CN112070668A - 一种基于深度学习和边缘增强的图像超分辨方法 - Google Patents
一种基于深度学习和边缘增强的图像超分辨方法 Download PDFInfo
- Publication number
- CN112070668A CN112070668A CN202010829315.2A CN202010829315A CN112070668A CN 112070668 A CN112070668 A CN 112070668A CN 202010829315 A CN202010829315 A CN 202010829315A CN 112070668 A CN112070668 A CN 112070668A
- Authority
- CN
- China
- Prior art keywords
- image
- resolution
- residual
- low
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000013135 deep learning Methods 0.000 title claims abstract description 25
- 230000006870 function Effects 0.000 claims abstract description 45
- 238000012549 training Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000012360 testing method Methods 0.000 claims abstract description 15
- 230000008447 perception Effects 0.000 claims abstract description 12
- 238000013507 mapping Methods 0.000 claims description 33
- 238000013527 convolutional neural network Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 6
- 238000003672 processing method Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
- G06T3/4076—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution using the original low-resolution images to iteratively correct the high-resolution images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4007—Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010829315.2A CN112070668B (zh) | 2020-08-18 | 2020-08-18 | 一种基于深度学习和边缘增强的图像超分辨方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010829315.2A CN112070668B (zh) | 2020-08-18 | 2020-08-18 | 一种基于深度学习和边缘增强的图像超分辨方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112070668A true CN112070668A (zh) | 2020-12-11 |
CN112070668B CN112070668B (zh) | 2024-07-12 |
Family
ID=73661893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010829315.2A Active CN112070668B (zh) | 2020-08-18 | 2020-08-18 | 一种基于深度学习和边缘增强的图像超分辨方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112070668B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112967184A (zh) * | 2021-02-04 | 2021-06-15 | 西安理工大学 | 一种基于双尺度卷积神经网络的超分辨放大方法 |
CN113658040A (zh) * | 2021-07-14 | 2021-11-16 | 西安理工大学 | 一种基于先验信息和注意力融合机制的人脸超分辨方法 |
CN113971763A (zh) * | 2020-12-21 | 2022-01-25 | 河南铮睿科达信息技术有限公司 | 一种基于目标检测和超分重建的小目标分割方法和装置 |
CN114936983A (zh) * | 2022-06-16 | 2022-08-23 | 福州大学 | 基于深度级联残差网络的水下图像增强方法及系统 |
CN116469047A (zh) * | 2023-03-20 | 2023-07-21 | 南通锡鼎智能科技有限公司 | 针对实验室教学的小目标检测方法及检测装置 |
CN116934618A (zh) * | 2023-07-13 | 2023-10-24 | 江南大学 | 一种基于改进残差网络的图像半色调方法、系统及介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106709875A (zh) * | 2016-12-30 | 2017-05-24 | 北京工业大学 | 一种基于联合深度网络的压缩低分辨率图像复原方法 |
CN109308679A (zh) * | 2018-08-13 | 2019-02-05 | 深圳市商汤科技有限公司 | 一种图像风格转换方及装置、设备、存储介质 |
KR20190040586A (ko) * | 2017-10-11 | 2019-04-19 | 인하대학교 산학협력단 | 인공신경망을 이용한 단일 영상 고해상도 복원 방법 및 시스템 |
CN110136063A (zh) * | 2019-05-13 | 2019-08-16 | 南京信息工程大学 | 一种基于条件生成对抗网络的单幅图像超分辨率重建方法 |
CN110211035A (zh) * | 2019-04-18 | 2019-09-06 | 天津中科智能识别产业技术研究院有限公司 | 融合互信息的深度神经网络的图像超分辨率方法 |
CN111062872A (zh) * | 2019-12-17 | 2020-04-24 | 暨南大学 | 一种基于边缘检测的图像超分辨率重建方法及系统 |
CN111353940A (zh) * | 2020-03-31 | 2020-06-30 | 成都信息工程大学 | 一种基于深度学习迭代上下采样的图像超分辨率重建方法 |
-
2020
- 2020-08-18 CN CN202010829315.2A patent/CN112070668B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106709875A (zh) * | 2016-12-30 | 2017-05-24 | 北京工业大学 | 一种基于联合深度网络的压缩低分辨率图像复原方法 |
KR20190040586A (ko) * | 2017-10-11 | 2019-04-19 | 인하대학교 산학협력단 | 인공신경망을 이용한 단일 영상 고해상도 복원 방법 및 시스템 |
CN109308679A (zh) * | 2018-08-13 | 2019-02-05 | 深圳市商汤科技有限公司 | 一种图像风格转换方及装置、设备、存储介质 |
CN110211035A (zh) * | 2019-04-18 | 2019-09-06 | 天津中科智能识别产业技术研究院有限公司 | 融合互信息的深度神经网络的图像超分辨率方法 |
CN110136063A (zh) * | 2019-05-13 | 2019-08-16 | 南京信息工程大学 | 一种基于条件生成对抗网络的单幅图像超分辨率重建方法 |
CN111062872A (zh) * | 2019-12-17 | 2020-04-24 | 暨南大学 | 一种基于边缘检测的图像超分辨率重建方法及系统 |
CN111353940A (zh) * | 2020-03-31 | 2020-06-30 | 成都信息工程大学 | 一种基于深度学习迭代上下采样的图像超分辨率重建方法 |
Non-Patent Citations (1)
Title |
---|
柏宇阳;朱福珍;: "改进的残差卷积神经网络遥感图像超分辨重建", 黑龙江大学自然科学学报, no. 03, 25 June 2020 (2020-06-25) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113971763A (zh) * | 2020-12-21 | 2022-01-25 | 河南铮睿科达信息技术有限公司 | 一种基于目标检测和超分重建的小目标分割方法和装置 |
CN112967184A (zh) * | 2021-02-04 | 2021-06-15 | 西安理工大学 | 一种基于双尺度卷积神经网络的超分辨放大方法 |
CN112967184B (zh) * | 2021-02-04 | 2022-12-13 | 西安理工大学 | 一种基于双尺度卷积神经网络的超分辨放大方法 |
CN113658040A (zh) * | 2021-07-14 | 2021-11-16 | 西安理工大学 | 一种基于先验信息和注意力融合机制的人脸超分辨方法 |
CN114936983A (zh) * | 2022-06-16 | 2022-08-23 | 福州大学 | 基于深度级联残差网络的水下图像增强方法及系统 |
CN116469047A (zh) * | 2023-03-20 | 2023-07-21 | 南通锡鼎智能科技有限公司 | 针对实验室教学的小目标检测方法及检测装置 |
CN116934618A (zh) * | 2023-07-13 | 2023-10-24 | 江南大学 | 一种基于改进残差网络的图像半色调方法、系统及介质 |
CN116934618B (zh) * | 2023-07-13 | 2024-06-11 | 江南大学 | 一种基于改进残差网络的图像半色调方法、系统及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112070668B (zh) | 2024-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112070668B (zh) | 一种基于深度学习和边缘增强的图像超分辨方法 | |
CN111402129B (zh) | 一种基于联合上采样卷积神经网络的双目立体匹配方法 | |
CN111047515B (zh) | 一种基于注意力机制的空洞卷积神经网络图像超分辨率重建方法 | |
CN111028163B (zh) | 一种基于卷积神经网络的联合图像去噪与弱光增强方法 | |
CN111833246B (zh) | 基于注意力级联网络的单帧图像超分辨方法 | |
CN110889895B (zh) | 一种融合单帧重建网络的人脸视频超分辨率重建方法 | |
CN112435191B (zh) | 一种基于多个神经网络结构融合的低照度图像增强方法 | |
CN113313644B (zh) | 一种基于残差双注意力网络的水下图像增强方法 | |
CN112767283A (zh) | 一种基于多图像块划分的非均匀图像去雾方法 | |
CN111861886B (zh) | 一种基于多尺度反馈网络的图像超分辨率重建方法 | |
CN116152120A (zh) | 一种融合高低频特征信息的低光图像增强方法及装置 | |
CN115731138A (zh) | 一种基于Transformer与卷积神经网络的图像修复方法 | |
CN116029902A (zh) | 一种基于知识蒸馏的无监督真实世界图像超分辨方法 | |
CN117408924A (zh) | 一种基于多重语义特征融合网络的低光照图像增强方法 | |
CN114529482B (zh) | 基于小波多通道深度网络的图像压缩感知重建方法 | |
CN110288529B (zh) | 一种基于递归局部合成网络的单幅图像超分辨率重建方法 | |
CN117114984A (zh) | 基于生成对抗网络的遥感图像超分辨率重建方法 | |
CN117078539A (zh) | 基于CNN-Transformer的局部全局交互式图像恢复方法 | |
CN117611484B (zh) | 一种基于去噪自解码网络的图像去噪方法及系统 | |
CN117078516B (zh) | 基于残差混合注意力的矿井图像超分辨率重建方法 | |
CN114022356A (zh) | 基于小波域的河道流量水位遥感图像超分辨率方法与系统 | |
CN112634168A (zh) | 一种结合边缘信息的图像修复方法 | |
CN113837963B (zh) | 基于深度网络在lab颜色空间下的水下图像增强方法 | |
CN113362241B (zh) | 一种结合高低频分解和两级融合策略的深度图去噪方法 | |
CN115797181A (zh) | 一种面向矿井模糊环境的图像超分辨率重建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240521 Address after: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Applicant after: Shenzhen Hongyue Information Technology Co.,Ltd. Country or region after: China Address before: 710048 Shaanxi province Xi'an Beilin District Jinhua Road No. 5 Applicant before: XI'AN University OF TECHNOLOGY Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240616 Address after: 211135 floor 3, building 3, Qilin artificial intelligence Industrial Park, 266 Chuangyan Road, Nanjing, Jiangsu Applicant after: Zhongke Nanjing artificial intelligence Innovation Research Institute Country or region after: China Address before: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Applicant before: Shenzhen Hongyue Information Technology Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |