CN112067573A - In-situ monitoring device and method for total nitrogen content of soil - Google Patents

In-situ monitoring device and method for total nitrogen content of soil Download PDF

Info

Publication number
CN112067573A
CN112067573A CN202010971305.2A CN202010971305A CN112067573A CN 112067573 A CN112067573 A CN 112067573A CN 202010971305 A CN202010971305 A CN 202010971305A CN 112067573 A CN112067573 A CN 112067573A
Authority
CN
China
Prior art keywords
soil
total nitrogen
body shell
near infrared
pipe body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010971305.2A
Other languages
Chinese (zh)
Inventor
王琴琴
黄思源
张昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Zhigan Zhejiang Technology Co ltd
Original Assignee
Dongfang Zhigan Zhejiang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Zhigan Zhejiang Technology Co ltd filed Critical Dongfang Zhigan Zhejiang Technology Co ltd
Priority to CN202010971305.2A priority Critical patent/CN112067573A/en
Publication of CN112067573A publication Critical patent/CN112067573A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention discloses an in-situ monitoring device and method for soil total nitrogen content, and the in-situ monitoring device comprises a pipe body shell, a driving power supply, a control panel, a driving system, a data analysis system and a DLP near infrared spectrum detection module, wherein the pipe body shell is arranged in a columnar pipe body structure, the driving power supply is arranged in the pipe body shell, a plurality of groups of quartz glass detection windows are arranged on the pipe body shell, the control panel is arranged in the pipe body shell, the driving system is arranged in the pipe body shell, the DLP near infrared spectrum detection module is arranged on the driving system, and the DLP near infrared spectrum detection module is electrically connected with the control panel. The invention relates to the technical field of soil monitoring, and particularly provides an in-situ monitoring device and method for soil total nitrogen content.

Description

In-situ monitoring device and method for total nitrogen content of soil
Technical Field
The invention relates to the technical field of soil monitoring, in particular to an in-situ monitoring device and method for the total nitrogen content of soil.
Background
Modern agriculture benefits from the use of chemical fertilizers, greatly improves the yield of crops in unit area, and according to statistics, the contribution of the chemical fertilizers to the yield increase of crops reaches 40-60%. However, in order to seek high yield, people often apply massive blind fertilizers to crops, so that the utilization rate of fertilizers is low. Among them, especially, the application of nitrogen fertilizer, the increase of the amount of applied fertilizer and the decrease of the utilization rate cause not only economic loss but also serious soil problems and environmental problems such as decrease of fertility of soil, decrease of microbial community, salinization of soil, eutrophication of surface water and nitrogen pollution, etc. Therefore, the method for obtaining the total nitrogen content information of the soil to carry out reasonable fertilization management has important significance for agricultural sustainable development in China.
In recent years, China popularizes a soil testing and formula fertilizing technology in a large scale, applies a chemical analysis testing technology to test the actual nutrient condition of soil, and reasonably applies chemical fertilizers according to the actual demand of crops. However, the experimental chemical analysis process is complex, the period is long, the cost is high, and professional technicians are needed, so that the test sample amount is limited, and meanwhile, due to poor real-time performance, the distribution condition of farmland soil nutrients is difficult to reflect objectively and in real time.
With the rapid development of computer technology and data processing, near infrared spectroscopy technology is beginning to be widely studied and applied in the agricultural field. Compared with the traditional chemical analysis method, the near-infrared spectral analysis technology does not need chemical pretreatment, and can perform soil analysis nondestructively and rapidly. At the present stage, a large number of research reports are available for detecting the total nitrogen content of soil based on the near infrared spectrum technology, and a better prediction result is obtained in a laboratory stage. However, the total nitrogen analysis model established based on expensive near infrared spectroscopy equipment in a laboratory is affected by cost limitation and reduction of outdoor prediction precision, and is difficult to apply and popularize in actual agriculture. Therefore, the method is of great significance in developing low-cost and high-precision detection equipment based on the near infrared spectrum technology and by adopting a new method and a new technology.
Disclosure of Invention
Aiming at the situation and overcoming the defects of the prior art, the invention provides the in-situ monitoring device and the method for the total nitrogen content in the soil.
The technical scheme adopted by the invention is as follows: the invention relates to an in-situ monitoring device for soil total nitrogen content, which comprises a tube body shell, a driving power supply, a control panel, a driving system, a data analysis system and a DLP near infrared spectrum detection module, wherein the tube body shell is arranged in a cylindrical tube body structure, the driving power supply is arranged in the tube body shell, a plurality of groups of quartz glass detection windows are arranged on the tube body shell, the control panel is arranged in the tube body shell, the driving system is arranged in the tube body shell, the DLP near infrared spectrum detection module is arranged on the driving system, the DLP near infrared spectrum detection module is electrically connected with the control panel, the driving system comprises a stepping motor, a ball screw and a lapping table, the stepping motor is arranged in the tube body shell, the ball screw is rotatably arranged in the tube body shell and is arranged at the output end of the stepping motor, the lapping table is slidably arranged in the tube, DLP near infrared spectrum detection module includes miniature near infrared spectrum appearance, temperature sensor and humidity transducer, be equipped with signal transmission module among the control panel, signal transmission module is connected with miniature near infrared spectrum appearance, temperature sensor and humidity transducer, data analysis system is connected with signal transmission module, and DLP near infrared spectrum detection module fixes on actuating system's the platform of taking, under step motor's drive, controls DLP near infrared spectrum detection module and moves on ball screw, after removing detection window, controls DLP near infrared spectrum detection module and carries out spectral measurement, acquires the spectral data of soil, carries out data analysis with data transmission to the data analysis system in high in the clouds through transmission module, outputs the detection result of soil total nitrogen.
Further, body shell one end is equipped with switch, drive power supply is connected with switch, control panel, step motor and DLP near infrared spectrum detection module electricity, and drive power supply provides the energy for switch, control panel, step motor and the operation of DLP near infrared spectrum detection module.
Furthermore, the power switch is electrically connected with the control panel, the stepping motor and the DLP near infrared spectrum detection module, and the control panel comprises various control circuits and related electronic elements thereof to complete control of power switch regulation, soil data acquisition and data transmission.
The invention also discloses an in-situ monitoring method of the total nitrogen content of the soil, which comprises the following steps:
step one, data acquisition: performing reflection spectrum measurement on a known soil sample through a DLP near infrared spectrum detection module, wherein the spectrum measurement range is 900-1700 nm, the measurement mode is Hadamard, the pixel width is set to be 10.54, the exposure time is 0.635ms, the sampling rate is 3 times, the number of sampling points is 228, the spectrum measured each time is the average value of 10 times of measurement, before each spectrum measurement, performing spectrum correction by adopting a standard reflection white board to obtain the spectrum data and the total nitrogen content of the known soil, then selecting the spectrum data in the range of 920-1650 nm to extract the total nitrogen characteristic wavelength through a continuous projection algorithm, and randomly dividing the obtained spectrum data and the total nitrogen content of the known soil into a training set and a prediction set;
step two, establishing a prediction model: the method comprises the steps of extracting a spectrum of total nitrogen characteristic wavelength and total nitrogen content in a training set, taking the spectral absorbance of the soil total nitrogen characteristic wavelength as an input independent variable and the soil total nitrogen content as an input dependent variable, and adopting an error back propagation neural network to train a prediction model, wherein the neural network structure comprises a hidden layer, 3 hidden nodes and an output layer, the hidden layer uses a tansig activation function as a transfer function, the output layer function is a linear function, the prediction model is trained by adopting a Levenberg-Marquardt training algorithm, the learning rate is 0.1, and the iteration number is 1000;
step four, fitting degree verification: according to the obtained soil data, a K-weight cross validation method is adopted for prediction model training, the goodness of fit R2 of a training set in the prediction model is 0.962, and the root mean square error is 0.230 g/kg; the prediction set had R2 of 0.962 and RMSE of 0.217 g/kg;
step five, calculating the total nitrogen content of the soil to be detected: the method comprises the steps of inserting a pipe body shell into a soil layer to be detected, starting a stepping motor to drive a DLP near infrared spectrum detection module to move to a detection window, controlling the DLP near infrared spectrum detection module to carry out spectrum measurement, acquiring spectrum data of soil at the depth, transmitting the data to a prediction model in a data analysis system through a transmission module to carry out real-time data analysis, and outputting a detection result of the total nitrogen content of the soil.
The invention with the structure has the following beneficial effects: according to the scheme, the step motor can be adopted to drive the DLP near infrared spectrum detection module to move up and down in the pipe body shell, so that the total nitrogen content of the soil with multiple depths can be detected; the in-situ monitoring device for the total nitrogen content of the soil is directly arranged in the soil, and the total nitrogen content of the soil can be remotely, real-timely and sustainably measured by measuring soil spectrum data in real time and performing real-time data analysis in a prediction model in a data analysis system; the continuous projection algorithm is adopted to extract the sensitive wavelength of the total nitrogen, so that the high redundancy of data processing is reduced, the model is simplified, and higher prediction precision is realized; by adopting the DLP near infrared spectrum module, the equipment cost is greatly reduced, the equipment is portable and small, the installation and the transportation are convenient, and the popularization and the application of agriculture in a large range become possible.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention and not to limit the invention. In the drawings:
FIG. 1 is a schematic diagram of the overall structure of an in-situ monitoring device for the total nitrogen content in soil according to the present invention;
FIG. 2 is a graph of the results of a training set fitted by a back propagation neural network algorithm in the in-situ soil total nitrogen content monitoring method of the present invention;
FIG. 3 is a prediction set result diagram fitted by a back propagation neural network algorithm in the in-situ monitoring method for the total nitrogen content in soil according to the invention.
The device comprises a tube body shell 1, a tube body shell 2, a driving power supply 3, a control panel 4, a driving system 5, a power switch 6, a DLP near infrared spectrum detection module 7, a detection window 8, a motor, a ball screw 9, a ball screw 10 and a carrying platform.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments; all other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
In the description of the present invention, it is to be understood that the terms "upper", "lower", "front", "rear", "left", "right", "top", "bottom", "inner", "outer", and the like, indicate orientations or positional relationships based on the orientations or positional relationships shown in the drawings, are merely for convenience in describing the present invention and simplifying the description, and do not indicate or imply that the device or element being referred to must have a particular orientation, be constructed and operated in a particular orientation, and thus, should not be construed as limiting the present invention.
As shown in figure 1, the in-situ monitoring device for the total nitrogen content of the soil comprises a tube body shell 1, a driving power supply 2, a control panel 3, a driving system 4, a data analysis system and a DLP near infrared spectrum detection module 6, wherein the tube body shell 1 is arranged in a columnar tube body structure, the driving power supply 2 is arranged in the tube body shell 1, a plurality of groups of quartz glass detection windows 7 are arranged on the tube body shell 1, the control panel 3 is arranged in the tube body shell 1, the driving system 4 is arranged in the tube body shell 1, the DLP near infrared spectrum detection module 6 is arranged on the driving system 4, the DLP near infrared spectrum detection module 6 is electrically connected with the control panel 3, the driving system 4 comprises a stepping motor 8, a ball screw 9 and a carrying platform 10, the stepping motor 8 is arranged in the tube body shell 1, ball screw 9 is rotatory to be located in body shell 1 and to locate step motor 8's output, take up platform 10 and slide and locate in body shell 1 and be connected with ball screw 9 through the screw thread, DLP near infrared spectrum detection module 6 includes miniature near infrared spectrum appearance, temperature sensor and humidity transducer, be equipped with signal transmission module in the control panel 3, signal transmission module is connected with miniature near infrared spectrum appearance, temperature sensor and humidity transducer, data analysis system is connected with signal transmission module.
Body shell 1 one end is equipped with switch 5, drive power supply 2 is connected with switch 5, control panel 3, step motor 8 and 6 electricity of DLP near infrared spectrum detection module. And the power switch 5 is electrically connected with the control panel 3, the stepping motor 8 and the DLP near infrared spectrum detection module 6.
As shown in fig. 2-3, the invention also discloses an in-situ monitoring method for the total nitrogen content of the soil, which comprises the following steps:
step one, data acquisition: carrying out reflection spectrum measurement on known 459 groups of dry soil samples through a DLP near infrared spectrum detection module, wherein the spectrum measurement range is 900-1700 nm, the measurement mode is Hadamard, the pixel width is set to be 10.54, the exposure time is 0.635ms, the sampling rate is 3 times, the number of sampling points is 228, the spectrum measured each time is the average value of 10 times of measurement, before each spectrum measurement, a standard reflection white board is adopted for spectrum correction, the spectrum measurement is carried out on all soil samples, the total 459 groups of soil spectrum data and total nitrogen content are obtained, the data of the spectrum data in the 900-920 nm range and the data of the spectrum data in the 1650-1700 nm range are deleted, the spectrum data in the 920-1650 nm range are selected, then the total nitrogen characteristic wavelength is extracted through a continuous projection algorithm, and the obtained spectrum data and total nitrogen content of the known soil are randomly arranged according to 3: 1, dividing the ratio into a training set and a prediction set, acquiring a corresponding wavelength combination when the root mean square error of the prediction is minimum by adopting a continuous projection algorithm, and finally screening out 22 characteristic wavelengths of nitrogen;
step two, establishing a prediction model: the method comprises the steps of extracting a spectrum of total nitrogen characteristic wavelength and total nitrogen content in a training set, taking the spectral absorbance of the soil total nitrogen characteristic wavelength as an input independent variable and the soil total nitrogen content as an input dependent variable, and adopting an error back propagation neural network to train a prediction model, wherein the neural network structure comprises a hidden layer, 3 hidden nodes and an output layer, the hidden layer uses a tansig activation function as a transfer function, the output layer function is a linear function, the prediction model is trained by adopting a Levenberg-Marquardt training algorithm, the learning rate is 0.1, and the iteration number is 1000;
step four, fitting degree verification: according to the obtained soil data, a K-weight cross validation method is adopted for prediction model training, the goodness of fit R2 of a training set in the prediction model is 0.962, and the root mean square error is 0.230 g/kg; the prediction set had R2 of 0.962 and RMSE of 0.217 g/kg;
step five, calculating the total nitrogen content of the soil to be detected: the method comprises the steps of inserting a pipe body shell into a soil layer to be detected, starting a stepping motor to drive a DLP near infrared spectrum detection module to move to a detection window, controlling the DLP near infrared spectrum detection module to carry out spectrum measurement, acquiring spectrum data of soil at the depth, transmitting the data to a prediction model in a data analysis system through a transmission module to carry out real-time data analysis, and outputting a detection result of the total nitrogen content of the soil.
It is noted that, herein, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
While there have been shown and described what are at present considered the fundamental principles and essential features of the invention and its advantages, it will be apparent to those skilled in the art that the invention is not limited to the details of the foregoing exemplary embodiments, but is capable of other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. Any reference sign in a claim should not be construed as limiting the claim concerned.
Furthermore, it should be understood that although the present description refers to embodiments, not every embodiment may contain only a single embodiment, and such description is for clarity only, and those skilled in the art should integrate the description, and the embodiments may be combined as appropriate to form other embodiments understood by those skilled in the art.

Claims (4)

1. The in-situ monitoring device for the total nitrogen content of the soil is characterized by comprising a pipe body shell, a driving power supply, a control panel, a driving system, a data analysis system and a DLP near infrared spectrum detection module, wherein the pipe body shell is arranged in a columnar pipe body structure, the driving power supply is arranged in the pipe body shell, a plurality of groups of quartz glass detection windows are arranged on the pipe body shell, the control panel is arranged in the pipe body shell, the driving system is arranged in the pipe body shell, the DLP near infrared spectrum detection module is arranged on the driving system and is electrically connected with the control panel, the driving system comprises a stepping motor, a ball screw and a carrying platform, the stepping motor is arranged in the pipe body shell, the ball screw is rotatably arranged in the pipe body shell and is arranged at the output end of the stepping motor, the carrying platform is slidably arranged in the pipe body shell and is connected with the ball screw through, DLP near infrared spectrum detection module includes miniature near infrared spectrum appearance, temperature sensor and humidity transducer, be equipped with signal transmission module among the control panel, signal transmission module is connected with miniature near infrared spectrum appearance, temperature sensor and humidity transducer, data analysis system is connected with signal transmission module.
2. The infrared ray detection device is characterized in that a power switch is arranged at one end of the tube body shell, and the driving power supply is electrically connected with the power switch, the control panel, the stepping motor and the DLP near infrared spectrum detection module.
3. The infrared detector of claim 2, wherein the power switch is electrically connected with the control panel, the stepper motor and the DLP near infrared spectrum detection module.
4. The in-situ monitoring method for the total nitrogen content of the soil is characterized by comprising the following steps of:
step one, data acquisition: performing reflection spectrum measurement on a known soil sample through a DLP near infrared spectrum detection module, wherein the spectrum measurement range is 900-1700 nm, the measurement mode is Hadamard, the pixel width is set to be 10.54, the exposure time is 0.635ms, the sampling rate is 3 times, the number of sampling points is 228, the spectrum measured each time is the average value of 10 times of measurement, before each spectrum measurement, performing spectrum correction by adopting a standard reflection white board to obtain the spectrum data and the total nitrogen content of the known soil, then selecting the spectrum data in the range of 920-1650 nm to extract the total nitrogen characteristic wavelength through a continuous projection algorithm, and randomly dividing the obtained spectrum data and the total nitrogen content of the known soil into a training set and a prediction set;
step two, establishing a prediction model: the method comprises the steps of extracting a spectrum of total nitrogen characteristic wavelength and total nitrogen content in a training set, taking the spectral absorbance of the soil total nitrogen characteristic wavelength as an input independent variable and the soil total nitrogen content as an input dependent variable, and adopting an error back propagation neural network to train a prediction model, wherein the neural network structure comprises a hidden layer, 3 hidden nodes and an output layer, the hidden layer uses a tansig activation function as a transfer function, the output layer function is a linear function, the prediction model is trained by adopting a Levenberg-Marquardt training algorithm, the learning rate is 0.1, and the iteration number is 1000;
step four, fitting degree verification: according to the obtained soil data, a K-weight cross validation method is adopted for prediction model training, the goodness of fit R2 of a training set in the prediction model is 0.962, and the root mean square error is 0.230 g/kg; the prediction set had R2 of 0.962 and RMSE of 0.217 g/kg;
step five, calculating the total nitrogen content of the soil to be detected: the method comprises the steps of inserting a pipe body shell into a soil layer to be detected, starting a stepping motor to drive a DLP near infrared spectrum detection module to move to a detection window, controlling the DLP near infrared spectrum detection module to carry out spectrum measurement, acquiring spectrum data of soil at the depth, transmitting the data to a prediction model in a data analysis system through a transmission module to carry out real-time data analysis, and outputting a detection result of the total nitrogen content of the soil.
CN202010971305.2A 2020-09-16 2020-09-16 In-situ monitoring device and method for total nitrogen content of soil Pending CN112067573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010971305.2A CN112067573A (en) 2020-09-16 2020-09-16 In-situ monitoring device and method for total nitrogen content of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010971305.2A CN112067573A (en) 2020-09-16 2020-09-16 In-situ monitoring device and method for total nitrogen content of soil

Publications (1)

Publication Number Publication Date
CN112067573A true CN112067573A (en) 2020-12-11

Family

ID=73695367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010971305.2A Pending CN112067573A (en) 2020-09-16 2020-09-16 In-situ monitoring device and method for total nitrogen content of soil

Country Status (1)

Country Link
CN (1) CN112067573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009114A (en) * 2021-03-10 2021-06-22 中国水利水电科学研究院 Test device for generating, transmitting and monitoring temperature-controlled water vapor in soil body gradual humidification test

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337484A (en) * 1998-03-26 1999-12-10 Kubota Corp Soil analyzing method, spectroscopic analyser and agricultural working vehicle loaded with spectroscopic analyser
CN102305813A (en) * 2011-05-25 2012-01-04 青岛滩海工程咨询研究院 In-situ, real-time and automatic monitoring system and method in soil water and salt transport process
CN104132903A (en) * 2014-05-23 2014-11-05 中国农业大学 Soil moisture content measuring system and measuring method using the same
CN107421911A (en) * 2017-05-10 2017-12-01 浙江大学 A kind of preprocess method of the soil nitrogen detection based on portable near infrared spectrometer
CA3111619A1 (en) * 2018-09-18 2020-03-26 9371-0184 Quebec Inc. Optical probe and method for in situ soil analysis
CN212845010U (en) * 2020-09-15 2021-03-30 东方智感(浙江)科技股份有限公司 In-situ monitoring device for total nitrogen content of soil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337484A (en) * 1998-03-26 1999-12-10 Kubota Corp Soil analyzing method, spectroscopic analyser and agricultural working vehicle loaded with spectroscopic analyser
CN102305813A (en) * 2011-05-25 2012-01-04 青岛滩海工程咨询研究院 In-situ, real-time and automatic monitoring system and method in soil water and salt transport process
CN104132903A (en) * 2014-05-23 2014-11-05 中国农业大学 Soil moisture content measuring system and measuring method using the same
CN107421911A (en) * 2017-05-10 2017-12-01 浙江大学 A kind of preprocess method of the soil nitrogen detection based on portable near infrared spectrometer
CA3111619A1 (en) * 2018-09-18 2020-03-26 9371-0184 Quebec Inc. Optical probe and method for in situ soil analysis
CN212845010U (en) * 2020-09-15 2021-03-30 东方智感(浙江)科技股份有限公司 In-situ monitoring device for total nitrogen content of soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009114A (en) * 2021-03-10 2021-06-22 中国水利水电科学研究院 Test device for generating, transmitting and monitoring temperature-controlled water vapor in soil body gradual humidification test
CN113009114B (en) * 2021-03-10 2022-03-08 中国水利水电科学研究院 Test device for generating, transmitting and monitoring temperature-controlled water vapor in soil body gradual humidification test

Similar Documents

Publication Publication Date Title
CN102788752B (en) Non-destructive detection device and method of internal information of crops based on spectrum technology
CN101975764B (en) Near infrared spectrum technology-based multiband soil nitrogen detection device and method
CN100510709C (en) Portable multiway crop leaf nitrogen nutrient index nondestructive monitoring device
CN105486655B (en) The soil organism rapid detection method of model is intelligently identified based on infrared spectroscopy
CN104990900B (en) Soil nitrogen and moisture percentage measuring apparatus and method
Zhou et al. Development and performance test of an in-situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy
CN111751376B (en) Rice nitrogen nutrition estimation method based on canopy image feature derivation
CN107505271B (en) Plant nitrogen estimation method and system based on nitrogen component radiation transmission model
CN107607486B (en) Soil total nitrogen detection method and device
CN108152235B (en) Heavy metal content inversion method combining soil indoor and outdoor spectra
CN110118742A (en) Land table Vegetation canopy ecology water content remote sensing inversion method based on spectrum analysis
CN110567892B (en) Summer corn nitrogen hyperspectral prediction method based on critical nitrogen concentration
CN108520127A (en) A kind of EO-1 hyperion inversion method of seeds leaf area index
CN104778349B (en) One kind is used for rice table soil nitrogen application Classified Protection
CN115452822B (en) Method and device for obtaining paddy field methane emission flux based on remote sensing and farmland information
CN106596436A (en) Multi-parameter on-line water quality monitoring device based on spectrometry
CN111220559A (en) Pipeline type full-spectrum water quality detection device and method thereof
CN105784672A (en) Drug detector standardization method based on dual-tree complex wavelet algorithm
CN212845010U (en) In-situ monitoring device for total nitrogen content of soil
CN111160680A (en) Agricultural drought assessment method based on information assimilation and fusion
CN112067573A (en) In-situ monitoring device and method for total nitrogen content of soil
CN205139009U (en) Quick detection device of portable soil nutrients
Qiong et al. Field monitoring of wheat seedling stage with hyperspectral imaging
CN206583795U (en) A kind of multi-parameter water quality real time on-line monitoring device based on spectroscopic methodology
CN116403048B (en) Crop growth estimation model construction method based on multi-mode data fusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination