CN112070641A - 基于眼动追踪的教学质量评测方法、装置及系统 - Google Patents
基于眼动追踪的教学质量评测方法、装置及系统 Download PDFInfo
- Publication number
- CN112070641A CN112070641A CN202010977934.6A CN202010977934A CN112070641A CN 112070641 A CN112070641 A CN 112070641A CN 202010977934 A CN202010977934 A CN 202010977934A CN 112070641 A CN112070641 A CN 112070641A
- Authority
- CN
- China
- Prior art keywords
- student
- attention
- path
- similarity
- teaching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000004424 eye movement Effects 0.000 title claims abstract description 43
- 238000013441 quality evaluation Methods 0.000 title claims abstract description 40
- 230000000007 visual effect Effects 0.000 claims abstract description 75
- 230000008569 process Effects 0.000 claims abstract description 19
- 238000004364 calculation method Methods 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 13
- 230000006870 function Effects 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 7
- 238000013528 artificial neural network Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 238000001303 quality assessment method Methods 0.000 claims description 4
- 238000013139 quantization Methods 0.000 claims 1
- 210000002569 neuron Anatomy 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000004434 saccadic eye movement Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000013215 result calculation Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/20—Education
- G06Q50/205—Education administration or guidance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/013—Eye tracking input arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Tourism & Hospitality (AREA)
- General Engineering & Computer Science (AREA)
- Educational Technology (AREA)
- Strategic Management (AREA)
- Educational Administration (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Human Resources & Organizations (AREA)
- General Business, Economics & Management (AREA)
- General Health & Medical Sciences (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Electrically Operated Instructional Devices (AREA)
Abstract
本发明公开一种基于眼动追踪的教学质量评测方法,根据学生的视觉路径与教师授课过程中的光标路径、教师授课过程中的课程内容的显示路径、教师授课的讲演内容顺序的相关性计算学生的视觉注意力得分,并依据注意力得分与预设的注意力得分阈值的大小关系生成该学生的注意力模式,使得学生在线学习过程中的注意力得以可视化,从而可以量化学生的学习效率。进一步地,本发明还依据学生在同一科目的往期课程的注意力模式、量化指标、考核结果预测该学生在该科目的未来某次课程的注意力模式、量化指标及未来某次的考核结果,实现了学生未来的学习质量和考核成果的预测。另,本发明还公开一种基于眼动追踪的教学质量评测装置、系统及计算机可读存储介质。
Description
技术领域
本发明涉及线上教学技术领域,尤其涉及一种基于眼动追踪的教学质量评测方法、装置、系统及计算机可读存储介质。
背景技术
信息科技快速发展,5G、人工智能、物联网、虚拟现实等技术与教育的结合孕育出了多种智慧教育方式,例如:在线教育、数字多媒体教育、虚拟现实实践课等,并且已经在基础教育、高等学历教育、专业技术教育等方面被广泛应用。传统的智慧教育只是单纯的通过电脑等终端设备将课程内容单向传授给学生,授课老师并不能及时掌握学生的学习状态、学习效率等,学生的反馈不足会导致老师难以掌握教学节奏以及设置个性化的重点教育内容,大大降低学生的学习效率。
因此,亟需提供一种能够实时监测学生在线学习过程中的注视点并结合课程内容获得学生的视觉注意力情况的教学质量评测方法来解决上述问题。
发明内容
本发明的目的在于提供一种能够实时监测学生在线学习过程中的注视点并结合课程内容获得学生的视觉注意力情况的基于眼动追踪的教学质量评测方法、装置、系统及计算机可读存储介质。
为实现上述目的,本发明提供了一种基于眼动追踪的教学质量评测方法,包括:信息获取步骤:获取学生的注视点和视觉路径。以及,注意力得分计算步骤:根据学生的视觉路径与教师授课过程中的光标路径的相关性以及所述视觉路径与教师授课过程中的课程内容的显示路径、教师授课的讲演内容顺序的相关性计算学生的视觉注意力得分。
具体地,注意力得分计算步骤具体为:计算所述视觉路径与所述光标路径的相似度以及所述视觉路径与课程内容的显示路径、教师授课的讲演内容顺序的相似度;依据所述视觉路径与光标路径的相似度、所述视觉路径与显示路径的相似度及所述视觉路径与讲演内容顺序的相似度获得该学生的注意力得分。
较佳地,所述基于眼动追踪的教学质量评测方法还包括:计算学生的注视点与注视点分布基准的相似度。在注意力得分计算步骤中,具体是依据学生的注视点与所述注视点分布基准的相似度、所述视觉路径与光标路径的相似度、所述视觉路径与显示路径的相似度及所述视觉路径与讲演内容顺序的相似度获得该学生的注意力得分。
具体地,所述注意力得分为由学生的注视点与所述注视点分布基准的相似度、所述视觉路径与光标路径的相似度、所述视觉路径与显示路径的相似度及所述视觉路径与讲演内容顺序的相似度加权计算获得。
较佳地,将科目成绩排在前50%范围内的部分或全部学生归为G组,所述注视点分布基准为同一时间段G组学生中某位与其他G组学生的注视点相似度总和最高的学生的注视点;依据下式计算两学生的注视点之间的相似度:
其中,εAB表示学生的视觉空间相似度,(XkAi,YkAi)表示其中一学生的第i个注视点,(XkBi,YkBi)表示另一学生的第i个注视点。
具体地,在注意力得分计算步骤是基于编码模板,采用Needleman/Wunsch算法计算所述视觉路径与所述光标路径的相似度。
较佳地,所述基于眼动追踪的教学质量评测方法还包括:注意力模式计算步骤:依据所述注意力得分与预先设置的注意力得分阈值的大小关系生成该学生的注意力模式,所述注意力模式包括注意力高效、注意力中等及注意力低下。
较佳地,所述基于眼动追踪的教学质量评测方法还包括:教学质量报告生成步骤:生成教学质量评测报告,所述教学质量评测报告包括所述注意力模式、量化指标、注意力热度图之至少一者;所述量化指标包括对屏(或对黑板)注视率、图片注视率、文字注视率及随课同步分数之至少一者。其中,所述对屏(或对黑板)注视率为预设时间内学生注视屏幕(或黑板)的时长与所述预设时间之比,所述图片注视率为预设时间内学生注视课程内容中图片的时长与所述预设时间之比,所述文字注视率为预设时间内学生注视课程内容中文字的时长与所述预设时间之比,所述随课同步分数为依据学生注视课程内容中所标记出的重点区域的时长获得。
更佳地,还记录学生注视课程内容中所标记出的重点区域的时长,若该时长大于预设时长阈值,定义该学生获得所述随课同步分数的加分。
较佳地,所述基于眼动追踪的教学质量评测方法还包括:学习质量预测步骤:依据学生在同一科目的往期课程的注意力模式、量化指标、考核结果预测该学生在该科目的未来某次课程的注意力模式、量化指标及未来某次的考核结果;其中,所述考核结果包括考试成绩。
具体地,在学习质量预测步骤中是将学生在同一科目的往期课程的注意力模式、量化指标、考核结果输入神经网络进行加权计算后与预设阈值比较,并带入激活函数运算,输出结果为该学生在该科目的未来某次课程的注意力模式、量化指标及未来某次的考核结果;所述神经网络包括输入层,隐含层以及输出层,其采用sigmoid函数作为所述激活函数。
为实现上述目的,本发明还提供了一种基于眼动追踪的教学质量评测装置,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时,执行如上所述的基于眼动追踪的教学质量评测方法。
为实现上述目的,本发明还提供了一种基于眼动追踪的教学质量评测系统,包括多个眼动采集装置、多个分别与一所述眼动采集装置配合的用户终端以及与多个所述用户终端通讯连接的教学质量评测装置。所述用户终端借由所述眼动采集装置采集学生的眼动数据并传送至所述教学质量评测装置,所述教学质量评测装置如上所述。
为实现上述目的,本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序可被处理器执行以完成如上所述的基于眼动追踪的教学质量评测方法。
与现有技术相比,本发明依据学生在课堂中的视觉路径和教师授课过程中的课程内容(光标路径、显示路径、讲演内容顺序)的相关性来获得学生注意力情况,使得学生在线学习过程中的注意力得以可视化,从而可以量化学生的学习效率,评测教学质量。与此同时,可以发现教学过程中的难点与重点,辅助完善课件设计与教学。此外,本发明还依据学生在同一科目的往期课程的注意力模式、量化指标、考核结果,实现学生未来的学习质量和考核成果的预测。
附图说明
图1为视觉注意力模式计算模型。
图2a为路径相似度计算编码模板。
图2b为学生视觉路径编码示意图。
图2c为授课者授课光标路径编码示意图。
图3为学生学习质量预测模型。
图4为神经网络模型。
图5为神经元计算模型。
图6为基于眼动追踪的教学质量评测系统的组成框图。
图7a、7b、7c分别为本发明一实施例眼动采集装置和用户终端的示意图。
具体实施方式
为了详细说明本发明的技术内容、构造特征,以下结合具体实施方式并配合附图作进一步说明。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于描述的实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
本发明涉及基于眼动追踪的教学质量评测方法。其在智慧教育中加入视觉追踪,实时监测学生在线学习过程中的视觉注意力分布,例如在难度较大的数学公式的推导过程中注意力的集中程度、阅读理解任务中重点词句的关注、在阅读图文混编的页面时注意力分配的模式等。然后结合学生长期学习过程中的注意力模式、考试中的成绩表现,精细化定位每个学生个体的问题与不足,可以给定制个性化的学习改善与提高计划提供参考。以下,将参考附图详细描述本发明。
图1示出了基于眼动追踪的教学质量评测方法一实施例所采用的视觉注意力模式计算模型的示意图,该计算模型根据输入的多个数据(相同授课场景下所有学生的眼动数据、各节课程的各个阶段(一节课程划分为多个时间段)的光标路径、各节课程的各个阶段(一节课程划分为多个时间段)的课程内容的显示路径)进行计算后,输出学生的注意力模式(注意力高效、注意力中等、注意力低下)。具体的,基于眼动追踪的教学质量评测方法包括:
S101,由输入的眼动数据获得学生在课堂中的有时序的注视点和视觉路径。
S102,计算学生的注视点与注视点分布基准的相似度以获得视觉空间相似度得分;计算学生视觉路径与教师授课过程中的光标路径(授课者授课过程中所使用光标的移动轨迹,例如:鼠标光标、多种形式的画图笔)的相似度以获得光标路径相似度得分;计算视觉路径与课程内容的显示路径(例如,播放ppt时,ppt各张幻灯片出现内容的顺序轨迹可能是不一样的,如某些幻灯片是从左上角到右下角依次显示内容、某些幻灯片是由中间位置先显示内容,然后左右两侧再依次显示内容)的相似度以获得课程内容路径相似度得分;计算视觉路径与教师授课的讲演内容顺序(在展示出来的课程内容中,教师的讲演顺序可能有所不同,例如在某些情况下教师先讲演左侧的内容,然后再讲演中间位置的内容,最后讲演右侧的内容;而在某些情况下,教师则是先讲演中间位置的内容,然后讲演左侧的内容,最后讲演右侧的内容)的相似度以获得讲演内容顺序相似度得分。
S103,依据学生的注视点与注视点分布基准的相似度(视觉空间相似度得分)、视觉路径与光标路径的相似度(光标路径相似度得分)、视觉路径与课程内容显示路径的相似度(课程内容路径相似度得分)及视觉路径与讲演内容顺序的相似度(讲演内容顺序相似度得分)获得该学生的注意力得分。当然,具体实施中也不限于通过相似度来计算学生的注意力得分,也可以是采用其它方式来获得学生的注视点与注视点分布基准的相关性、视觉路径与光标路径的相关性、视觉路径与课程内容显示路径的相关性及视觉路径与讲演内容顺序的相关性,进而计算该学生的注意力得分。
S104,依据注意力得分与预先设置的注意力得分阈值的大小关系生成该学生的注意力模式。
其中,在一实施例中,注意力得分为由学生的注视点与注视点分布基准的相似度、视觉路径与光标路径的相似度、视觉路径与课程内容显示路径的相似度及视觉路径与讲演内容顺序的相似度加权计算获得。具体而言,预先设定可调的参数w1、w2、w3、w4,学生的视觉注意力模式得分=w1*视觉空间相似度得分+w2*光标路径相似度得分+w3*课程内容路径相似度得分+w4*讲演内容顺序相似度得分。
在一实施例中,注视点分布基准为同一时间段G组学生中某位与其他学生的注视点相似度总和最高的学生的注视点。具体通过以下方式获得该与其他学生的注视点相似度最高的学生的注视点:
假设参与听课的学生数量为q,首先按照离当前时间点最近的连续3次(如果考试次数不到3次,则计算所有考试次数的该科目成绩平均值,如果没有过考试经历,则将所有学生定义为G组学生)该科目成绩平均值排在前30%范围内的全部学生(如为小数采取四舍五入的方法取整数)定义为G组学生,其余学生定义为H组学生。
设某一授课过程划分为I个时间段,计算第k时间段参与听课的每个学生之间的注视点相似度。例如,第k个时间段中,参与听课的A学生拥有m个注视点,位置分别为points_A={(XkA1,YkA1),(XkA2,YkA2),…,(XkAm,YkAm)},B学生拥有n个注视点,位置分别为points_B={(XkB1,YkB1),(XkB2,YkB2),…,(XkBn,YkBn)};设m<n,依次计算points_B中各个点与points_A中各个点的距离,最终在points_B中选出与points_A中各个点距离较近的m个点作为B学生的注视点points_B_new={(XkB1,YkB1),(XkB2,YkB2),…,(XkBm,YkBm)}。依据下式计算A学生的注视点与B学生的注视点之间的相似度:
其中,εAB表示学生的视觉空间相似度,ρkAB越小,εAB越大。首先计算参与听课的G组学生中每个学生之间的注视点相似度,获得G组学生中某一位学生与G组学生中其他学生的注视点相似度总和最高的学生的注视点,并将其作为k时间段的注视点分布基准points_base={(Xkbase1,Ykbase1),(Xkbase2,Ykbase2),…,(Xkbasem,Ykbasem)}。接着计算参与听课的每个学生的注视点与注视点分布基准的相似度。而,各个学生的注视点与注视点分布基准的相似度即为该学生在第k个时间段的阶段视觉空间相似度得分。然后,将全部时间段(I个时间段)的阶段视觉空间相似度得分进行加和运算即得到该学生的视觉空间相似度得分。
在一实施例中,是通过以下方式计算学生视觉路径与光标路径的相似度以获得光标路径相似度得分:
预先设定路径相似度计算编码模板,如图2a所示。设定可调的时间区间,将某一授课过程分成I个时间段。获取相应时间区间内参与听课的学生的注视点以及注视顺序,例如第k个时间段中D学生的注视点以及注视顺序。设第k个时间段中D学生的视觉路径如图2b所示,由编码模板可得D学生的视觉路径route_D={ADG,AFZ,AGU,ALM,ALZ,AEP,ALQ,AGN,AFK,AMS}。授课者在授课中使用光标进行辅助授课,光标路径如图2c所示,由编码模板可得光标路径route_cursor={ADG,AFZ,AHM,AGU,ALM,ALZ,AEP,AGY,ACX,ALQ,AGN,AFK,AJY,AMS,AHK}。然后,使用Needleman/Wunsch算法计算D学生的视觉路径与光标路径的相似度,具体计算方式如下所示。
用LCS(A,B)表示A和B最长公共子串的长度,设定A=a1 a2 …aN,表示A是由N个预设的字符串组成,B=b1 b2 …bM,表示B是由M个预设的字符串组成。定义LCS(i,j)=LCS(a1a2 …ai,b1 b2 …bj),其中,0≤i≤N,0≤j≤M,LCS(i,j)计算方法如下式(公式二):
下面,以D学生的视觉路径route_D和光标路径route_cursor为例计算LCS矩阵:
首先,初始化矩阵,如下表所示:
ADG | AFZ | AGU | ALM | ALZ | AEP | ALQ | AGN | AFK | AMS | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
ADG | 0 | ||||||||||
AFZ | 0 | ||||||||||
AHM | 0 | ||||||||||
AGU | 0 | ||||||||||
ALM | 0 | ||||||||||
ALZ | 0 | ||||||||||
AEP | 0 | ||||||||||
AGY | 0 | ||||||||||
ACX | 0 | ||||||||||
ALQ | 0 | ||||||||||
AGN | 0 | ||||||||||
AFK | 0 | ||||||||||
AJY | 0 | ||||||||||
AMS | 0 | ||||||||||
AHK | 0 |
接着,利用上述公式二计算矩阵的其余行,如下表所示:
ADG | AFZ | AGU | ALM | ALZ | AEP | ALQ | AGN | AFK | AMS | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
ADG | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
AFZ | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
AHM | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
AGU | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
ALM | 0 | 1 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
ALZ | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
AEP | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 6 | 6 |
AGY | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 6 | 6 |
ACX | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 6 | 6 | 6 |
ALQ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 7 | 7 |
AGN | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 8 |
AFK | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 9 |
AJY | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 9 |
AMS | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
AHK | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最终,获得LCS(route_D,route_cursor)=10,即,定义D学生的第k个时间段的阶段光标路径相似度得分为10,然后将全部时间段的阶段光标路径相似度得分进行加和运算即得到该学生的光标相似度得分。
对于课程内容路径相似度得分,在该实施例中,其计算方式与光标路径相似度得分计算方式类似,将其中的光标路径编码序列替换成可能出现的授课过程中有时间序列显示的课程内容的编码序列即可,然后,同样使用Needleman/Wunsch算法计算学生的课程内容路径相似度得分,在此不再赘述。类似的,讲演内容顺序相似度得分也可以是采用与光标路径相似度得分计算类似的方式进行计算。
为综合评估教学质量,在一实施例中,还生成教学质量评测报告。教学质量评测报告包括注意力模式、量化指标、注意力热度图之至少一者,量化指标包括对屏(或对黑板)注视率、图片注视率、文字注视率及随课同步分数之至少一者。优选的,教学质量评测报告包括注意力模式、量化指标及注意力热度图,量化指标包括对屏(或对黑板)注视率、图片注视率、文字注视率及随课同步分数,以更全面地评估教学质量。其中,对屏注视率、对黑板注视率分别为两种不同的授课场景下的量化指标,对屏注视率指的是通过显示屏显示课程内容时的一量化指标,对黑板注视率指的是通过黑板显示课程内容时的一量化指标。
其中,对屏(或对黑板)注视率为由授课过程中参与听课的学生注视屏幕(或黑板)的时长(对屏(或黑板)注视时长)除以该学生注视屏幕(或黑板)的时长与注视屏幕(或黑板)以外的时长(离屏(黑板)注视时长)之和获得,即对屏(对黑板)注视率=对屏(对黑板)注视时长/(对屏(对黑板)注视时长+离屏(黑板)注视时长)。图片注视率、文字注视率为由授课过程中学生注视课程内容中图片/文字的时长除以该学生注视课程内容中文字和图片的时长之和获得,即图片注视率=图片注视时长/(图片注视时长+文字注视时长),文字注视率=文字注视时长/(图片注视时长+文字注视时长)。
随课同步分数为依据学生注视课程内容中所标记出的重点区域(授课者在授课过程中用鼠标(或光标)标记出的区域,例如重点文字、图像等)的时长获得。在一实施例中,是记录学生注视课程内容中所标记出的重点区域的时长,若该时长大于预设时长阈值,则定义该学生获得一次额外注意力集中的加分,即随课同步分数加分。例如,在一次授课过程中,授课者可能会标记出多个重点区域,如十个,当学生注视其中六个重点区域的时长超过预设时长阈值时,随课同步分数的得分为6,依据随课同步分数便可直观地获知学生对于重点区域的注意力情况。附带一提的是,前述随课同步分数的得分计算方式仅为示例性的,并不限于前述所列举的方式,例如,在一些实施例中,针对不同的重点区域也可以设置不同的分值,预设时长阈值也可以是不同的数值。
在一实施例中,是根据学生的目光注视位置、扫视位置(眼跳位置)等生成学生视觉注意力热度图,以可视化学生的注意力分布,便于学生了解注意力分布情况,例如,学生家长可以直观地了解学生在教学过程中的注意力情况。具体而言,可以选择设置生成视觉注意力热度图的时间间隔,以获得包含单个热度区域或多个热度区域的视觉注意力热度图。
进一步地,在一实施例中,还将学生在同一科目的往期课程的注意力模式、量化指标、考核结果输入至学生学习质量预测模型(如图3所示),以依据学生在同一科目的往期课程的注意力模式、量化指标、考核结果预测该学生在该科目的未来某次课程的注意力模式、量化指标及未来某次的考核结果。例如,对于数学科目,包括有n节课程(课程1、课程2…课程n),根据学生在数学科目以往各节课的注意力模式、量化指标、考核结果(例如考试成绩)预测数学科目的下一节课中该学生的注意力模式、量化指标及考核结果。
具体的,是将学生在同一科目的往期课程的注意力模式、量化指标、考核结果输入神经网络进行加权计算后与预设阈值比较,并带入激活函数运算,通过激活函数将神经元的计算结果控制在0-1之间,输出结果即为该学生在该科目的未来某次课程的注意力模式、量化指标及未来某次的考核结果。神经网络的网络结构如图4所示,其包括输入层、隐含层及输出层,将学生在以往各节课的注意力模式、量化指标及考核结果(X1,X2,X3,...,Xn)输入输入层,隐含层对输入的值进行运算,并由输出层输出。每个神经元的结构如图5所示,每个神经元左侧的连线都表示一个可调的权重值,θi是该神经元的阈值(即预设阈值),神经元计算公式为采用sigmoid函数作为激活函数,神经元的输出值b=sigmoid(Netin-θi)。
在一实施例中,利用学生学习质量数据库训练学习质量预测模型,以不断更新学习质量预测模型的参数,例如神经元左侧连线的权重值、神经元的阈值θi等,从而提高预测结果的准确性。其中,学生学习质量数据库中包括所有学生的长期的、不同教学科目(例如,语文、数学、英语、职业培训、党课等)的各节课程的视觉注意力模式以及量化指标、阶段的考核成绩等数据。
与现有技术相比,本发明依据学生在课堂中的的注视点与注视点分布基准的相似度并结合学生视觉路径和课程内容(光标路径、显示路径、讲演内容顺序)的相似度来获得学生注意力情况,使得学生在线学习过程中的注意力得以可视化,从而可以量化学生的学习效率,评测教学质量。与此同时,可以发现教学过程中的难点与重点,辅助完善课件设计与教学。此外,本发明还依据学生在同一科目的往期课程的注意力模式、量化指标、考核结果,实现学生未来的学习质量和考核成果的预测。
本发明还涉及一种基于眼动追踪的教学质量评测系统,如图6所示,该教学质量评测系统包括多个眼动采集装置100、多个分别与一眼动采集装置100配合的用户终端300以及教学质量评测装置200,教学质量评测装置200与各个用户终端300通讯连接。其中,用户终端300借由眼动采集装置100采集学生的眼动数据(包括但不限于学生的注视位置、扫视位置),并通过通讯网络传送至教学质量评测装置200。课程内容由用户终端300(学生所使用终端设备)的显示屏310显示。图7a、7b、7c分别示出本发明一实施例的眼动采集装置100和用户终端300,图7a所示实施例中,眼动采集装置100为独立于用户终端300的头戴式采集装置,使用时,需要学生将其穿戴在头上,其包括用于与学生头部固定的头戴式装置本体110和设置在头戴式装置本体110上的摄像头120,通过摄像头120采集学生的眼动数据。图7b所示实施例中,眼动采集装置100为独立的桌面式采集装置,使用时,将其放置在用户终端300的显示屏310的前端,其包括支架110’和设置在支架110’上的摄像头120’。图7c所示实施例中,眼动采集装置100为集成在用户终端300,例如,为设置在用户终端300的显示屏310上方的摄像头120”等。其中,文中所述用户终端300可以为笔记本电脑、台式电脑、学习机、手机等任何具备数据传输和显示功能的终端设备。附带一提的是,授课人员可以通过用户终端300进行授课,学员通过用户终端300进行学习、测试,所有用户(此处的用户包括授课人员、学生以及其他人员,例如,学生家长、管理人员等)都可以查看权限范围内的数据。
如图6所示,教学质量评测装置200包括处理器210、存储器220以及存储在存储器220中且被配置为由处理器210执行的计算机程序,例如,基于眼动追踪的教学质量评测程序。存储器220用于存储各用户终端300传送的眼动数据、注意力模式计算模型参数、学生学习质量预测模型参数、以往的注意力模式、量化指标、阶段的考核成绩计算结果等。处理器210执行计算机程序时,执行上述实施例中基于眼动追踪的教学质量评测方法,以生成视觉注意力热度图、教学质量报告等并预测学生的学习质量。该教学质量评测装置200可以与多个用户终端300建立通讯连接以实现课程内容的传输、眼动数据的接收、存储、指令交互等。其可以是单个计算机或多台计算机组网,具体可以是台式计算机、笔记本电脑等任意具有数据处理能力的计算设备,教学质量评测装置200也不限于包括处理器210、存储器220。本领域技术人员可以理解,图6所示示意图仅仅是教学质量评测装置200的示例,并不构成对教学质量评测装置200的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备、总线等。教学质量评测装置200与其他教育相关软件具有软件接口与协议,可以协同工作,进行指令、数据的交互。根据需要也可以与其他功能软件进行数据、指令互传,例如:用户身份认证、用户疲劳提醒等;
相应地,本发明还涉及一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器210执行时,完成上述实施例中的基于眼动追踪的教学质量评测方法。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读存储介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM)、随机存取存储器(RAM)等。
以上结合最佳实施例对本发明进行了描述,但本发明并不局限于以上揭示的实施例,而应当涵盖各种根据本发明的本质进行的修改、等效组合。
Claims (14)
1.一种基于眼动追踪的教学质量评测方法,其特征在于,包括以下步骤:
(1)获取学生在课堂中的注视点和视觉路径;
(2)根据学生的视觉路径与教师授课过程中的光标路径的相关性以及所述视觉路径与教师授课过程中的课程内容的显示路径、教师授课的讲演内容顺序的相关性计算学生的视觉注意力得分。
2.如权利要求1所述的基于眼动追踪的教学质量评测方法,其特征在于,步骤(2)具体为:
计算所述视觉路径与所述光标路径的相似度以及所述视觉路径与课程内容的显示路径、教师授课的讲演内容顺序的相似度;
依据所述视觉路径与光标路径的相似度、所述视觉路径与显示路径的相似度及所述视觉路径与讲演内容顺序的相似度获得该学生的注意力得分。
3.如权利要求2所述的基于眼动追踪的教学质量评测方法,其特征在于,还包括:计算学生的注视点与注视点分布基准的相似度;在步骤(2)中,依据学生的注视点与所述注视点分布基准的相似度、所述视觉路径与光标路径的相似度、所述视觉路径与显示路径的相似度及所述视觉路径与讲演内容顺序的相似度获得该学生的注意力得分。
4.如权利要求3所述的基于眼动追踪的教学质量评测方法,其特征在于,所述注意力得分为由学生的注视点与所述注视点分布基准的相似度、所述视觉路径与光标路径的相似度、所述视觉路径与显示路径的相似度及所述视觉路径与讲演内容顺序的相似度加权计算获得。
6.如权利要求2所述的基于眼动追踪的教学质量评测方法,其特征在于,基于编码模板,采用Needleman/Wunsch算法计算所述视觉路径与所述光标路径的相似度。
7.如权利要求1所述的基于眼动追踪的教学质量评测方法,其特征在于,还包括:依据所述注意力得分与预先设置的注意力得分阈值的大小关系生成该学生的注意力模式,所述注意力模式包括注意力高效、注意力中等及注意力低下。
8.如权利要求7所述的基于眼动追踪的教学质量评测方法,其特征在于,还包括:生成教学质量评测报告,所述教学质量评测报告包括所述注意力模式、量化指标、注意力热度图之至少一者;所述量化指标包括对屏(或对黑板)注视率、图片注视率、文字注视率及随课同步分数之至少一者,所述对屏(或对黑板)注视率为预设时间内学生注视屏幕(或黑板)的时长与所述预设时间之比,所述图片注视率为预设时间内学生注视课程内容中图片的时长与所述预设时间之比,所述文字注视率为预设时间内学生注视课程内容中文字的时长与所述预设时间之比,所述随课同步分数为依据学生注视课程内容中所标记出的重点区域的时长获得。
9.如权利要求8所述的基于眼动追踪的教学质量评测方法,其特征在于,还包括:记录学生注视课程内容中所标记出的重点区域的时长,若该时长大于预设时长阈值,定义该学生获得所述随课同步分数的加分。
10.如权利要求8所述的基于眼动追踪的教学质量评测方法,其特征在于,依据学生在同一科目的往期课程的注意力模式、量化指标、考核结果预测该学生在该科目的未来某次课程的注意力模式、量化指标及未来某次的考核结果;其中,所述考核结果包括考试成绩。
11.如权利要求10所述的基于眼动追踪的教学质量评测方法,其特征在于,将学生在同一科目的往期课程的注意力模式、量化指标、考核结果输入神经网络进行加权计算后与预设阈值比较,并带入激活函数运算,输出结果为该学生在该科目的未来某次课程的注意力模式、量化指标及未来某次的考核结果;所述神经网络包括输入层、隐含层以及输出层,其采用sigmoid函数作为所述激活函数。
12.一种基于眼动追踪的教学质量评测装置,其特征在于,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时,执行如权利要求1至11任一项所述的基于眼动追踪的教学质量评测方法。
13.一种基于眼动追踪的教学质量评测系统,其特征在于,包括:多个眼动采集装置、多个分别与一所述眼动采集装置配合的用户终端以及与多个所述用户终端通讯连接的教学质量评测装置,所述用户终端借由所述眼动采集装置采集学生的眼动数据并传送至所述教学质量评测装置,所述教学质量评测装置如权利要求12所述。
14.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序可被处理器执行以完成如权利要求1至11任一项所述的基于眼动追踪的教学质量评测方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010977934.6A CN112070641A (zh) | 2020-09-16 | 2020-09-16 | 基于眼动追踪的教学质量评测方法、装置及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010977934.6A CN112070641A (zh) | 2020-09-16 | 2020-09-16 | 基于眼动追踪的教学质量评测方法、装置及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112070641A true CN112070641A (zh) | 2020-12-11 |
Family
ID=73680557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010977934.6A Pending CN112070641A (zh) | 2020-09-16 | 2020-09-16 | 基于眼动追踪的教学质量评测方法、装置及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112070641A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112732076A (zh) * | 2020-12-30 | 2021-04-30 | 江西格灵如科科技有限公司 | 虚拟现实环境中的实时教学指导方法及系统 |
CN113255431A (zh) * | 2021-04-02 | 2021-08-13 | 青岛小鸟看看科技有限公司 | 用于远程教学的提醒方法、装置及头戴显示设备 |
CN113506027A (zh) * | 2021-07-27 | 2021-10-15 | 北京工商大学 | 基于学生视觉注意及教师行为的课程质量评估与提升方法 |
CN113500607A (zh) * | 2021-06-07 | 2021-10-15 | 深圳市优必选科技股份有限公司 | 辅助学习方法、辅助学习装置、机器人及存储介质 |
CN114971425A (zh) * | 2022-07-27 | 2022-08-30 | 深圳市必提教育科技有限公司 | 数据库信息监控方法、装置、设备及存储介质 |
GB2611401A (en) * | 2021-09-20 | 2023-04-05 | Amir Homayoun Javadi | Behavioural monitoring system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500011A (zh) * | 2013-10-08 | 2014-01-08 | 百度在线网络技术(北京)有限公司 | 眼动轨迹规律分析方法和装置 |
CN108491781A (zh) * | 2018-03-16 | 2018-09-04 | 福州外语外贸学院 | 一种课堂专注度评估方法及终端 |
CN108682189A (zh) * | 2018-04-20 | 2018-10-19 | 南京脑桥智能科技有限公司 | 一种学习状态确认系统及方法 |
CN109472464A (zh) * | 2018-10-22 | 2019-03-15 | 佛山市顺德区中山大学研究院 | 一种基于眼动追踪的在线课程质量的评估方法 |
CN111610862A (zh) * | 2020-06-22 | 2020-09-01 | 江苏开放大学(江苏城市职业学院) | 一种基于眼动信号的在线教学模式切换方法 |
-
2020
- 2020-09-16 CN CN202010977934.6A patent/CN112070641A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500011A (zh) * | 2013-10-08 | 2014-01-08 | 百度在线网络技术(北京)有限公司 | 眼动轨迹规律分析方法和装置 |
CN108491781A (zh) * | 2018-03-16 | 2018-09-04 | 福州外语外贸学院 | 一种课堂专注度评估方法及终端 |
CN108682189A (zh) * | 2018-04-20 | 2018-10-19 | 南京脑桥智能科技有限公司 | 一种学习状态确认系统及方法 |
CN109472464A (zh) * | 2018-10-22 | 2019-03-15 | 佛山市顺德区中山大学研究院 | 一种基于眼动追踪的在线课程质量的评估方法 |
CN111610862A (zh) * | 2020-06-22 | 2020-09-01 | 江苏开放大学(江苏城市职业学院) | 一种基于眼动信号的在线教学模式切换方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112732076A (zh) * | 2020-12-30 | 2021-04-30 | 江西格灵如科科技有限公司 | 虚拟现实环境中的实时教学指导方法及系统 |
CN113255431A (zh) * | 2021-04-02 | 2021-08-13 | 青岛小鸟看看科技有限公司 | 用于远程教学的提醒方法、装置及头戴显示设备 |
CN113500607A (zh) * | 2021-06-07 | 2021-10-15 | 深圳市优必选科技股份有限公司 | 辅助学习方法、辅助学习装置、机器人及存储介质 |
CN113500607B (zh) * | 2021-06-07 | 2022-07-19 | 深圳市优必选科技股份有限公司 | 辅助学习方法、辅助学习装置、机器人及存储介质 |
CN113506027A (zh) * | 2021-07-27 | 2021-10-15 | 北京工商大学 | 基于学生视觉注意及教师行为的课程质量评估与提升方法 |
GB2611401A (en) * | 2021-09-20 | 2023-04-05 | Amir Homayoun Javadi | Behavioural monitoring system |
GB2611401B (en) * | 2021-09-20 | 2023-10-18 | Amir Homayoun Javadi | Behavioural monitoring system |
CN114971425A (zh) * | 2022-07-27 | 2022-08-30 | 深圳市必提教育科技有限公司 | 数据库信息监控方法、装置、设备及存储介质 |
CN114971425B (zh) * | 2022-07-27 | 2022-10-21 | 深圳市必提教育科技有限公司 | 数据库信息监控方法、装置、设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chiu et al. | Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education | |
CN112070641A (zh) | 基于眼动追踪的教学质量评测方法、装置及系统 | |
Bell | Online role-play: Anonymity, engagement and risk | |
Bondie et al. | Interaction principles for digital puppeteering to promote teacher learning | |
Randeniya et al. | Virtual reality based maintenance training effectiveness measures–a novel approach for rail industry | |
Sun et al. | Knowledge-construction behaviors in a mobile learning environment: A lag-sequential analysis of group differences | |
Wang | Developing a web-based assessment system for evaluating examinee’s understanding of the procedure of scientific experiments | |
Kumar et al. | AIAVRT: 5.0 Transformation in Medical Education with Next Generation AI-3D Animation and VR Integrated Computer Graphics Imagery. | |
Pise et al. | Estimation of learning affects experienced by learners: an approach using relational reasoning and adaptive mapping | |
Cai et al. | Effects of a BCI-based AR inquiring tool on primary students’ science learning: a quasi-experimental field study | |
Hernández Correa et al. | An application of machine learning and image processing to automatically detect teachers’ gestures | |
Ling et al. | Behavioural intentional to use computers among educators | |
Saad et al. | Challenges and expectations of online Arabic language teaching in the Covid-19 pandemic era | |
Zeichner | Enablers and inhibitors in teachers’ usage of open educational resources | |
Paracha et al. | Interactive screening of learning issues via eye-tracking technology | |
Paraskeva et al. | Designing collaborative learning environments using educational scenarios based on SR | |
Pinto et al. | Drive-math project: Case study from the Polytechnic of Porto, PT | |
Wu | Design of multimedia assisted English online teaching model based on flipped classroom | |
Li et al. | Examining students' self‐regulated learning processes and performance in an immersive virtual environment | |
Barbosa et al. | CURUMIM: A Proposal of an Intelligent Tutor System to Teach Trigonometry | |
Jian et al. | Eye movements in the manipulation of hands-on and computer-simulated scientific experiments: an examination of learning processes using entropy and lag sequential analyses | |
Yılmaz et al. | Examining student views on the use of the learning analytics dashboard of a smart mooc | |
Zhang | Research on the application of VR technology into practical teaching course, Taking the Artistic Human Anatomy course of design specialty as an example | |
Narsico et al. | Screentime Activity and Academic Productivity of Students | |
Štiglic et al. | Supplementary Online Resources for the Development of Behaviour Change Support Competencies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |