CN112069734A - 一种电热泵-热电联合系统的优化调控方法及系统 - Google Patents

一种电热泵-热电联合系统的优化调控方法及系统 Download PDF

Info

Publication number
CN112069734A
CN112069734A CN202010922508.2A CN202010922508A CN112069734A CN 112069734 A CN112069734 A CN 112069734A CN 202010922508 A CN202010922508 A CN 202010922508A CN 112069734 A CN112069734 A CN 112069734A
Authority
CN
China
Prior art keywords
thermoelectric
heat pump
electric heat
unit
combined system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010922508.2A
Other languages
English (en)
Other versions
CN112069734B (zh
Inventor
房方
仲心萌
金顺平
刘亚娟
林忠伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202010922508.2A priority Critical patent/CN112069734B/zh
Publication of CN112069734A publication Critical patent/CN112069734A/zh
Priority to JP2021522043A priority patent/JP7261507B2/ja
Priority to PCT/CN2021/080499 priority patent/WO2022048127A1/zh
Priority to US17/472,866 priority patent/US20220074620A1/en
Application granted granted Critical
Publication of CN112069734B publication Critical patent/CN112069734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Educational Administration (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了一种电热泵‑热电联合系统的优化调控方法及系统,涉及能源运营技术领域,能够将各个机组看成不同的主体,以每个主体自身利益最大化为目标进行调控,不仅能够满足热电用户的负荷需求,还能够使得各个机组主体对其收益最大程度的满意;该方法包括S1、建立电热泵‑热电联合系统的组成结构框架,并建立各机组的出力模型;S2、建立电热泵‑热电联合系统中各机组的收益函数模型;S3、建立电热泵‑热电联合系统的非合作博弈模型;S4、采用粒子群算法对博弈模型进行求解,获得各机组的热电调度优化方案。本发明提供的技术方案适用于电热泵‑热电联合系统调控的过程中。

Description

一种电热泵-热电联合系统的优化调控方法及系统
【技术领域】
本发明涉及能源运营技术领域,尤其涉及一种电热泵-热电联合系统的优化调控方法及系统。
【背景技术】
在能源结构发生深刻变革的国际环境中,全球能源转型正在深入推进,风电、光伏等清洁能源的开发利用也得到了大力的发展,是实现可持续发展的关键。在能源转型的全球趋势下,热电联产机组与风力发电、光伏发电相结合的热电联合系统是一种有效的能源开发利用形式。但在供暖期,热电联产机组出力大,而热电联产“以热定电”的运行方式,极大地降低了热电联产机组的调节能力,限制了电力系统的灵活性,从而导致了弃风弃光现象较严重。
目前主要通过在热电联合系统中增设蓄热罐、电热转换装置(如电热泵),优化系统结构和性能等方法来解耦以热定电的约束,在此基础上,可以通过热电调度优化来进一步地促进风电、光电消纳。实现发电、供热的机组相互协调运行,合理地调度热电两种能量,优化热电联产机组与风电机组、光伏的出力,这对于满足系统内多元化用能需求、提升能源利用效率和减少用能时的环境污染具有重要意义。
目前的热电联合系统调度优化方法将系统内各个机组聚合成一个整体,以系统整体经济效益最优、系统整体运行成本最低等目标建立热电联合调度模型。但这些方法没有考虑到各个机组可能属于不同的主体,不同主体的决策行为相互影响,即系统整体最优与各个主体所追求的自身收益最优可能存在着冲突,因此这些方法的调度优化方案对于各个主体而言可能不是最优解,这将导致各个主体背离该优化方案而寻求其他方案以获取更高的回报。
博弈论作为一种先进的优化方法,主要研究多个相互影响的独立主体之间复杂的行为,适用于解决多主体多目标的优化问题。
因此,有必要研究一种电热泵-热电联合系统的优化调控方法及系统来应对现有技术的不足,以解决或减轻上述一个或多个问题。
【发明内容】
有鉴于此,本发明提供了一种电热泵-热电联合系统的优化调控方法及系统,能够将各个机组看成不同的主体,以每个主体自身利益最大化为目标进行调控,不仅能够满足热电用户的负荷需求,还能够使得各个机组主体对其收益最大程度的满意。
一方面,本发明提供一种电热泵-热电联合系统的优化调控方法,其特征在于,所述方法的步骤包括:
S1、建立电热泵-热电联合系统的组成结构框架,并建立各机组的出力模型;
S2、建立电热泵-热电联合系统中各机组的收益函数模型;
S3、建立电热泵-热电联合系统的非合作博弈模型;
S4、采用粒子群算法对博弈模型进行求解,获得各机组的热电调度优化方案。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,采用粒子群算法对博弈模型进行求解的过程包括:
S41、输入相关参数;
S42、初始化种群初值;
S43、计算相应的收益函数;
S44、根据收益更新种群;
S45、计算适应度函数;
S46、判断所求结果是否为纳什均衡解;若是,求解完成,否则,返回到S44。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,步骤S3中博弈模型的建立以电热供需平衡、机组运行条件为约束,以电热泵-热电联合系统中各主体利益最大化为优化目标。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,电热泵-热电联合系统包括风电机组、光伏机组、储电系统、热电机组和电热泵。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,风电机组的出力模型为:
Figure BDA0002667212520000031
其中,vt为t时刻的实时风速,vi为风电机组的切入风速,vo为风电机组的切出风速,vr为风电机组的额定风速,PWZ为风电机组的装机容量值;
风电机组的收益函数模型为:
Iw=Iwsell+Iwa-Iwm
其中,Iw风电机组的收益,Iwsell表示风电机组的售电收入,Iwa表示风电机组的补贴收入,Iwm表示风电机组的维护成本。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,光伏机组的出力模型为:
Figure BDA0002667212520000032
其中,αpv为光伏机组的功率降额系数,PPVZ为光伏的装机容量,At为t时刻光伏机组的实际辐照度,As为标准条件下的辐照度,αT为功率温度系数,Tstp为标准条件下的温度,T为实时温度;
光伏机组的收益函数模型为:
Ipv=Ipvsell+Ipva-Ipvm
其中,Ipv为光伏机组的收益,Ipvsell表示光伏机组的售电收入,Ipva表示光伏机组的补贴收入,Ipvm表示光伏机组的维护成本。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,储电系统的出力模型为:
Figure BDA0002667212520000041
其中,Ce,t+1为t+1时刻蓄电池的剩余电量,Ce,t为t时刻蓄电池的剩余电量,α为蓄电池的自放电效率,βc和βd分别为蓄电池的充放电效率,Pe,t为蓄电池充放电功率,Δt为充放电时长。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,热电机组的出力模型为:
Ppc,t=Pchp,tchpQchp,t
其中,Ppc,t为t时刻纯凝工况电功率,Pchp,t为t时刻热电机组的电功率,Qchp,t为t时刻热电机组的热功率,αchp为电热转换系数;
热电机组的收益函数模型为:
Ichp=Issell-Isf-Ism-Isa
其中,Ichp为热电机组的收益,Issell为热电机组的售电售热收入,Isf为热电机组的燃料成本,Ism为热电机组的维护费用,Isa表示热电机组需要支付的弃风弃光成本。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,电热泵的出力模型为:
Figure BDA0002667212520000051
其中,χ为电热泵的供热效率,QU是通过电热泵转换的热能,W是电热泵消耗的电能,Qpu为电热泵的制热量,Ppu为电热泵的输入功率。
另一方面,本发明提供一种电热泵-热电联合系统的优化调控装置,其特征在于,所述装置用于实现如上任一所述的调控方法;
所述装置包括控制模块和通信模块;所述通信模块分别与电热泵-热电联合系统的各个机组连接,用于采集各个机组的数据以及向各个机组发送调控指令;所述控制模块用于存储各个机组的出力模型、收益函数模型、约束条件以及博弈模型,并求解各模型得到最优调控方案。
与现有技术相比,本发明可以获得包括以下技术效果:
本发明不再将电热泵-热电联合系统中的所有机组视为一个整体来进行优化,而是将各个机组看成不同的主体,每个主体以自身利益最大化为目标,因此以博弈论的思想来看待该多主体决策的优化问题,并考虑各个主体之间的相互作用,建立了热电调度的非合作博弈模型,这有利于应对电热泵-热电联合系统的主体多样性;
本发明结合了粒子群算法与迭代算法来对博弈模型进行求解,其中粒子群算法模拟了各主体在既定条件下搜寻最优解的过程,而迭代算法模拟了每个主体对其他主体更改决策的响应;通过求解得到的纳什均衡解,即可确定各个机组调度出力的最优方案,该出力方案不仅能够满足热电用户的负荷需求,还能使得各个主体都满意。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有技术效果。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明一个实施例提供的电热泵-热电联合系统的优化调控方法流程图;
图2是本发明一个实施例提供的电热泵-热电联合系统构成框图;
图3是本发明一个实施例提供的热电联产机组特性曲线图;
图4是本发明一个实施例提供的电热泵能量转换关系图;
图5是本发明一个实施例提供的粒子群算法求解博弈模型流程图;
图6是本发明一个实施例提供的典型日风速曲线;
图7是本发明一个实施例提供的典型日辐照度曲线;
图8是本发明一个实施例提供的典型日风电机组发电功率曲线;
图9是本发明一个实施例提供的典型日光伏发电功率曲线;
图10是本发明一个实施例提供的典型日电负荷需求曲线;
图11是本发明一个实施例提供的典型日热负荷需求曲线;
图12是本发明一个实施例提供的风电机组决策曲线;
图13是本发明一个实施例提供的光伏决策曲线;
图14是本发明一个实施例提供的热电联产机组供电决策曲线;
图15是本发明一个实施例提供的热电联产机组供热决策曲线;
图16是本发明一个实施例提供的电热泵供热曲线。
【具体实施方式】
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
电热泵-热电联合系统中各个机组可能属于不同的主体,且不同主体的决策行为相互影响,即系统整体最优与各个主体所追求的自身收益最优可能存在着冲突,因此电热泵-热电联合系统的热电调度问题是一个多主体参与的决策优化问题。基于电热泵-热电联合系统中各个机组的运行出力特性及收益函数,如何对各机组的调度决策进行优化,并获得相应的出力方案,是本专利要解决的技术问题。
为了解决该问题,本发明针对涉及热电联产机组、风力机组、光伏等多个主体的电热泵-热电联合系统,基于建立的机组出力模型及其收益函数模型,以博弈论的思想充分考虑各主体的行为以及相应的利益,同时考虑各行为之间的相互影响,以电热供需平衡、机组运行条件为约束,以电热泵-热电联合系统中各主体的利益最大化为优化目标,建立了热电调度的非合作博弈模型,并结合粒子群算法与迭代算法对博弈的均衡策略进行求解,最后得到的纳什均衡策略即为优化后的各机组出力方案,从而为热电调度决策提供指导。
一种电热泵-热电联合系统的优化调控方法,如图1所示,包括以下步骤:
步骤1、建立电热泵-热电联合系统的组成结构框架,并对各机组的热/电出力进行建模;
1-1)电热泵-热电联合系统包括两部分,供电部分和供热部分,如图2所示。其中,供电部分由风电机组、光伏机组、储电系统和电用户组成,而供热部分由热电联产机组、电热泵和热用户组成。
1-2)风电机组出力模型
在电热泵-热电联合系统中,风电机组的出力会受到装机规模和实际情况的约束。当装机容量确定时,各个时刻风电出力的最大值是由天气、环境等实际情况所决定,风机出力与风速满足下列非线性关系:
Figure BDA0002667212520000081
式中,vt为t时刻的实时风速,vi为风电机组的切入风速,vo为风电机组的切出风速,vr为风电机组的额定风速,PWZ为风电机组的装机容量值。当实时风速小于切入风速或大于切出风速时,风电机组处于停机状态,当实时风速大于切入风速且小于额定风速时,实时功率与风速满足一次函数关系式,当实时风速大于额定风速且小于切出风速时,实时出力值就等于装机容量值。
1-3)光伏出力模型
类似地,光伏的出力也会受到装机规模和实际情况的约束。当装机容量确定时,光伏的出力与光照强度、温度有关,光伏出力可由下式表示:
Figure BDA0002667212520000082
式中,αpv为机组的功率降额系数,PPVZ为光伏的装机容量,At为t时刻光电机组的实际辐照度,As为标准条件下的辐照度,αT为功率温度系数,Tstp为标准条件下的温度。由于αT的值相对非常小,温度变动对光伏的出力影响近似为0,因此光电机组的出力可近似正比于实际辐照度At,即:
Figure BDA0002667212520000091
1-4)储电系统出力模型
电池的SOC是电池剩余电量和电池满电量之比。
Figure BDA0002667212520000092
式中,Ce,t为t时刻蓄电池的剩余电量,Cfull为蓄电池容量。
定义Pe,t为蓄电池充放电功率,当Pe,t≤0时,表示蓄电池正在充电,当Pe,t>0时,表示蓄电池正在放电,蓄电池的储能状态可表示如下:
Figure BDA0002667212520000093
式中,α为蓄电池的自放电效率,βc和βd分别为蓄电池的充放电效率。
1-5)热电联产机组出力模型
在本发明专利选取的抽凝式机组中,整个汽轮机由三部分组成:低压缸、中压缸、高压缸。锅炉中产生的高温高压蒸汽进入汽轮机作功,供热抽汽来自中压缸排汽,中压缸其余蒸汽投入低压缸做功后又进入凝汽器冷凝,再返回锅炉实现重复运用。基于此工作原理,可将(PchpchpQchp)等效为热电联产机组的功率:
Ppc,t=Pchp,tchpQchp,t (6)
式中,Ppc,t为t时刻纯冷凝工况电功率,Pchp,t为t时刻机组的电功率,Qchp,t为t时刻机组的热功率,αchp为电热转换系数,表示1W热功率可调换为αchpW的电功率。电功率Pchp,t和热功率Qchp,t的取值范围如图3所示,热电联产机组功率的可调节区域为ABCD构成的四边形区域,显然在热功率增加时,可调节的电功率范围迅速减少,机组的调峰能力也较差。
1-6)电热泵出力模型
电热泵可以从热电厂的供热回水中提取低温余热作为低品质热能,并将它转换成高品质热能。图4描述了电热泵基本能量的转换。在理想情况下,根据热力学第一定律,可得关系式:
QU=QD+W (7)
式中,QU是通过电热泵转换的高品质热能,QD是从低温热源吸收的低品质热能,W是电热泵消耗的电能。电热泵的供热效率(能效系数)χ表达如下:
Figure BDA0002667212520000101
由上式可得,电热泵的热电转换关系可表示为:Qpu=χ·Ppu,Qpu为电热泵的制热量,Ppu为电热泵的输入功率。
步骤2、对电热泵-热电联合系统中各机组的收益函数和约束条件进行建模;
2-1)风电机组收益函数
风电机组的收益Iw可以表示为:
Iw=Iwsell+Iwa-Iwm (9)
Figure BDA0002667212520000102
Figure BDA0002667212520000103
Figure BDA0002667212520000104
式中,Iwsell表示风电机组的售电收入,Iwa表示风电机组的补贴收入,Iwm表示风电机组的维护成本,Csell,t表示t时刻的实时电价,Cwsu表示风电机组的补贴电价,Pws,t表示t时刻风电机组的售电功率,Kwm表示风电机组的维护系数,Pwc,t表示t时刻风电机组的可供电功率。
2-2)光伏收益函数
光伏电池的收益函数Ipv与风电机组相似:
Ipv=Ipvsell+Ipva-Ipvm (13)
Figure BDA0002667212520000111
Figure BDA0002667212520000112
Figure BDA0002667212520000113
式中,Ipvsell表示光伏的售电收入,Ipva表示光伏的补贴收入,Ipvm表示光伏的维护成本,Cpvsu表示光伏的补贴电价,Ppvs,t表示t时刻光伏的售电功率,Kpvm表示光伏的维护系数,Ppvc,t表示t时刻光伏的可供电功率。
2-3)将热电联产机组和电热泵看成一个热电子系统,在该系统中,热电联产机组是主要是组成部分,也是供电与供热的核心,而电热泵则起到电热转换的辅助作用,可以在一定程度上解决热用户需求与热电联产机组的供热量的不匹配,从而提高整个系统的调节能力。该系统的收益Ichp可以表示如下:
Ichp=Issell-Isf-Ism-Isa (17)
Figure BDA0002667212520000114
Figure BDA0002667212520000115
Figure BDA0002667212520000116
Figure BDA0002667212520000117
式中,Issell为热电子系统的售电售热收入,Isf为热电子系统的燃料成本,Ism为热电子系统的维护费用,Isa表示热电子系统需要支付的弃风弃光成本,Csell-Q,t表示t时刻热能的单价,Pchps,t为t时刻热电联产机组的售电量,Qload,t为电热泵-热电联合系统内t时段的热负荷需求,Cp和Cq分别为热电联产机组发电平均成本和发热平均成本,cf为单位煤成本,式中的0.123和0.1288分别为标准煤的电力当量和热力当量,单位为kg/kWh,ηp和ηq分别为热电联产机组的发电效率和发热效率,Ksm1和Ksm2分别为热电子系统电出力和热出力的维护系数,μw表示弃风的惩罚因子,μpv为弃光的惩罚因子。其中,热电联产机组的发电量Pchp,t中的一部分Pchps,t用于满足电用户的负荷需求,另一部分Ppu,t作为电热泵的输入功率,即式(22)。
Pchp,t=Pchps,t+Ppu,t (22)。
2-4)约束条件
2-4-1)供电平衡约束
在整个网络电力传输过程中功率必须保持平衡,这一平衡特性对网络频率稳定性和电压稳定性具有决定性影响。如果发电的功率大于所需的负载,则电网频率会随之增加,相反会随之减少,电力系统的稳定性应取决于网络频率的稳定性。
Pchps,t+Pws,t+Ppvs,t+Pe,t=Pload,t (23)
式中,Pload,t为t时刻电热泵-热电联合系统内的电负荷需求,Pe,t为电储能的充放电功率。
2-4-2)供热平衡约束
在供热系统中,必须保持消费者和热源供求之间的平衡。供热温度随着热用户需求量的减少而上升,反之亦然,供热的质量在某种程度上取决于供热温度,因此确保有必要调度的结果与供热需求一致。本发明不考虑传输引起的热损失,供热平衡约束如下:
Qchp,t+Qpu,t=Qload,t (24)
式中,Qchp,t为热电联产机组在t时段的供热功率,Qpu,t为t时段内电热泵的制热功率。
2-4-3)机组出力约束
在电热泵-热电联合系统的优化调度中,风电机组每一时刻的实际供电功率Pws,t都应小于等于其可供电功率Pwc,t,光伏机组每一时刻的实际供电功率Ppvs,t都应小于等于其可供电功率Ppvc,t。储电设备在工作时受到的约束包含了容量约束和充放电出力约束,电热泵在运行过程中提供部分热负荷,也必须在约束范围内出力。
0≤Pws,t≤Pwc,t (25)
0≤Ppvs,t≤Ppvc,t (26)
SOCmin≤SOC≤SOCmax (27)
|Pe,t|≤|Pe,t,max| (28)
Pchp,min≤Pchp,t≤Pchp,max (29)
Qchp,min≤Qchp,t≤Qchp,max (30)
Ppu,min≤Ppu,t≤Ppu,max (31)
式中,|Pe,t,max|为储电设备充放电功率的最大值,Pchp,max和Pchp,min分别为热电联产机组的供电功率上下限,Qchp,max和Qchp,min分别为热电联产机组的供热功率上限和下限,Ppu,max和Ppu,min是电热泵输入功率的上下限。其中,热电联产机组的电功率Pchp,t和热功率Qchp,t还应在图3所示的四边形ABCD之中。
步骤3、建立电热泵-热电联合系统的非合作博弈模型;即:根据电热泵-热电联合系统的运行模式,对各个机组主体建立了相应的非合作博弈模型;
3-1)博弈论与电热泵-热电联合系统
博弈论是一门数学研究理论,研究如何在矛盾和对立之间作出最佳决策。博弈论的本质是基于系统思维上的理性思考,应当明智地利用他人的利益,为自己选择最适合的选择。理性选择是指一个目标函数在博弈参与者有认知的情况下极大化的选择,即参与决策的人都具有理性并会采纳最优策略,以最小的代表为自己取得最大的收益。
博弈论的基本要素为:博弈者--博弈行为的参预者和决策主要部分,也就是在博弈中制定决策的人,至少有两个;策略集合--各博弈方在博弈过程中所有可选方案的集合;收益-收益是各个博弈方的确定效用或期望效用,收益的值除了取决于参与者个人主体的策略,还取决于除自身外其他参与者的策略。
纳什均衡是博弈论体系中一个重要的概念,它表示一种策略的组合,这种策略的组合是所有博弈者的最佳策略的集合。当理性的博弈者采取了纳什均衡作为他们的策略,任一博弈者均不会独自更改自己的策略,否则他的收益会下降。对于任一博弈者i,记ui、si、Si分别为其收益、策略、策略集合,若
Figure BDA0002667212520000141
为博弈的一个纳什均衡,则对于任意的si∈Si,下式都成立:
Figure BDA0002667212520000142
将电热泵-热电联合系统中的各机组主体都视为一个博弈者,各机组的出力即为相应博弈者的策略,在实际运行模式中,各个机组通常属于不同的运营者,即该博弈属于非合作博弈。在该博弈下,各博弈者之间由于没有具有约束力的协议,各自寻求使得自身利益最大化的策略去执行。
3-2)电热泵-热电联合系统的非合作博弈模型
电热泵-热电联合系统的非合作博弈模型如下:
(1)参与者:风电机组、光伏机组和热电子系统(包含热电联产机组和电热泵)
(2)策略集:风电机组的可供电功率Pwc,t,光伏的可供电功率Ppvc,t,热电联产机组的供电功率Pchp,t与供热功率Qchp,t
(3)收益函数:各个机组的收益Ik,k∈{w,pv,chp}。
当各机组采取不合作的博弈方式时,各机组的供电功率之间存在相互扰动,博弈的参与者会根据其他参与者的决策改变自身的决策行为。各个参与者会基于其他参与者的决策选择使自身收益最大的决策,即:
Figure BDA0002667212520000151
Figure BDA0002667212520000152
Figure BDA0002667212520000153
式中,
Figure BDA0002667212520000154
表示以Pwc为变量,Iw取得最大值时的Pwc
Figure BDA0002667212520000155
Figure BDA0002667212520000156
同理。
求得式(33-35)的解即可得到该非合作博弈模型的纳什均衡解
Figure BDA0002667212520000157
此时各机组的收益可以表示为
Figure BDA0002667212520000158
步骤4、结合粒子群算法与迭代算法,对建立的博弈模型进行求解,获得各机组的热电调度优化方案;
粒子群算法是一种用来模仿鸟兽觅食行径的算法,它结合了自己与鸟兽的翔行经历,以搜索最佳的解决方案。该算法通过改变两个主要的参数即飞行方向和速度,从而实现求解空间搜索路径,该算法原理简单、实现容易,因此被广泛用于系统的调度优化。
在非合作博弈模型的求解过程中,将各个机组的策略组合看做粒子,一个粒子包含速度与位置两种属性。粒子群更新算法的公式如下:
Figure BDA0002667212520000159
Figure BDA00026672125200001510
其中:ω表示惯性系数;t表示迭代次数;
Figure BDA00026672125200001511
表示第i个粒子第t次迭代的第z维速度;c1、c2表示加速常数;r1、r2表示处于(0,1)中的随机数;pi,z表示第i个粒子第z维的个体最优值;pq,z表示全体粒子第z维的全局最优值;
Figure BDA0002667212520000161
表示第i个粒子第t次迭代的第z维位置。粒子群优化算法的初始值为随机粒子群,可以通过对各个粒子的估计来确定。在迭代过程中,粒子对全局和个体的最优值追踪,以更新自己的速度和位置。利用适应度函数来评价粒子所处位置的优劣,并结合新的位置来更新历史最优位置,最后满足迭代终止条件而得到最优解。求解博弈模型的过程如图5所示。
对于非合作博弈模型,采用粒子群算法迭代求解的具体步骤如下:
(1)初始化设备运行参数和限制参数,并且设定参数的上下限约束;
(2)设定均衡点初值(Pwc,0,Ppvc,0,Pchp,0,Qchp,0);
(3)各博弈参与者按照一定的顺序独立优化;
(4)第i轮的优化结果是(Pwc,i,Ppvc,i,Pchp,i,Qchp,i),则经过第i+1轮迭代优化后得到的优化结果为(Pwc,i+1,Ppvc,i+1,Pchp,i+1,Qchp,i+1),并满足下列关系式:
Figure BDA0002667212520000162
Figure BDA0002667212520000163
Figure BDA0002667212520000164
式中,Pwc,i、Ppvc,i、Pchp,i、Qchp,i分别表示第i轮优化后的风电机组、光伏、热电子系统的可供电功率和可供热功率。
(5)判断所找出的解是否为纳什均衡解。如果参与者在整轮博弈中都没有改变自己的策略,整个过程终止。
Figure BDA0002667212520000165
Figure BDA0002667212520000171
式中,
Figure BDA0002667212520000172
的分别是纳什均衡解对应的风电机组、光伏、热电子系统的可供电功率和可供热功率。各机组根据电热负荷需求以及其他机组的情况,确定自己的发电发热量,即为可供电/供热功率,为待优化的决策值,而供电/供热功率为被消纳的量,为实际电热交易成交量。在迭代过程中,决策不再改变(相等,或者变化幅度很小,如小于1%),即认为达到了纳什均衡。该问题的纳什均衡是必然存在的,所以一定会达到均衡。
(6)根据纳什均衡解确定各个机组的出力后,可得到电热泵-热电联合系统的优化调度方案。
实施例1:
以本专利所述的电热泵-热电联合系统(如图2)为例,配置了风电机组、光伏、储电系统、热电联产机组和电热泵等设备,其中风电机组的装机容量为3000kW,光伏的装机容量为2000kW,储电系统的装机容量为1000kW,热电联产机组的装机容量为400kW。一天T为24小时,每个决策时段为1小时,选取某典型日的风速和辐照度数据(如图6、7)加以分析,并结合风电机组和光伏的出力表达式,得到了典型日的风电机组发电功率和光伏发电功率曲线(如图8、9),所选取的典型日中电负荷和热负荷预测曲线如图10和11所示。
本发明采用了粒子群算法循环迭代计算,取加速常数c1、c2为1.3,允许误差△设为0.05%,粒子群规模N为100,最大迭代次数设为100。系统中各机组都以使自身的收益函数最大为目标进行非合作博弈。算例中涉及相应工作设备的数据以及电价如表1和表2所示。考虑到实际,在选择可供电功率时,其决策空间是离散的,各机组的供电决策必须是整数kW。
表1各机组运行参数
Figure BDA0002667212520000181
表2其他相关参数
Figure BDA0002667212520000182
基于该算例仿真中的具体数据,运用上述模型对该电热泵-热电联合系统的供电决策问题进行建模并在MATLAB中计算。在该非合作博弈模型下,在某典型日求解出各个机组主体的供电决策和供热决策的结果如图12-16所示。
在该非合作博弈均衡解下,各个机组的收益结果为:风电机组的典型日总收益为18830.563元;光伏的典型日总收益为6159.171元;热电联产机组的典型日总收益为9639.859元。
由图14和15可知,由于系统中的热电联产机组将会按照“以热定电”的模式运作,首先满足热负荷,这限制了其电力调峰能力,故供电决策相对稳定,而热电联产机组与风电机组、光伏机组协同互补运行。风电机组和光伏机组为了获得更多收益,会尽可能地提供更多的可供电量,但若该值太大,会导致机组的维护成本增加以及弃风弃光量增加,热电联产机组的惩罚成本也会相应地增加。而热电联产机组为了使自己的利益最大化,又会尽可能减少弃风弃光的现象,这就形成了相互博弈的局面。如图16所示,当热电联产机组的供热出力不足时,会由电热泵提供不足的热能,但是系统中电热泵的供热需要依靠热电联产机组增大供电量来做功。
本发明的优势在于:
(1)本发明不再将电热泵-热电联合系统中的所有机组视为一个整体来进行优化,而是将各个机组看成不同的主体,每个主体以自身利益最大化为目标,因此以博弈论的思想来看待该多主体决策的优化问题,并考虑各个主体之间的相互作用,建立了热电调度的非合作博弈模型,这有利于应对电热泵-热电联合系统的主体多样性;
(2)本发明结合了粒子群算法与迭代算法来对博弈模型进行求解,其中粒子群算法模拟了各主体在既定条件下搜寻最优解的过程,而迭代算法模拟了每个主体对其他主体更改决策的响应;通过求解得到的纳什均衡解策略,可以确定各个机组调度出力的最优方案,从而为热电调度决策提供指导;该出力方案不仅能够满足热电用户的负荷需求,还能使得各个主体都满意。
以上对本申请实施例所提供的一种电热泵-热电联合系统的优化调控方法及系统,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。

Claims (10)

1.一种电热泵-热电联合系统的优化调控方法,其特征在于,所述方法的步骤包括:
S1、建立电热泵-热电联合系统的组成结构框架,并建立各机组的出力模型;
S2、建立电热泵-热电联合系统中各机组的收益函数模型;
S3、建立电热泵-热电联合系统的非合作博弈模型;
S4、采用粒子群算法对博弈模型进行求解,获得各机组的热电调度优化方案。
2.根据权利要求1所述的电热泵-热电联合系统的优化调控方法,其特征在于,采用粒子群算法对博弈模型进行求解的过程包括:
S41、输入相关参数;
S42、初始化种群初值;
S43、计算相应的收益函数;
S44、根据收益更新种群;
S45、计算适应度函数;
S46、判断所求结果是否为纳什均衡解;若是,求解完成,否则,返回到S44。
3.根据权利要求1所述的电热泵-热电联合系统的优化调控方法,其特征在于,步骤S3中博弈模型的建立以电热供需平衡、机组运行条件为约束,以电热泵-热电联合系统中各主体利益最大化为优化目标。
4.根据权利要求1所述的电热泵-热电联合系统的优化调控方法,其特征在于,电热泵-热电联合系统包括风电机组、光伏机组、储电系统、热电机组和电热泵。
5.根据权利要求4所述的电热泵-热电联合系统的优化调控方法,其特征在于,风电机组的出力模型为:
Figure FDA0002667212510000021
其中,vt为t时刻的实时风速,vi为风电机组的切入风速,vo为风电机组的切出风速,vr为风电机组的额定风速,PWZ为风电机组的装机容量值;
风电机组的收益函数模型为:
Iw=Iwsell+Iwa-Iwm
其中,Iw风电机组的收益,Iwsell表示风电机组的售电收入,Iwa表示风电机组的补贴收入,Iwm表示风电机组的维护成本。
6.根据权利要求4所述的电热泵-热电联合系统的优化调控方法,其特征在于,光伏机组的出力模型为:
Figure FDA0002667212510000022
其中,αpv为光伏机组的功率降额系数,PPVZ为光伏的装机容量,At为t时刻光伏机组的实际辐照度,As为标准条件下的辐照度,αT为功率温度系数,Tstp为标准条件下的温度,T为实时温度;
光伏机组的收益函数模型为:
Ipv=Ipvsell+Ipva-Ipvm
其中,Ipv为光伏机组的收益,Ipvsell表示光伏机组的售电收入,Ipva表示光伏机组的补贴收入,Ipvm表示光伏机组的维护成本。
7.根据权利要求4所述的电热泵-热电联合系统的优化调控方法,其特征在于,储电系统的出力模型为:
Figure FDA0002667212510000023
其中,Ce,t+1为t+1时刻蓄电池的剩余电量,Ce,t为t时刻蓄电池的剩余电量,α为蓄电池的自放电效率,βc和βd分别为蓄电池的充放电效率,Pe,t为蓄电池充放电功率,Δt为充放电时长。
8.根据权利要求4所述的电热泵-热电联合系统的优化调控方法,其特征在于,热电机组的出力模型为:
Ppc,t=Pchp,tchpQchp,t
其中,Ppc,t为t时刻纯凝工况电功率,Pchp,t为t时刻热电机组的电功率,Qchp,t为t时刻热电机组的热功率,αchp为电热转换系数;
热电机组的收益函数模型为:
Ichp=Issell-Isf-Ism-Isa
其中,Ichp为热电机组的收益,Issell为热电机组的售电售热收入,Isf为热电机组的燃料成本,Ism为热电机组的维护费用,Isa表示热电机组需要支付的弃风弃光成本。
9.根据权利要求4所述的电热泵-热电联合系统的优化调控方法,其特征在于,电热泵的出力模型为:
Figure FDA0002667212510000031
Qpu=χ·Ppu
其中,χ为电热泵的供热效率,QU是通过电热泵转换的热能,W是电热泵消耗的电能,Qpu为电热泵的制热量,Ppu为电热泵的输入功率。
10.一种电热泵-热电联合系统的优化调控装置,其特征在于,所述装置用于实现如权利要求1-9任一所述的调控方法;
所述装置包括控制模块和通信模块;所述通信模块分别与电热泵-热电联合系统的各个机组连接,用于采集各个机组的数据以及向各个机组发送调控指令;所述控制模块用于存储各个机组的出力模型、收益函数模型、约束条件以及博弈模型,并求解各模型得到最优调控方案。
CN202010922508.2A 2020-09-04 2020-09-04 一种电热泵-热电联合系统的优化调控方法及系统 Active CN112069734B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010922508.2A CN112069734B (zh) 2020-09-04 2020-09-04 一种电热泵-热电联合系统的优化调控方法及系统
JP2021522043A JP7261507B2 (ja) 2020-09-04 2021-03-12 電気ヒートポンプ-熱電併給システムを最適化する調整方法及びシステム
PCT/CN2021/080499 WO2022048127A1 (zh) 2020-09-04 2021-03-12 一种电热泵-热电联合系统的优化调控方法及系统
US17/472,866 US20220074620A1 (en) 2020-09-04 2021-09-13 Optimized regulating and controlling method and system for integrated electricity and heat system with heat pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010922508.2A CN112069734B (zh) 2020-09-04 2020-09-04 一种电热泵-热电联合系统的优化调控方法及系统

Publications (2)

Publication Number Publication Date
CN112069734A true CN112069734A (zh) 2020-12-11
CN112069734B CN112069734B (zh) 2022-02-22

Family

ID=73666437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010922508.2A Active CN112069734B (zh) 2020-09-04 2020-09-04 一种电热泵-热电联合系统的优化调控方法及系统

Country Status (2)

Country Link
CN (1) CN112069734B (zh)
WO (1) WO2022048127A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113240204A (zh) * 2021-06-17 2021-08-10 华北电力大学 考虑可再生能源消纳区域能源站容量优化配置方法及系统
CN113705911A (zh) * 2021-08-31 2021-11-26 西安热工研究院有限公司 一种基于灰狼算法的热电负荷经济性优化分配方法
CN113807746A (zh) * 2021-10-20 2021-12-17 南京信息工程大学 一种冷热电联供系统的综合运行优化方法
WO2022048127A1 (zh) * 2020-09-04 2022-03-10 华北电力大学 一种电热泵-热电联合系统的优化调控方法及系统
CN114781922A (zh) * 2022-05-19 2022-07-22 河北大学 一种电热综合能源系统优化调度方法
CN115978720A (zh) * 2022-12-30 2023-04-18 北京创今智能科技有限公司 一种空气源热泵机组非等量分组方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system
CN108256670B (zh) * 2017-12-22 2023-07-18 甘肃省电力公司风电技术中心 基于热电联产的光热发电及热电机组联合调峰优化模型
CN114648165B (zh) * 2022-03-24 2024-05-31 浙江英集动力科技有限公司 一种基于多智能体博弈的多热源供热系统优化调度方法
CN114626270B (zh) * 2022-03-24 2024-05-17 北京京能电力股份有限公司 一种热电联产机组智能能耗的分析方法
CN114970966B (zh) * 2022-04-27 2024-09-24 重庆邮电大学 含有风、光和负荷不确定的热电联供系统双层优化方法
CN115204562B (zh) * 2022-05-10 2023-06-30 浙江工业大学 一种计及多能共享的互联微能源网分布式协同优化调度方法和系统
CN114964845B (zh) * 2022-05-20 2024-08-16 国能南京电力试验研究有限公司 火电机组冷再和热再供热方式的节能量对比定量评价方法
CN115310259B (zh) * 2022-06-30 2023-06-30 华北电力大学(保定) 基于软行动者-批评者的园区综合能源系统梯级优化方法
CN115130391B (zh) * 2022-08-25 2022-12-06 华北电力大学 一种计及热惯性的电热综合能源系统故障恢复方法及系统
CN115511386B (zh) * 2022-11-09 2023-04-07 武汉大学 基于多目标混合非洲秃鹫优化算法的多能系统调度方法
CN116562575B (zh) * 2023-05-16 2023-10-31 中国电力工程顾问集团有限公司 一种综合能源系统的优化调度方法
CN116911533B (zh) * 2023-06-27 2024-05-14 西安理工大学 区域综合能源系统多微网能量共济方法
CN117172815B (zh) * 2023-07-18 2024-07-05 南京工业大学 一种多水电气能源子系统主动配电网混合博弈方法及系统
CN117689189B (zh) * 2024-02-04 2024-05-07 国网北京市电力公司 一种基于主从博弈的虚拟电厂能源调度方法及终端设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017619A (zh) * 2017-03-29 2017-08-04 华北电力大学 非合作博弈视角的光伏充电站网络分布式能量管理方法
CN107844055A (zh) * 2017-11-03 2018-03-27 南京国电南自电网自动化有限公司 一种基于博弈论的冷热电三联供微网系统优化运行方法
CN108629470A (zh) * 2017-03-17 2018-10-09 华北电力大学 基于非合作博弈的多能互补系统能量管理与优化运行
CN109657946A (zh) * 2018-09-19 2019-04-19 清华大学 基于博弈论的区域能源互联网规划的数学模型和规划方法
CN109687532A (zh) * 2019-03-08 2019-04-26 燕山大学 一种基于合作博弈提高风电消纳的热电联合调度方法
CN110322154A (zh) * 2019-07-09 2019-10-11 中民新能投资集团有限公司 一种基于nash均衡的综合能源微网多主体收益分配方法及系统
CN110458353A (zh) * 2019-08-08 2019-11-15 上海交通大学 电热联合微网能量梯级优化方法及系统
CN111008739A (zh) * 2019-12-04 2020-04-14 华北电力大学 一种热电联产虚拟电厂优化调控及收益分配方法及系统
US20200176989A1 (en) * 2018-11-29 2020-06-04 State Grid Jiangsu Electric Power Co., Ltd Nanjing Power Supply Company Method and apparatus for smoothing link-line power of electrothermal microgrid using thermal storage heat pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20180100563A (el) * 2018-12-18 2020-07-16 Νικολαος Παναγιωτη Πηττας Αυτοματο συστημα αποθηκευσης αιολικης και φωτοβολταϊκης ενεργειας για αδιακοπη παραγωγη ηλεκτρικης ενεργειας και παροχη ενεργειακης αυτονομιας
CN112069734B (zh) * 2020-09-04 2022-02-22 华北电力大学 一种电热泵-热电联合系统的优化调控方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629470A (zh) * 2017-03-17 2018-10-09 华北电力大学 基于非合作博弈的多能互补系统能量管理与优化运行
CN107017619A (zh) * 2017-03-29 2017-08-04 华北电力大学 非合作博弈视角的光伏充电站网络分布式能量管理方法
CN107844055A (zh) * 2017-11-03 2018-03-27 南京国电南自电网自动化有限公司 一种基于博弈论的冷热电三联供微网系统优化运行方法
CN109657946A (zh) * 2018-09-19 2019-04-19 清华大学 基于博弈论的区域能源互联网规划的数学模型和规划方法
US20200176989A1 (en) * 2018-11-29 2020-06-04 State Grid Jiangsu Electric Power Co., Ltd Nanjing Power Supply Company Method and apparatus for smoothing link-line power of electrothermal microgrid using thermal storage heat pump
CN109687532A (zh) * 2019-03-08 2019-04-26 燕山大学 一种基于合作博弈提高风电消纳的热电联合调度方法
CN110322154A (zh) * 2019-07-09 2019-10-11 中民新能投资集团有限公司 一种基于nash均衡的综合能源微网多主体收益分配方法及系统
CN110458353A (zh) * 2019-08-08 2019-11-15 上海交通大学 电热联合微网能量梯级优化方法及系统
CN111008739A (zh) * 2019-12-04 2020-04-14 华北电力大学 一种热电联产虚拟电厂优化调控及收益分配方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周钰童: "综合能源微网优化配置研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》 *
朱仲晏: "基于博弈论的区域综合能源系统协同优化研究", 《中国优秀博硕士学位论文全文数据库(硕士) 基础科学辑》 *
金顺平等: "不同投资模式下计及缺电率约束的微网容量配置博弈分析", 《中国电力》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048127A1 (zh) * 2020-09-04 2022-03-10 华北电力大学 一种电热泵-热电联合系统的优化调控方法及系统
CN113240204A (zh) * 2021-06-17 2021-08-10 华北电力大学 考虑可再生能源消纳区域能源站容量优化配置方法及系统
CN113705911A (zh) * 2021-08-31 2021-11-26 西安热工研究院有限公司 一种基于灰狼算法的热电负荷经济性优化分配方法
CN113807746A (zh) * 2021-10-20 2021-12-17 南京信息工程大学 一种冷热电联供系统的综合运行优化方法
CN113807746B (zh) * 2021-10-20 2023-06-27 南京信息工程大学 一种冷热电联供系统的综合运行优化方法
CN114781922A (zh) * 2022-05-19 2022-07-22 河北大学 一种电热综合能源系统优化调度方法
CN115978720A (zh) * 2022-12-30 2023-04-18 北京创今智能科技有限公司 一种空气源热泵机组非等量分组方法

Also Published As

Publication number Publication date
CN112069734B (zh) 2022-02-22
WO2022048127A1 (zh) 2022-03-10

Similar Documents

Publication Publication Date Title
CN112069734B (zh) 一种电热泵-热电联合系统的优化调控方法及系统
JP7261507B2 (ja) 電気ヒートポンプ-熱電併給システムを最適化する調整方法及びシステム
CN110350523B (zh) 基于需求响应的多能源互补优化调度方法
CN108154309B (zh) 计及冷热电多负荷动态响应的能源互联网经济调度方法
CN106849190B (zh) 一种基于Rollout算法的多能互补微网实时调度方法
CN111950807B (zh) 计及不确定性与需求响应的综合能源系统优化运行方法
CN111400641A (zh) 一种含蓄热式电采暖的综合能源系统日前优化调度方法
CN110991000B (zh) 计及固体氧化物燃料电池和电转气的能量枢纽建模方法
CN110796373B (zh) 面向风电消纳的多阶段场景生成电热系统优化调度方法
CN107276122A (zh) 适应大规模可再生能源并网的调峰资源调用决策方法
CN111934360A (zh) 基于模型预测控制的虚拟电厂-储能系统能量协同优化调控方法
CN105958537A (zh) 面向能源互联网的能源转换系统及其优化控制方法
CN112311017A (zh) 一种虚拟电厂与主网最优协同调度方法
CN115115130A (zh) 一种基于模拟退火算法的风光储制氢系统日前调度方法
CN112883630A (zh) 用于风电消纳的多微网系统日前优化经济调度方法
CN116050637A (zh) 基于分时电价的综合能源虚拟电厂优化调度方法及系统
CN116565831A (zh) 一种基于碳排放流的主动配电网鲁棒调度方法及系统
CN115036914A (zh) 考虑灵活性与新能源消纳的电网储能双层优化方法及系统
CN110224397B (zh) 一种风光接入背景下用户侧电池储能成本效益分析方法
CN110766285A (zh) 一种基于虚拟电厂的日前能源调度方法
Han et al. Analysis of economic operation model for virtual power plants considering the uncertainties of renewable energy power generation
CN115841216A (zh) 计及分布式光伏消纳率的配电网储能优化配置方法
Di et al. Multi-objective collaborative control scheduling optimization considering wind power grid-connected energy storage access
Wang et al. Contribution of distributed energy resources management to peak carbon dioxide emissions and carbon neutralization
CN112529728A (zh) 一种基于非合作博弈的综合能源系统优化调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant