CN112071927A - 一种红外探测器及其制备方法 - Google Patents

一种红外探测器及其制备方法 Download PDF

Info

Publication number
CN112071927A
CN112071927A CN202010875018.1A CN202010875018A CN112071927A CN 112071927 A CN112071927 A CN 112071927A CN 202010875018 A CN202010875018 A CN 202010875018A CN 112071927 A CN112071927 A CN 112071927A
Authority
CN
China
Prior art keywords
substrate
layer
infrared detector
quantum dot
nanowire array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010875018.1A
Other languages
English (en)
Other versions
CN112071927B (zh
Inventor
杨为家
邱晨
吴质朴
何畏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Orient Components Co ltd
Original Assignee
Shenzhen Orient Components Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Orient Components Co ltd filed Critical Shenzhen Orient Components Co ltd
Priority to CN202010875018.1A priority Critical patent/CN112071927B/zh
Publication of CN112071927A publication Critical patent/CN112071927A/zh
Application granted granted Critical
Publication of CN112071927B publication Critical patent/CN112071927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种红外探测器及其制备方法,包括:从下至上依次设置的衬底、石墨烯层、量子点层以及叉指电极;量子点层包括由硫化铅形成的内核和由金形成的壳层,壳层包裹于内核表面,叉指电极镀接在壳层表面。金属金与半导体硫化铅的混合纳米结构(即量子点层)能够提高器件光电转换效率,并且能够显著增强器件的光探测性能。

Description

一种红外探测器及其制备方法
技术领域
本发明涉及红外光电探测技术领域,具体涉及一种红外探测器。
背景技术
红外探测器在导弹预警、安全防范、光电检测、红外成像等众多领域具有广泛的应用。石墨烯的电子迁移率高达350000cm2/(V·s),电导率为106S/m,方块电阻大约为31Ω/sq,常温下的热导率为5000W/mK。石墨烯表现出超快载流子动力学,能够实现光子或等离子体到电流或电压的快速转换。因此,石墨烯基光电器件具有巨大的发展潜力。石墨烯/GaAs红外探测器表现出良好的探测效率和高效选择性,因而受到了研究人员的青睐。目前,石墨烯基高光效红外探测是人们不懈追求的目标。
但是,当前的石墨烯/GaAs红外探测器还存在探测效率和探测范围还较低的问题,以及制备工艺的兼容性较弱的问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请提出一种红外探测器及其制备方法,可以提高红外探测器对红外光的吸收效率和范围,提供一种与现有工艺兼容的石墨烯制备工艺,简化生产工艺,降低生产成本。
本发明解决其问题所采用的技术方案是:
一方面,本发明实施例提供了一种红外探测器,包括:从下至上依次设置的衬底、石墨烯层、量子点层以及叉指电极;所述量子点层包括由硫化铅形成的内核和由金形成的壳层,所述壳层设置于所述内核的表面,所述叉指电极镀接在所述壳层表面。
相比于传统技术中的红外探测器,本发明在叉指电极与石墨烯层之间设置有量子点层,其包括由硫化铅形成的内核和由金形成的壳层,所述壳层包裹于所述内核表面,其中,金属纳米结构产生的局域表面等离激元共振可以增强金属附近的局域电磁场,邻近的半导体可以受益于这种场增益,导致半导体光吸收增强,进而产生更多的光生载流子,此外还有散射效应,热载流子转移和共振能量转移等机理,都对光电转换有贡献。在金属金与硫化铅(即量子点层)的混合纳米结构中,硫化铅对这种场增益的充分利用是提高器件光电转换效率的关键,并且能够显著增强器件的光探测性能,即,通过设置量子点层能够提高红外探测器对红外光的吸收效率和范围。
可选地,在本发明的一个实施例中,所述衬底由砷化镓或铟镓砷单晶组成。用砷化镓制成的半导体器件具有高频、高温、低温性能好、噪声小、抗辐射能力强等优点,铟镓砷单晶制成的红外探测器具有响应时间短、室温工作、结构简单紧凑等优点。
可选地,在本发明的一个实施例中,所述量子点层的层数为1至5层,可根据需求设置相应的层数,以满足不同的探测精度。
可选地,在本发明的一个实施例中,所述内核的半径为5至50nm,所述壳层的厚度为0.1至2nm,硫化铅中引入贵金属纳米结构,由于其表面等离激元,能够显著增强器件的光探测性能。
可选地,在本发明的一个实施例中,还包括设置于所述衬底表面的纳米线阵列,用于划分预定的切割纹路作为生长区域。
另一方面,本发明实施例提供了一种制备红外探测器的方法,应用于红外探测器,红外探测器包括衬底、石墨烯层、量子点层以及叉指电极,所述量子点层包括内核和壳层,其特征在于,所述方法包括:
在所述衬底上沉积所述石墨烯层;
在所述石墨烯层的表面喷涂所述内核和所述壳层;
所述内核和所述壳层形成所述量子点层;
在所述量子点层上蒸镀所述叉指电极。
相比于传统技术中的红外探测器,本发明在叉指电极与石墨烯层之间喷涂有量子点层,在内核与壳层(即量子点层)的混合纳米结构中,内核对这种场增益的充分利用是提高器件光电转换效率的关键,并且能够显著增强器件的光探测性能,并且在所述衬底上沉积石墨烯层,石墨烯层结合量子点层能够进一步提高红外探测器的光响应能力,即,通过设置量子点层和石墨烯层能够提高红外探测器对红外光的吸收效率和范围。
实施例中,所述方法还包括:
在所述衬底的表面刻蚀、沉积所述纳米线阵列;
去除所述衬底的所述纳米线阵列。
可选地,在本发明的一个实施例中,在所述衬底的表面刻蚀、沉积所述纳米线阵列,其步骤包括:
在所述衬底上旋涂光刻胶;
将具有光刻胶的所述衬底曝光,以获得所述纳米线阵列的生长区域;
基于脉冲激光沉积的方式,在生长区域获得所述纳米线阵列。
基于所述纳米线阵列,划分预定的切割纹路作为生长区域。
可选地,在本发明的一个实施例中,在所述衬底以及所述铜网格或所述纳米线阵列上沉积所述石墨烯层,其特征在于:基于原子层沉积的方式,以纳米线阵列为模板在所述衬底上生长所述石墨烯层。
在上述实施例中,采用沉积的方式能够使石墨烯层稳定地设置在纳米线阵列上方,从而基于石墨烯层与纳米线阵列所配合构建下的异质结,能够加速光生载流子的分离,提高载流子的运输效率,石墨烯具有超快载流子动力学特性,能够实现光子或等离子体到电流或电压的快速转换,石墨烯/GaAs红外探测器表现出良好的探测效率和高效选择性。
可选地,在本发明的一个实施例中,一半到四分之一的所述石墨烯层是生长在纳米线阵列上,其余是直接生长在所述衬底上,以使石墨烯生长在预定的切割纹路上,实现光子或等离子体到电流或电压的快速转换。
可选地,在本发明的一个实施例中,去除所述衬底的所述纳米线阵列,其特征在于:
将所述纳米线阵列腐蚀;
将所述石墨烯层全部粘接在所述衬底上。
通过去除所述衬底的所述纳米线阵列,以使石墨烯生长在预定的切割纹路上,实现光子或等离子体到电流或电压的快速转换。
可选地,在本发明的一个实施例中,在所述石墨烯层的表面喷涂所述量子点层,其步骤包括:
采用旋涂设备,在所述石墨烯层上旋涂硫化铅量子点;
充入保护气体将硫化铅量子点烘干;
使用喷金仪溅射金靶材,以获得所述量子点层;
退火以使所述量子点层粘接于所述石墨烯层,所述石墨烯层粘接于所述衬底。
在金属与半导体(即量子点层)的混合纳米结构中,半导体对这种场增益的充分利用是提高器件光电转换效率的关键,并且能够显著增强器件的光探测性能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
下面结合附图给出本发明较佳实施例,以详细说明本发明的实施方案。
图1是本发明实施例的红外探测器的结构图;
图2是本发明一种实施例的制备红外探测器的方法的示意图;
图3是本发明另一种实施例的制备红外探测器的方法的流程图;
图4是本发明另一种实施例的制备红外探测器的方法的流程图;
图5是本发明另一种实施例的制备红外探测器的方法的流程图;
图6是本发明另一种实施例的制备红外探测器的方法的流程图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,图1是本发明实施例的红外探测器的结构图。
一方面,参照图1,本发明实施例提供了一种红外探测器,包括:从下至上依次设置的衬底100、石墨烯层110、量子点层120以及叉指电极130;量子点层120包括由硫化铅形成的内核121和由金形成的壳层122,所述壳层122设置于所述内核121的表面,叉指电极130镀接在壳层122表面。
相比于传统技术中的红外探测器,本实施例在叉指电极130与石墨烯层110之间设置有量子点层120,其包括由硫化铅形成的内核121和由金形成的壳层122,壳层122包裹于内核121表面,可以提高红外探测器对红外光的吸收效率和范围。
相比于传统技术中的红外探测器,本实施例在叉指电极与石墨烯层110之间设置有量子点层120,其包括由硫化铅形成的内核和由金形成的壳层,所述壳层包裹于所述内核表面,其中,金属纳米结构产生的局域表面等离激元共振可以增强金属附近的局域电磁场,邻近的半导体可以受益于这种场增益,导致半导体光吸收增强,进而产生更多的光生载流子,此外还有散射效应,热载流子转移和共振能量转移等机理,都对光电转换有贡献。在金属金与硫化铅(即量子点层120)的混合纳米结构中,硫化铅对这种场增益的充分利用是提高器件光电转换效率的关键,并且能够显著增强器件的光探测性能,即,通过设置量子点层120能够提高红外探测器对红外光的吸收效率和范围。
可选地,在本发明的一个实施例中,衬底100由砷化镓或铟镓砷单晶组成。用砷化镓制成的半导体器件具有高频、高温、低温性能好、噪声小、抗辐射能力强等优点,铟镓砷单晶制成的红外探测器具有响应时间短、室温工作、结构简单紧凑等优点。
可选地,在本发明的一个实施例中,量子点层120的层数为1至5层,可根据需求设置相应的层数,以满足不同的探测精度。
可选地,在本发明的一个实施例中,内核121的半径为5至50nm,壳层122的厚度为0.1至2nm,硫化铅中引入贵金属纳米结构,由于其表面等离激元,能够显著增强器件的光探测性能。
可选地,在本发明的一个实施例中,还包括设置于衬底100表面的超薄铜网格和纳米线阵列,用于划分预定的切割纹路作为生长区域。
如图2所示,图2是本发明实施例的制备红外探测器的方法的流程图。
另一方面,参照图2,本发明实施例提供了一种制备红外探测器的方法,应用于红外探测器,红外探测器包括衬底100、石墨烯层110、量子点层120以及叉指电极130,量子点层120包括内核121和壳层122,其特征在于,方法包括:
S100、在衬底100上沉积石墨烯层110;
S200、在石墨烯层110的表面喷涂内核121,在内核外表面喷涂壳层122,从而得到量子点层120;
S300、在量子点层上蒸镀叉指电极130。
相比于传统技术中的红外探测器,本实施例在叉指电极与石墨烯层之间喷涂有量子点层,在内核与壳层(即量子点层)的混合纳米结构中,内核对这种场增益的充分利用是提高器件光电转换效率的关键,能够显著增强器件的光探测性能,并且在所述衬底上沉积石墨烯层,由于石墨烯与叉指电极之间的倾向便于形成良好的小电阻欧姆接触,因此能够提高对于光生载流子的提取效率,通过上述两方面的配合作用,因此能够大大提升红外探测器的灵敏度。石墨烯层结合量子点层能够进一步提高红外探测器的光响应能力,即,通过设置量子点层和石墨烯层能够提高红外探测器对红外光的吸收效率和范围。
如图3所示,图3是本发明实施例的制备及去除纳米线阵列的流程图。
参照图3,可选地,在本发明的一个实施例中,其特征在于,方法还包括:
S400、在衬底100的表面刻蚀、沉积纳米线阵列;
S500、去除衬底100的纳米线阵列。
在上述实施例中,纳米线阵列是由众多的一维硅纳米线垂直于基底排列而成的,纳米线阵列与硅纳米线之间的关系如同整片森林与单棵树木一样,它除了具有硅纳米线的特性外,还表现出集合体的优异性能:纳米线阵列独特的“森林式”结构,使其具有优异的减反射特性,在宽波段、宽入射角范围都能保持很高的光吸收率,显著高于目前普遍使用的硅薄膜。
如图4所示,图4是本发明实施例的制备纳米线阵列的流程图。
参照图4,可选地,在本发明的一个实施例中,在衬底100的表面刻蚀、沉积纳米线阵列,其步骤包括:
S410、在衬底100上旋涂光刻胶;
S420、将具有光刻胶的衬底100曝光,以获得纳米线阵列的生长区域;
S430、基于脉冲激光沉积的方式,在生长区域获得纳米线阵列。
在上述实施例中,“自上而下”制备有序纳米线阵列的主要方法是化学刻蚀法,在常温常压、金属纳米粒子的催化作用下,利用刻蚀剂刻蚀硅片,简单、快速地制备出大面积、高取向的纳米线阵列且不受硅片晶型和晶向的限制。同时基于纳米线阵列,进行激光沉积,划分预定的切割纹路以获得生长区域。
在一实施例中,可以在室温下对生长区域进行激光沉积,以获得纳米线阵列,而不需要在特殊的温度环境下进行激光沉积,可节省一定的生产成本,简化生产流程。
可选地,在本发明的一个实施例中,在衬底100以及铜网格或纳米线阵列上沉积石墨烯层110,其特征在于:基于原子层沉积的方式,以纳米线阵列为模板在衬底100上生长石墨烯层110。
在上述实施例中,采用沉积的方式能够使石墨烯层稳定地设置在纳米线阵列上方,从而基于石墨烯层与纳米线阵列所配合构建下的异质结,能够加速光生载流子的分离,提高载流子的运输效率,石墨烯具有超快载流子动力学特性,能够实现光子或等离子体到电流或电压的快速转换,石墨烯/GaAs红外探测器表现出良好的探测效率和高效选择性。
可选地,在本发明的一个实施例中,一半到四分之一的石墨烯层110是生长在纳米线阵列上,其余是直接生长在衬底100上,以使石墨烯生长在预定的切割纹路上,实现光子或等离子体到电流或电压的快速转换。
如图5所示,图5是本发明实施例的去除纳米线阵列的流程图;
参照图5,可选地,在本发明的一个实施例中,去除衬底100的纳米线阵列,其特征在于:
S510、将纳米线阵列腐蚀;
S520、将石墨烯层110全部粘接在衬底100上。
在上述实施例中,通过去除衬底100的纳米线阵列,以使石墨烯生长在预定的切割纹路上,实现光子或等离子体到电流或电压的快速转换。
如图6所示,图6是本发明实施例的制备量子点层的流程图。
参照图6,可选地,在本发明的一个实施例中,在石墨烯层110的表面喷涂量子点层120,其步骤包括:
S210、使用旋涂设备,在石墨烯层110上旋涂硫化铅量子点;
S220、充入保护气体充入保护气体将硫化铅量子点烘干;
S230、使用喷金仪溅射金靶材,以获得所述量子点层;
S240、退火以使所述量子点层粘接于所述石墨烯层,所述石墨烯层粘接于所述衬底。
在上述实施例中,在内核与壳层(即量子点层)的混合纳米结构中,内核对这种场增益的充分利用是提高器件光电转换效率的关键,能够显著增强器件的光探测性能,并且在所述衬底上沉积石墨烯层,由于石墨烯与叉指电极之间的倾向便于形成良好的小电阻欧姆接触,因此能够提高对于光生载流子的提取效率,通过上述两方面的配合作用,因此能够大大提升红外探测器的灵敏度。石墨烯层结合量子点层能够进一步提高红外探测器的光响应能力,即,通过设置量子点层和石墨烯层能够提高红外探测器对红外光的吸收效率和范围。
以上内容对本发明的较佳实施例和基本原理作了详细论述,但本发明并不局限于上述实施方式,熟悉本领域的技术人员应该了解在不违背本发明精神的前提下还会有各种等同变形和替换,这些等同变形和替换都落入要求保护的本发明范围内。

Claims (12)

1.一种红外探测器,其特征在于,包括:从下至上依次设置的衬底、石墨烯层、量子点层以及叉指电极;所述量子点层包括由硫化铅形成的内核和由金形成的壳层,所述壳层设置于所述内核的表面,所述叉指电极镀接在所述壳层表面。
2.根据权利要求1所述的一种红外探测器,其特征在于:所述衬底由砷化镓或铟镓砷单晶组成。
3.根据权利要求1所述的一种红外探测器,其特征在于:所述量子点层的层数为1至5层。
4.根据权利要求3所述的一种红外探测器,其特征在于:所述内核的半径为5至50nm,所述壳层的厚度为0.1至2nm。
5.根据权利要求1所述的一种红外探测器,其特征在于:还包括设置于所述衬底表面的纳米线阵列。
6.一种制备红外探测器的方法,应用于红外探测器,红外探测器包括衬底、石墨烯层、量子点层以及叉指电极,所述量子点层包括内核和壳层,其特征在于,所述方法包括:
在所述衬底上沉积所述石墨烯层;
在所述石墨烯层的表面喷涂内核,在所述内核外表面喷涂所述壳层,从而得到所述量子点层;
在所述量子点层上蒸镀所述叉指电极。
7.根据权利要求6所述的一种制备红外探测器的方法,其特征在于,所述方法还包括:
在所述衬底的表面刻蚀、沉积所述纳米线阵列;
去除所述衬底的所述纳米线阵列。
8.根据权利要求7所述的一种制备红外探测器的方法,在所述衬底的表面刻蚀、沉积所述纳米线阵列,其特征在于:
在所述衬底上旋涂光刻胶;
将具有光刻胶的所述衬底曝光,以获得所述纳米线阵列的生长区域;
基于脉冲激光沉积的方式,在生长区域获得所述纳米线阵列。
9.根据权利要求6所述的一种制备红外探测器的方法,在所述衬底以及所述纳米线阵列上沉积所述石墨烯层,其特征在于:基于原子层沉积的方式,以所述纳米线阵列为模板在所述衬底上生长所述石墨烯层。
10.根据权利要求9所述的一种制备红外探测器的方法,其特征在于:一半到四分之一的所述石墨烯层是生长在所述纳米线阵列上,其余是直接生长在所述衬底上。
11.根据权利要求7所述的一种制备红外探测器的方法,去除所述衬底的所述纳米线阵列,其特征在于:
将所述纳米线阵列腐蚀;
将所述石墨烯层全部粘接在所述衬底上。
12.根据权利要求6所述的一种制备红外探测器的方法,在所述石墨烯层的表面喷涂所述量子点层,其特征在于:
采用旋涂设备,在所述石墨烯层上旋涂硫化铅量子点;
充入保护气体将硫化铅量子点烘干;
使用喷金仪溅射金靶材,以获得所述量子点层;
退火以使所述量子点层粘接于所述石墨烯层,所述石墨烯层粘接于所述衬底。
CN202010875018.1A 2020-08-27 2020-08-27 一种红外探测器及其制备方法 Active CN112071927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010875018.1A CN112071927B (zh) 2020-08-27 2020-08-27 一种红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010875018.1A CN112071927B (zh) 2020-08-27 2020-08-27 一种红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112071927A true CN112071927A (zh) 2020-12-11
CN112071927B CN112071927B (zh) 2022-08-19

Family

ID=73660274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010875018.1A Active CN112071927B (zh) 2020-08-27 2020-08-27 一种红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112071927B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742687A (zh) * 2020-12-25 2021-05-04 电子科技大学 一种有序排布的硫化铅量子点的可控制备方法
CN113889844A (zh) * 2021-09-27 2022-01-04 电子科技大学 一种纳米线-等离激元耦合的单光子发射器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081492A1 (en) * 2017-10-26 2019-05-02 Emberion Oy PHOTOSENSITIVE FIELD EFFECT TRANSISTOR
CN109742177A (zh) * 2018-12-24 2019-05-10 北京科技大学 具有周期性应变的范德华异质结型光电探测器及制备方法
CN110047957A (zh) * 2019-04-01 2019-07-23 南京邮电大学 一种中红外光探测器及其制备方法
CN110126257A (zh) * 2019-05-15 2019-08-16 北京理工大学 一种强度可控半导体纳米晶柔性光电器件的3d打印方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081492A1 (en) * 2017-10-26 2019-05-02 Emberion Oy PHOTOSENSITIVE FIELD EFFECT TRANSISTOR
CN109742177A (zh) * 2018-12-24 2019-05-10 北京科技大学 具有周期性应变的范德华异质结型光电探测器及制备方法
CN110047957A (zh) * 2019-04-01 2019-07-23 南京邮电大学 一种中红外光探测器及其制备方法
CN110126257A (zh) * 2019-05-15 2019-08-16 北京理工大学 一种强度可控半导体纳米晶柔性光电器件的3d打印方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGWEI ZHU: "《Graphene: Fabrication, Characterizations, Properties and Applications》", 31 December 2018 *
VINH QUANG DANG: "" High Performance Flexible UV Phototransistor Using Hybrid Channel of Vertical ZnO Nanorods and Graphene"", 《ACS APPLIED MATERIALS & INTERFACES》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742687A (zh) * 2020-12-25 2021-05-04 电子科技大学 一种有序排布的硫化铅量子点的可控制备方法
CN113889844A (zh) * 2021-09-27 2022-01-04 电子科技大学 一种纳米线-等离激元耦合的单光子发射器及其制备方法
CN113889844B (zh) * 2021-09-27 2023-09-12 电子科技大学 一种纳米线-等离激元耦合的单光子发射器及其制备方法

Also Published As

Publication number Publication date
CN112071927B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
Tsakalakos et al. Silicon nanowire solar cells
JP2774142B2 (ja) 太陽電池
US8815631B2 (en) Solar cell having doped semiconductor heterojunction contacts
CN112071927B (zh) 一种红外探测器及其制备方法
US20120006390A1 (en) Nano-wire solar cell or detector
KR20140095553A (ko) 전자기 에너지 수집 장치, 시스템 및 방법
US11605743B2 (en) Photodetector based on PtSe2 and silicon nanopillar array and preparation method thereof
Raj et al. High-efficiency solar cells from extremely low minority carrier lifetime substrates using radial junction nanowire architecture
US20120042946A1 (en) Solar cell equipped with electrode having mesh structure, and process for manufacturing same
Cho et al. Sn‐catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Jia et al. Nanotechnology enhanced solar cells prepared on laser-crystallized polycrystalline thin films (< 10 µm)
Di Vece Using nanoparticles as a bottom-up approach to increase solar cell efficiency
CN105118887A (zh) 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
EP3614444B1 (en) Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
CN112489848A (zh) 一种半导体辐射电池
TWI466816B (zh) 筆直直立奈米線陣列結構及其製造方法
US20130092219A1 (en) Solar cell
JP2010258449A (ja) 3次元サブセルを有するマルチ接合光電池構造およびその方法
JP2001210845A (ja) 薄膜光電変換装置の製造方法
US10243096B2 (en) Crack-tolerant photovoltaic cell structure and fabrication method
CN107093643B (zh) 一种氮化镓位置灵敏辐射探测器及其制备方法
CN209418523U (zh) 一种倒装型可见光增敏硅基雪崩光电二极管阵列
CN109004037A (zh) 光电子器件及其制造方法
CN111933724B (zh) 光电二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant