k)
For a single spreading factor communication channel, there are n different addresses and m transmission slots, and α is defined as a loading factor:
Figure BDA0002650597140000033
the constructed hash table has less collision and alpha is close to 1 so as to reduce the data delay rate of the system, the addresses n are uniformly distributed in the slots m, and a hash function H is constructed for the address set of each spreading factor communication channel within the allowed delay range2(k):
Figure BDA0002650597140000034
rsh(w-r)(2r<m)
And selecting the middle 15 bytes after operation as a data packet sending sequence number, wherein w is the calculated byte length, floor is expressed as rounding-down, and rsh (w-r) is expressed as moving right (w-r) bits.
Compared with the prior art, the invention has the beneficial effects that: according to the built-in unique ID identification of the seismograph and the GPS high-precision time service, the problems of wireless channel congestion and delay when a plurality of seismographs upload seismic data at the same time are solved through spread spectrum factor distribution based on transmission weight and transmission time sequence distribution based on a hash function. Specifically, the spread spectrum factors are adjusted in a coarse-grained mode at the seismograph terminal, and fine-grained adjustment is carried out by the gateway according to the initial distribution result of the seismograph terminal to realize collision weight balance of channels with different spread spectrum factors; according to built-in GPS high-precision time service of the seismograph, Hash function mapping is used for granting the seismograph to send a time sequence, and the uncertain collision is converted into the deterministic collision. Therefore, according to the application requirement of three-dimensional wireless seismic data transmission, the invention designs a special LoRaWAN-based high-efficiency wireless seismic data transmission protocol method, thereby realizing large-scale and reliable wireless seismic data transmission network construction. The special wireless seismic data transmission protocol can effectively solve the problems of data collision and network delay in the traditional method.
Drawings
Fig. 1 is a schematic network structure diagram of an efficient wireless seismic data transmission protocol design method based on LoRaWAN according to the present invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Referring to fig. 1, the high-efficiency wireless seismic network structure based on the LoRaWAN high-efficiency wireless seismic data transmission protocol design method comprises a plurality of gateways, wherein each gateway covers a plurality of seismographs and transmits data between a vehicle-mounted monitoring center and the gateway. The LoRaWAN-based efficient wireless seismic data transmission protocol design method comprises the following steps:
the method comprises the following steps of spreading factor distribution based on transmission weight and transmission timing distribution based on a hash function:
firstly, after the gateway sends a wireless signal quality test beacon, the seismograph terminal adjusts the spreading factor value in a coarse granularity instead of directly selecting the lowest spreading factor which can be received by the gateway, and after the gateway obtains the receiving power of all the seismograph terminals, fine-grained adjustment is carried out on the basis of initial distribution to realize collision weight balance of channels with different spreading factors.
Secondly, collision weights of different spreading factors are calculated according to the distribution condition of the spreading factors stored by the gateway, adjacent weights are compared in sequence, the adjusted weights are output in a balanced mode, and the weights are converted into the number of the seismographs of each wireless communication channel.
And finally, according to the built-in unique ID identification of the seismograph and the GPS high-precision time service, using Hash function mapping to grant the seismograph to send a time sequence, and setting a broadcast data frame through a gateway to meet the design requirement of a large-scale and reliable network transmission protocol.
The LoRaWAN-based efficient wireless seismic data transmission protocol design method is characterized in that the protocol design method comprises the steps of
The method comprises the following steps:
A. after the gateway broadcasts the wireless signal quality test beacon, the seismograph terminal determines the available spread spectrum factor range according to the received power, and the lower the spread spectrum factor is, the higher the probability of being selected is in the available range;
B. the gateway stores the spread spectrum factor distribution condition of the seismograph terminal in NSFIn setting the blocking weight P of the communication channel with the same spreading factor1x6Spreading factor versus transmission time weight w1x6Establishing a congestion degree function of a spread spectrum factor communication channel;
C. depending on the relative transmission time weights of the different spreading factors,duration T for constructing preamble of data packetpreambleData packet preamble length npreambleLength of bytes n of communication loadpayloadThe wireless data transmission time objective function of (1);
D. c, according to the data packet constructed in the step C, a hash function H is established through a gateway by combining the unique ID of each seismograph terminal and built-in GPS high-precision time servicei(k) Obtaining a time series slot index kindexThe method can provide accurate time synchronization for a transmission network, and can reduce data collision to the maximum extent;
b, the gateway stores the spread spectrum factor distribution condition of the seismograph terminal in NSFIn setting the blocking weight P of the communication channel with the same spreading factor1x6Spreading factor versus transmission time weight w1x6Establishing a congestion level function for a spreading factor communication channel, comprising the steps of:
the spread factor distribution of the seismographs in the LoRaWAN network is stored in NSF,NSFIndicates that there is N in the networkSFThe node is using a spreading factor i]Carrying out transmission; the number of seismographs with the same minimum available spreading factor is stored at NSFIn, NSFIs represented by the ith value ofSFSeismographs use spreading factor [ i ]]And transmitting the data by the spreading factor SF, wherein the spreading factor SF is {7,8 …,12 }.
Definition P1x6As the weight of congestion, w1x6Is a spreading factor relative to a transmission time weight, wsThe relative transmission weight when the spreading factor is s is as follows:
Figure BDA0002650597140000061
P=NSF·w
wherein P [ i ] represents the congestion degree of the channel with the spreading factor of SF [ i ].
And (3) by calculating collision weights of different spreading factors, smoothly comparing adjacent weights and balancing, outputting the adjusted weights after all balancing is finished, and converting the weights into seismograph data volume of each communication channel.
Step C, according to the relative transmission time weights of different spreading factors, constructing the duration T of the preamble of the data packetpreambleData packet preamble length npreambleLength of bytes n of communication loadpayloadThe wireless data transmission time objective function comprises the following steps:
the target function of the duration of the data packet in the wireless data transmission process of the seismograph, which is the sum of the duration of the preamble and the duration of the transmitted data packet, is as follows:
Figure BDA0002650597140000071
wherein T ispreambleIs the duration of the preamble, npreambleIs the length of the preamble, npayloadByte length for payload:
Figure BDA0002650597140000072
wherein PL represents the number of bytes of the payload, when the data packet has a header, IH is 1, otherwise 0; when low rate optimization (lowdatarateoptimization) is enabled, DE 1 is otherwise 0. CR denotes the coding rate (1 for 4/5, 4 for 4/8).
Step D, combining the unique ID of each seismograph terminal and built-in GPS high-precision time service, and formulating a hash function H through a gatewayi(k) Obtaining a time series slot index kindexThe method can reduce data collision to the maximum extent by providing accurate time synchronization for a transmission network, and comprises the following steps:
each seismometer terminal uses its globally unique 32-bit address identification or uses the device number connected to the terminal as the key k. Hash function H specified for it by the gatewayi(k) To obtain the slot index kindex
kindex=Hi(k)
For a single spreading factor communication channel, there are n different addresses and m transmission slots. Define α as the loading factor:
Figure BDA0002650597140000073
the constructed hash table should be collided less and α is made as close to 1 as possible to reduce the data delay rate of the system and to distribute the addresses n as uniformly as possible in the slots m. Constructing a hash function H for each set of addresses of a spreading factor communication channel within an allowable delay range2(k):
Figure BDA0002650597140000081
And selecting a plurality of middle bits after operation as a data packet sending sequence number, wherein w is the calculated byte length, floor is expressed by rounding-down, rsh (w-r) is expressed by moving (w-r) bits to the right, so that the transmission conflict of the wireless seismic data packet can be reduced to the maximum extent.
The above description is only for the purpose of illustrating the preferred embodiments of the present invention and is not to be construed as limiting the invention, and any modifications, equivalents and improvements made within the spirit and principle of the present invention are intended to be included within the scope of the present invention.

Claims (4)

1. A LoRaWAN-based efficient wireless seismic data transmission protocol design method is characterized by comprising the following steps:
A. after the gateway broadcasts the wireless signal quality test beacon, the seismograph terminal determines the available spread spectrum factor range according to the received power, and the lower the spread spectrum factor is, the higher the probability of being selected is in the available range;
B. the gateway stores the spread spectrum factor distribution condition of the seismograph terminal in NSFIn setting the blocking weight P of the communication channel with the same spreading factor1x6Spreading factor versus transmission time weight w1x6Establishing a congestion degree function of a spread spectrum factor communication channel;
C. data packet construction according to relative transmission time weights of different spreading factorsDuration T of preamble of data packetpreambleData packet preamble length npreambleLength of bytes n of communication loadpayloadThe wireless data transmission time objective function of (1);
D. c, according to the data packet constructed in the step C, a hash function H is established through a gateway by combining the unique ID of each seismograph terminal and built-in GPS high-precision time servicei(k) Obtaining a time series slot index kindexAnd accurate time synchronization is provided for a transmission network.
2. The method of claim 1, wherein step B comprises the steps of: the spread factor distribution of the seismographs in the LoRaWAN network is stored in NSF,NSFIndicates that there is N in the networkSFThe node is using a spreading factor i]Carrying out transmission; the number of seismographs with the same minimum available spreading factor is stored at NSFAmong others, spreading factor SF {7,8 …,12 };
definition P1x6As the weight of congestion, w1x6Is a spreading factor relative to a transmission time weight, wsThe relative transmission weight when the spreading factor is s, the congestion degree function:
Figure FDA0003055350780000011
P=NSF·w
wherein P represents the congestion degree of the spread spectrum factor channel as a spread spectrum factor SF;
data receiving collision weight is generated by calculating that relative transmission time of different spreading factors is the same, adjacent weights are compared according to the sequence after coarse/fine granularity adjustment, balancing is carried out based on the optimal distribution time weight balancing strategy of the pixel, after all balancing is completed, the adjusted weights are output, and the collision time weights of different spreading factors are converted into seismograph data volume of each communication channel.
3. The LoRaWAN-based efficient wireless seismic data transmission protocol design method according to claim 1, wherein the step C specifically comprises the following steps:
the target function of the duration of the data packet in the wireless data transmission process of the seismograph, which is the sum of the duration of the preamble and the duration of the transmitted data packet, is as follows:
Figure FDA0003055350780000021
wherein T ispreambleIs the duration of the preamble, npreambleIs the length of the preamble, npayloadByte length for payload:
Figure FDA0003055350780000022
wherein PL represents the number of bytes of the payload, when the data packet has a header, IH is 1, otherwise 0; when low rate optimization is enabled, DE 1 is otherwise 0, CR denotes the coding rate, 1 corresponds to 4/5, and 4 corresponds to 4/8.
4. The LoRaWAN-based efficient wireless seismic data transmission protocol design method according to claim 1, wherein the step D comprises the following steps:
each seismometer terminal uses its globally unique 32-bit address identification, or uses the equipment number connected to the terminal as key k, and uses its assigned hash function Hi(k) To obtain the slot index kindex
kindex=Hi(k)
For a single spreading factor communication channel, there are n different addresses and m transmission slots, and α is defined as a loading factor:
Figure FDA0003055350780000023
structural hahaThe hash function H is constructed for each address set of the communication channel with spreading factor in the allowed delay range2(k):
Figure FDA0003055350780000031
rsh(A-r)(2r<m)
And selecting the middle 15 bytes after operation as a data packet sending sequence number, wherein A is the calculated byte length, floor is expressed as rounding-down, and rsh (A-r) is expressed as moving right (A-r) bits.
CN202010869773.9A 2020-08-26 2020-08-26 LoRaWAN-based efficient wireless seismic data transmission protocol design method Active CN112073392B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010869773.9A CN112073392B (en) 2020-08-26 2020-08-26 LoRaWAN-based efficient wireless seismic data transmission protocol design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010869773.9A CN112073392B (en) 2020-08-26 2020-08-26 LoRaWAN-based efficient wireless seismic data transmission protocol design method

Publications (2)

Publication Number Publication Date
CN112073392A CN112073392A (en) 2020-12-11
CN112073392B true CN112073392B (en) 2021-07-06

Family

ID=73659462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010869773.9A Active CN112073392B (en) 2020-08-26 2020-08-26 LoRaWAN-based efficient wireless seismic data transmission protocol design method

Country Status (1)

Country Link
CN (1) CN112073392B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038541B (en) * 2021-03-04 2022-05-20 重庆邮电大学 Adaptive LoRaWAN network rate adjusting method based on conflict perception

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479189A (en) * 2010-11-23 2012-05-30 上海宝信软件股份有限公司 Indexing method for high-speed uniform access to massive timestamp data in internal memory
US9223720B2 (en) * 2013-12-13 2015-12-29 Oracle International Corporation Systems and methods for rapidly generating suitable pairs of hash functions
CN106507433A (en) * 2016-11-30 2017-03-15 吉林大学 A kind of seismic detector data transfer sub-clustering Design of Routing Protocol method
FR3037179B1 (en) * 2015-06-08 2017-07-21 Finsecur SIGNALING DEVICE
CN107005597A (en) * 2014-10-13 2017-08-01 七网络有限责任公司 The wireless flow management system cached based on user characteristics in mobile device
CN108923817A (en) * 2018-07-10 2018-11-30 南京邮电大学 The method interfered between terminal is reduced in a kind of LoRa network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105005075B (en) * 2015-06-25 2017-04-12 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Multi-wave matching method based on seismic frequency information
CN107360538B (en) * 2017-07-06 2020-06-30 中国石油集团东方地球物理勘探有限责任公司 Method for communication between intelligent devices and intelligent device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479189A (en) * 2010-11-23 2012-05-30 上海宝信软件股份有限公司 Indexing method for high-speed uniform access to massive timestamp data in internal memory
US9223720B2 (en) * 2013-12-13 2015-12-29 Oracle International Corporation Systems and methods for rapidly generating suitable pairs of hash functions
CN107005597A (en) * 2014-10-13 2017-08-01 七网络有限责任公司 The wireless flow management system cached based on user characteristics in mobile device
FR3037179B1 (en) * 2015-06-08 2017-07-21 Finsecur SIGNALING DEVICE
CN106507433A (en) * 2016-11-30 2017-03-15 吉林大学 A kind of seismic detector data transfer sub-clustering Design of Routing Protocol method
CN108923817A (en) * 2018-07-10 2018-11-30 南京邮电大学 The method interfered between terminal is reduced in a kind of LoRa network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An Improved Secure Key Management Scheme for LoRa System;Jinyu Xing等;《 2019 IEEE 19th International Conference on Communication Technology (ICCT)》;20200102;全文 *
无缆自定位地震勘探仪器网络结构及路由算法研究;佟训乾;《中国博士学位论文全文数据库 基础科学辑》;20170315;全文 *

Also Published As

Publication number Publication date
CN112073392A (en) 2020-12-11

Similar Documents

Publication Publication Date Title
KR100555674B1 (en) Wireless communication method for transmitting voice in low rate WPAN
CN111541508B (en) LoRaWAN spread spectrum factor distribution method based on short-term DER and optimal load
US7933217B2 (en) Wireless network system and method for transmitting and receiving data in the wireless network
CN105873214B (en) A kind of resource allocation methods of the D2D communication system based on genetic algorithm
CN1578305A (en) Method for transmitting a frame at a high rate in a wireless local area network
KR20060020601A (en) Radio packet communication method and radio packet communication apparatus
CN101743705A (en) Control indications for slotted wireless communication
JP2002502164A (en) Interference equalization in mobile networks using hopping method
CN112290992B (en) Method for allocating working time slots of satellite Internet of things terminal
CN112073392B (en) LoRaWAN-based efficient wireless seismic data transmission protocol design method
US20020181434A1 (en) Media access controller for high bandwidth communication media and method of operation thereof
CN108923817B (en) Method for reducing interference between terminals in LoRa network
CN112615662B (en) Data transmission method of MAC layer of low-earth-orbit satellite
CN112994759A (en) Cooperative relay D2D communication method based on OFDM
US7280511B2 (en) Method for determining reverse rate in mobile communication system and apparatus thereof
CN105898873A (en) Data frame distribution method and device and data transmission method and device
CN1199374C (en) Method and apparatus for detecting S synchronization signal generated by satellite communication network
CN105592563A (en) Multi-user opportunity spectrum access method
CN111465108A (en) Efficiency optimization method in energy acquisition D2D heterogeneous network
CN116456383A (en) Signal mapping algorithm processing system for wireless network transmission channel
CN109361483A (en) A kind of cognition wireless energy supply network resource allocation methods under primary user's minimum-rate demand
Saqib et al. D2D-LoRa Latency Analysis: An Indoor Application Perspective
CN113438740A (en) Method for efficiently and adaptively transmitting time slot distribution proportion information across PAN
Yang et al. An efficient equal air-time transmission strategy for wireless seismometer array based on LoRaWAN with CuckooHash
Ahmad et al. Spark spectrum allocation for D2D communication in cellular networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant